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Abstract

Background: Protein-protein interactions are critical to elucidating the role played by individual proteins in important
biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play
essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural
level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface hubs (MIH) with three or more
binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different
times or locations) or party hubs (i.e., simultaneously interact with multiple partners).

Methodology: Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II
determines if a protein-binding (PB) protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-
interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard
machine learning techniques.

Conclusions: Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a
correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/
party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve
of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-
protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the
functional and evolutionary characteristics of proteins and their interactions.

Availability: We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.
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Introduction

Proteins are the principal catalytic agents, structural elements,

signal transmitters, transporters and molecular machines in cells.

Functional annotation of proteins remains one of the most

challenging problems in functional genomics, however, our

evolving understanding of a proteins’ interaction partners helps

in functional annotation of proteins [1]. Protein-protein interac-

tions are therefore critical to elucidating the role played by

individual proteins in important biological pathways. Such

networks are typically constructed using high throughput tech-

niques (e.g., yeast two-hybrid (Y2H) experiments).

Our current understanding of protein-protein interaction

networks is quite limited for a variety of reasons. The challenge

of reliable and complete determination of the interactome is far

from being fully addressed due to the high rate of false positives.

These false positives are associated with high throughput

experiments, the low coverage of solved co-crystal structures in

the Protein Data Bank (PDB), and the difficulty of obtaining

reliable negative evidence that a protein does not interact with one

or more other proteins. For example, Y2H experiments focus on

pair-wise interactions between proteins and provide, at best, rather

indirect evidence for higher order interactions e.g., those that

require three proteins to come together to form a complex. Even

in the case of pairwise interactions, Y2H experiments only provide

evidence that a pair of proteins is likely to interact in vitro, without

offering any insights into the physical basis of such interactions, or

whether such interactions may actually occur in vivo [2–6]. It is well

known that data from high-throughput Y2H experiments are

notoriously noisy and suffer from a high false positive rate [7]. The

high-quality datasets tend to have low-coverage e.g., it is estimated
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up to 95% of the human interactome is unmapped [8].

Furthermore, whether a particular protein-protein interaction is

experimentally observed depends on the specific experimental

conditions. It is therefore critical to validate the putative

interactions between proteins suggested by Y2H experiments

using additional experimental or computational studies. As a

result, considerable amount of recent work has focused on creating

high-quality interaction datasets by systematically removing errors

and low-quality interactions or by combining multiple sources of

evidence [2,3,8,9]. Hence, there is considerable interest in reliable

prediction of protein-protein interactions.

Protein-protein interaction networks are usually represented

and visualized as graphs in which the nodes correspond to the

proteins and edges denote their possible pairwise interactions.

Such a representation is simply not rich enough to encode

interactions that involve more than two proteins, nor do they

distinguish between them. Furthermore, a single target protein can

interact with a large number of partners: some of these interactions

may be mutually exclusive because of competition between

potential binding partners for the same interaction sites on the

target protein. Other interactions may be simultaneously possible,

and in many instances, even mutually cooperative, i.e., binding of

one partner to the target protein may prepare the target for

binding to a second partner [10,11]. Distinguishing between these

various types of interactions is essential for uncovering the physical

basis of interactions of a protein with other proteins, engineering

the protein surfaces to manipulate synthetic pathways, or for

designing drugs that bind specific targets [12–14]. However,

answering such questions is extremely difficult in the absence of

direct experimental evidence, e.g., structures of complexes formed

by a protein when it interacts with one or more other proteins or

results of site-specific mutation experiments that identify the

protein surface residues that play essential roles in such

interactions. Unfortunately, experimental determination of pro-

tein-protein complexes or of binding sites is notoriously time-

consuming and expensive. Hence, there is a growing interest in

computational tools that provide useful insights into various

structural aspects of protein interactions from protein sequence

alone.

Of particular interest in this study are hub proteins, i.e., proteins

that interact with large numbers of partners [15]. It is worth noting

that ‘‘large numbers of partners’’ is a relative term and is

arbitrarily defined. In several studies, hub proteins are defined as

those with 5 or more interaction partners [15–18]. The choice of

five (as opposed to some other number) or more interacting

partners as the defining characteristic of hub proteins is somewhat

arbitrary. The quality of protein-protein interaction data (false

positives, incomplete coverage) presents additional challenges in

categorizing proteins into hubs and non-hubs. These difficulties

notwithstanding, hub proteins have been reported to play essential

roles in cellular control and tend to be highly conserved across

species [19]. Mutations in hub proteins can potentially disrupt its

interactions with its many interaction partners, which can turn out

to be lethal for the cell’s survival [20–22]. Hence, it is especially

important to understand physical and structural basis of interac-

tions of hub proteins with their partners. Recent studies suggest

that hubs are more diverse than previously thought and show

striking differences in number of binding sites and kinetics of

binding. Kim et al. [16] combined three-dimensional structure

information, known domain-domain interaction data, and protein-

interaction data to define two types of hub protein structures. The

first type of hub proteins, called singlish interface hubs (SIH),

interacts with multiple partners at one or two binding sites.

Because the interactions rely on binding events at one or two

binding sites, interactions with the different partners tend to be

mutually exclusive. The second type of hub proteins, called

multiple-interface hubs (MIH), interacts with multiple interaction

partners through more than two binding sites (See Figure 1).

Recent studies [16,22–30] have explored the roles of SIH and

MIH in protein-protein interactions and hence protein function.

Kim et al. [16], who were among the first to analyze the properties

of SIH and MIH proteins, found that MIH were twice as likely

(compared to SIH) to be essential for survival and perhaps as a

consequence, more conserved across species with implications for

determining the evolutionary rates for protein hubs. They also

found that MIH proteins are more likely to be members of large

stable structural complexes. SIH and MIH also differ in terms of

network expansion during evolution: SIH appear to follow the

canonical preferential gene duplication model whereas MIH do

not [16]. A recent study showed SIH tend to display higher

degrees of disorder than MIH [28]. Table 1 summarizes the results

of previous studies [16,28] that have compared the properties of

SIH and MIH.

Hub proteins can also be classified based on the kinetic mode of

interaction. Han et al. [31] recently described an expression-based

classification model for hub proteins. This classification is based on

a bimodal distribution of co-expression of hub proteins with their

interaction partners [31]. Date hubs tend to display expression

levels that have low correlation with those of their interaction

partners (and tend to bind different partners at different time

points or locations). Conversely, party hubs tend to exhibit

expression levels that have high degree of correlation with those of

their interaction partners (and tend to interact simultaneously with

the partners). See Figure 1 for an illustration of date hubs versus

party hubs. The analysis of party and date hubs provides

additional insights into the structure of the underlying proteome

and interactome. For example, date hubs contribute to global

network stability and connectivity by acting as a inter-module

linkers [10] that serve as regulators, mediators, or adapters. In

contrast, party hubs act as intra-module linkers that coordinate a

specific process or assist the formation of a specific protein

complex [31,32]. In these intermolecular interactions, the residues

that contribute the most to binding (hot spots) for date hubs tend

to be spatially near each other (forming hot regions) [25]. Date

hubs are likely to evolve faster than party hubs [33]. Table 2

summarizes the conclusions of previous studies that have

compared the properties of date hubs and party hubs

[25,31,33,34]. The differences between the two types of hub

proteins strongly suggest that they might play different functional

roles. SIH tend to be date hubs whereas MIH tend to be party

hubs [16]; but there are exceptions. It should be no surprise that

SIH tend be date hubs: the number of binding sites that a hub

protein has limits the number of partners with which it can

interact at the same time. However, the converse does not

necessarily hold, i.e., not every date hub is a SIH. A date hub may

only have one or two concurrent interactions at any given time,

but each of these interactions may involve different binding sites.

Hence a date hub can in general be a SIH or a MIH. Similarly a

party hub tends to be a MIH, since many concurrent interactions

require many interaction sites, but a MIH can be a party hub or a

date hub based on the interaction kinetics. Recent studies have

focused on the role of hubs in interaction networks and in

particular, the differences in SIH versus MIH and date hubs versus

party hubs [22–24,26,27,29–31,35,36].

Experimental characterization of hub proteins in terms of their

structural and kinetic characteristics requires knowledge of the

structures of complexes formed by such proteins in interaction

with their binding partners [35,37]. Because of the prohibitive cost

Predicting the Binding Patterns of Hub Proteins
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and effort needed to determine the structures of complexes formed

by hub proteins with their binding partners and the interfaces that

mediate such interactions, there is an urgent need for reliable

methods for predicting the structural and kinetic characteristics of

hubs from sequence information alone. In particular, there is a

growing interest in purely sequence-based computational methods

for discriminating between simultaneously possible versus mutually

exclusive interactions[27,31,38,39] and predicting the number of

binding sites available on the surface of a protein.

There has been considerable work on machine learning

approaches for distinguishing hub proteins from non-hub proteins

[40–42]. Mirzarezaee et al. have recently proposed methods for

distinguishing between date hubs (that interact with one partner at

a time) and party hubs (that simultaneously interact with many

partners) [15] using 17 features including 4 composition measure-

ments, grouping of 48 physicochemical properties, six GO term

features, domain occurrence, disordered regions, and position

specific scoring matrices (PSSM). They reported correlation

coefficients of 0.74 for both date and party hubs. In light of these

Figure 1. Descriptions of the singlish-date, singlish-party, multi-date, and multi-party classes. Descriptions for each type of hub are
described below. The rows of the table represent the singlish and multi-interface hub proteins. The columns represent the date and party hubs. The
intersection of the column and row displays a picture showing examples of the type and number of interfaces involved for that class.
doi:10.1371/journal.pone.0056833.g001

Table 1. Properties of singlish and multiple-interface yeast protein hubs.

Properties Singlish-interface Multiple-interface

Essential No Yes

Conserved No Yes

Co-expression Limited High

3D Structure Smaller, less stable Larger, stable

Canonical preferential gene duplication Yes No

Disorder High Low

The properties for each type of interface are listed based on observed tendencies seen in Dataset 3 [16,28].
doi:10.1371/journal.pone.0056833.t001
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results, a natural question to ask is whether similar or better

performance can be achieved from information based solely on the

sequence of the hub protein.

Against this background, we introduce a three-phase machine

learning approach (See Figure 2). Phase I predicts if a protein

physically binds with other proteins (protein-binding (PB) versus

non-protein-binding (NPB)). If a protein is predicted to be a PB

protein, that protein goes through the second and third phase of

predictions. Phase II uses sequence similarity to determine the

potential number of interaction sites for the input sequence based

on a weighted-average of the number of interactors of the top

scoring BLAST hits. Phase III applies methods for predicting both

structure (singlish vs. multiple) and kinetics (date vs. party)

classifications of protein-binding proteins using information

derived from only the sequence of the protein (See Figure 3).

Our experiments show that our method is able to predict whether

a protein is a protein-binding protein with an accuracy of 94%,

0.93 area under a ROC curve (AUC) and a correlation coefficient

of 0.87; identify hubs from non-hubs with 100% accuracy for 30%

of the data (with the rest being flagged as putative hubs or putative

non-hubs depending on the sequence similarity to known hubs/

non-hubs in our dataset); distinguish date hubs/party hubs with

69% accuracy and AUC of 0.68; and SIH/MIH with 89%

accuracy, 0.85 AUC. The method can be used even in settings

where reliable protein-protein interaction data, or structures of

protein-protein complexes are unavailable, to obtain useful

insights into the functional and evolutionary characteristics of

proteins and their interactions. In addition, our method does not

rely on computationally expensive multiple sequence alignments,

the presence of functional or structural domains, or additional

functional annotations (e.g. GO terms), allowing for fast and

updateable predictions.

It should be noted that categorizing hub proteins into structural

and kinetic classes presents many challenges. SIH and date

proteins are defined by the absence of concurrent interaction

partners or interaction sites. However, it is difficult to reliably

determine the absence of interaction between a protein and one or

more putative interaction partners because of the lack of

experimental data under a broad range of conditions. It is thus

possible that some proteins labelled as SIH in our dataset are in

fact MIH where not all interaction partners have been identified.

Conversely, because of the high false positive rates associated with

high-throughput experiments, some proteins labelled as MIH or

party hubs are in fact SIH. These sources for errors in the protein-

protein interaction data need to be kept in mind in interpreting the

results of our study as well as other similar analyses of protein-

interaction data.

A web server for the three-phase approach for automated PB/

NPB, SIH/MIH, and date/party prediction is available at http://

hybsvm.gdcb.iastate.edu.

Results and Discussion

Our approach to classifying proteins based on binding patterns

is a 3-phase approach: Phase I predicts if a protein is likely to bind

with another protein, i.e., protein-binding (PB). Phase II deter-

mines if a protein-binding protein is a hub. Phase III classifies PB

proteins as singlish-interface versus multiple-interface hubs and

date versus party hubs, based on sequence information alone. We

present results of experiments for each of the three phases.

In this study, we use a simple encoding of protein sequences

using the probability distribution short (k-letter) subsequences (k-

grams) of amino acids. In our experiments, we used values of k

ranging from k = 1 (amino acid composition) through k = 4

(dimers, trimers, and tetramers). Larger values of k were not

Table 2. Properties of date and party yeast protein hubs.

Properties Date Party

Evolutionary rate Faster Slower

Interactome connectivity Intermodule Intramodule

Structural interaction Few interaction sites Many interaction sites

Hot spots More organized in hot regions Less organized in hot regions

Hot regions Covers a larger fraction of the interface region, larger
number of distinct hot regions

Covers a smaller fraction of the interface region, smaller
number of distinct hot regions

The properties for each type of interface are listed based on observed tendencies seen in Dataset 4 [25,31,33].
doi:10.1371/journal.pone.0056833.t002

Figure 2. Three-phase method to predict protein-binding
proteins, hub proteins, singlish interface/multiple interface
(SIH/MIH), and Date/Party hubs. Phase I predicts if a protein
physically binds with other proteins (protein-binding (PB) versus non-
protein-binding (NPB)). If a protein is predicted to be a PB protein in
Phase I, that protein is further classified in Phase II and Phase III. Phase II
uses sequence similarity to determine the potential number of
interaction sites for the input sequence and if that protein is likely to
be a hub protein. Phase III applies methods for predicting both
structural (singlish vs. multiple) and kinetic (date vs. party) classifications
of protein hub proteins. All methods for each of the three phases make
predictions from sequence alone.
doi:10.1371/journal.pone.0056833.g002
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considered, because we run out of data to reliably estimate the

model parameters. We use a range of standard machine learning

methods implemented in Weka version 3.6.0: J4.8 version [43] of

the C4.5 decision tree learning algorithm (Decision Tree) [44],

SMO version [45] of the support vector machine (SVM) [46] with

a polynomial kernel, Multilayer Perception neural network (ANN)

[43], and Naı̈ve Bayes algorithm [43]. In addition, in Phase I and

III, we use a two-stage ensemble classifier, HybSVM, which uses an

SVM to combine the outputs of a set of predictors. We compare

the results of predictors trained using machine learning methods

with two baseline methods: the first baseline method classifies

proteins based on the number of SCOP [47,48] and PFAM [49]

domains (domain-based method) present in the sequence. The

second baseline method classifies each protein based on the class-

label of its nearest PSI-BLAST hit. To evaluate predictors

constructed using machine learning we used 10-fold cross-

validation. Because any single measure e.g., accuracy, provides

at best partial information about the performance of a predictor,

we use a set of measures including accuracy, precision, recall,

correlation coefficient, F-measure, and area under the Receiver

Operating Characteristic (ROC) curve. Additional details can be

found in the Methods section of the paper.

Predicting protein binding proteins (Phase I)
To evaluate our method to discriminate proteins that bind to

other proteins from those that bind to other substrates (e.g., small

ligands), we assembled Dataset 1, which consists of 5,010 proteins

including 3,418 proteins that bind to one or more proteins and

1,592 that bind to small ligands, but are not known to bind to

other proteins. As mentioned in the introduction, creating a set of

proteins that do not bind to any other protein is a difficult

challenge due to low-coverage and high false-positive rates in

available protein-protein interaction data. Here we use the

information coming from ligand-binding experiments to obtain

‘‘negative data’’, i.e., non-protein-binding proteins: considering

the inaccuracies in the protein-protein interaction data, if a protein

has no experimental evidence of binding with another protein, but

with a ligand, then we assume that the protein is non-protein

binding. Our hypothesis here is that if a protein interacts with a

ligand and no experimental data are available for its interaction

with another protein, then the lack of evidence of protein-protein

interaction is less likely due to the incompleteness in the data and

more likely due to the lack of protein binding activity. Thus, we

assembled a set of ligand-binding proteins and filtered out those

that had high sequence similarity to proteins known to bind with

other proteins to obtain a set of non-protein binding proteins. The

methodology (described in detail in the Methods section) is not

without its drawbacks: it disregards ligand-interacting proteins that

are also involved in protein-protein interactions in vivo but lacking

the confirmation of in vitro experimental data.

As shown in Tables S1 and S2, the ability to distinguish protein-

binding proteins from non-protein-binding proteins varies as a

function of the machine learning method used and the size of the

k-gram used. The accuracies ranged from 74.4% (Decision Tree,

k = 2) to 87.2% (SVM, k = 2). Simply predicting each protein as

belonging to the majority class yields an accuracy of 68.2% (see

Domain-based method). Most of the methods were able to achieve

Figure 3. HybSVM method. HybSVM is a two-stage machine learning method. The first step of the algorithm is to convert sequence data into a
composition-based data representation (monomer, dimer, trimer, and tetramer). These four new data representations are used as inputs to 7 machine
learning algorithms based on the NB(k) and NB k-gram approaches (Stage 1). An eighth method based on PSI-BLAST is applied to the original
sequence data. The outputs of each of the eight outputs are converted into a binary vector of length 8. The resulting vector is used as input to a SVM
to produce the final output (Stage 2).
doi:10.1371/journal.pone.0056833.g003
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accuracies well above 68.2%. The precision values ranged from

0% to 81%, recall from 0% to 93%, and correlation coefficient

from 0.00 to 0.69. Figure 4 shows ROC curves for each of the

methods. These curves show no single method outperforms all

others over the entire range of tradeoffs between precision and

recall. This suggests the possibility of using an ensemble of

classifiers that takes advantage of the complementary information

provided by the individual classifiers.

To examine this possibility, we built HybSVM for Phase I, which

constructs a support vector machine (SVM) classifier that takes as

input, for each protein sequence to be classified, the outputs of

seven classifiers as well as the PSI-BLAST method and produces as

output, a class label for the protein. The 7 classifiers used are:

NB(1), NB(2), NB(3), NB(4), NB 2-gram, NB 3-gram, NB 4-gram.

PSI-BLAST performs well on sequences with high sequence

similarity whereas the NB(k) and NB k-gram methods perform well

on sequences with high k-gram composition similarity. Logistic

regression models are applied to the HybSVM classifier to get a

probability score for each prediction. These scores are then used to

evaluate the quality of each prediction.

Table 3 compares the performance of the HybSVM classifiers for

Phase I against other standard machine learning approaches.

HybSVM had an accuracy of 94.2% (an improvement of 6% in

absolute terms over NB 4-gram) and a correlation coefficient of

0.87 (an improvement of 0.15 over NB 4-gram). For each

performance measure the HybSVM method had the highest value

for Dataset 1. HybSVM for Phase I also outperforms the other

Figure 4. Receiver-operator characteristics (ROC) curve for Datasets 1, 3, and 4. The curve describes the tradeoff between sensitivity and
specificity at different thresholds for various predictors. A simple domain-based method is included as a baseline for comparison. The figure includes
ROC curves for protein-binding (PB) versus non-protein-binding (NPB), singlish-interface versus multi-interface hub proteins, and date versus party
hub proteins.
doi:10.1371/journal.pone.0056833.g004
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methods over the entire range of tradeoffs between precision and

recall on a ROC curve (Figure 4).

Predicting hub proteins (Phase II)
Since our overall goal is to predict structural and kinetic classes

for hub proteins and these classifiers need to be trained on hub-

only proteins, we need a method to (1) identify hub proteins, (2)

filter out non-hub proteins, and/or (3) flag proteins that have

potential of being non-hubs. To evaluate this type of method, we

assembled Dataset 2, consisting of 4,036 proteins including 1,741

hub proteins and 2,295 non-hub proteins. The dataset was derived

from high confidence protein-protein interaction data from

BioGrid [50] by labelling proteins with more than 5 interaction

partners as hubs and proteins with fewer than 3 interaction

partners as non-hubs. Proteins with 3, 4, or 5 interaction partners

were not used in the dataset because, given the incompleteness of

experimentally determined interactions, their categorization into

hubs versus non-hubs is likely to be less reliable than the rest of the

proteins in the dataset.

We used a simple homology-based method to classify proteins

into hubs and non-hubs. A protein is classified as a hub if each of

the top 4 hits returned by PSI-BLAST [51] search correspond to

hub proteins (See Methods for details). Similarly, a protein is

classified as a non-hub if all of the top hits are non-hub proteins. A

protein is flagged as being likely a hub or non-hub based on the

majority of the class-labels of the four top hits. If no hits are

reported, the protein is flagged as having no known label. In

addition to our predictions, in our web server, we report the

number of interaction partners belonging to the top hit, the range

of interaction partners of the top four hits, and a predicted number

of interaction partners (based on the number of interaction

partners of the top four BLAST hits weighted by the BLAST score

of each hit). This simple sequence-based method correctly

classified 536 hub proteins and 630 non-hub proteins (approxi-

mately 30% of the data). No proteins were incorrectly classified as

hubs or non-hubs.

Predicting structural and kinetic classes for hub proteins
(Phase III)

Structural prediction: discriminating SIH from MIH hub

proteins. To evaluate structural predictions on hub proteins, we

created Dataset 3. The dataset consists of 155 hub proteins

including 35 SIH and 120 MIH. The dataset is a subset of data

originally compiled by Kim et al. [16], but has been filtered to

remove highly homologous sequences (50% or more sequence

identity within at least 80% of the length of the sequence).

Tables S3 and S4 show the ability to distinguish SIH and MIH

(Dataset 3) based on several standard machine learning approach-

es with varying sizes k-grams. The accuracies ranged from 67.7%

(Decision Tree, k = 2) to 81.2% (Naive Bayes, k = 3). Several

classifiers actually had accuracies below 77.4% (e.g., SVM, k = 1).

The precision values ranged from 0% to 86%, recall from 0% to

63%, and correlation coefficient from 0.00 to 0.41. Figure 4 shows

ROC curves for each of the methods. Again, these curves show no

single method outperforms all others. On Dataset 3, each of the

machine learning methods used here outperformed the simple

domain-based method (note that the simple domain-based method

had both 0.00 precision and recall because it was unable to predict

any SIH proteins correctly).

To validate how well interaction sites of SIH and MIH can be

predicted on Dataset 3, we ran a subset of the data through the

interaction site predictor ISIS [52] and the target specific

interaction site predictor NPS-HomPPI [53] with default settings.

Both methods generally under-predicted the number of interaction

sites and in many cases the methods predicted few or no

interaction sites on the hub proteins.

Table 4 shows that the individual methods perform well on

assigning hubs to classes based on structural characteristics. No

single k-value is optimal for all methods; optimal values of k vary

with the size and complexity of the dataset. Variables such as

number of proteins, size of proteins, and homology between

proteins all play an important role in developing an appropriate

model for our classifiers. Therefore, it is difficult to design a single

model or choose a single optimal value of k for any dataset without

prior knowledge of the data. We also observe that proteins within a

class are assigned different labels by classifiers that correspond to

different choices of k. Our results show that a single classifier does

not classify all the proteins correctly, yet a vast majority of the

proteins (over 93%) have at least one classifier that correctly

predicts its class. Again, we used the HybSVM method, this time for

Phase III classifications, to take advantage of the complementary

information provided by the individual classifiers.

Table 3. Dataset 1 (protein-binding vs. non-protein-binding, i.e. PB vs. NPB) prediction results from classifiers trained using
machine learning methods.

Approach Best k Accuracy F1 Score Precision Recall C.C. AUC

NB k-gram 4 88.2 80.1 .75 .86 .72 .85

NB(k) 3 86.4 78.5 .79 .78 .69 .83

Decision Tree 1 81.6 69.9 .72 .68 .57 .78

SVM 2 87.2 78.9 .82 .76 .70 .84

ANN 2 86.9 77.6 .83 .73 .71 .84

Naive Bayes 2 82.1 72.9 .70 .76 .60 .88

Domain-based N/A 68.2 0.0 .00 .00 .00 .50

Homology-based N/A 52.7 49.1 .37 .73 .15 N/A

HybSVM N/A 94.2 90.5 .92 .89 .87 .93

Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area under the receiver operating characteristic curve (AUC) of classification for the
multi-interface versus singlish-interface dataset are presented. Accuracy and F-measure are reported in percentage. For each machine learning approach, values of k
ranged from 1 to 4. Only the classifier with the best performing k-value (as defined by highest correlation coefficient) is shown. Our methods were estimated by cross-
validation. The highest performing value(s) for each performance measure is highlighted in bold.
doi:10.1371/journal.pone.0056833.t003
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From the results shown in Table 4, we can see that HybSVM

outperforms all other individual methods on 5 of the 6

performance measures. For Dataset 3, HybSVM improved

accuracy by 5.2% (89.0%) and correlation coefficient by 0.22

(0.69) over the previous best classifier, NB 4-gram. This method

also had the highest AUC with a value of 0.85 (an improvement of

0.14 over SVM, the next highest performing method). NB(k) had

the highest recall value at 0.84 (it was able to correctly label more

SIH proteins), but it came at the cost of a low precision (0.31) and

lower correlation coefficient (0.44). The threshold can be adjusted

for HybSVM to achieve a better recall based on HybSVM having

very balanced precision and recall scores (values of 0.75 and 0.77)

and the highest f-measure (76.0). Figure 4 shows ROC curves for

each of the methods on Dataset 3. Although HybSVM did not

always outperform the other methods over the entire range of

tradeoffs between precision and recall, it did outperform the other

methods for a specific range of false positive rates (from 0.0 to 0.4

for SIH and from 0.25 to 0.5 MIH). No single method significantly

outperformed HybSVM. It is worth noting that HybSVM method is

especially attractive if there is little tolerance for false positives. In

contrast, each of the other methods (with the exception of domain-

based method) works relatively well, in settings where there is

greater tolerance for higher false positive rates.

A closer examination of the results for Dataset 3 shows that

many of the misclassified hub proteins are close to the arbitrary

boundary between SIH and MIH. This raises the question as to

whether the labels could be more reliably predicted if the arbitrary

cut-off on the number of interfaces is altered (See Figure S1). For

example, hubs with 4 or fewer interaction sites were labelled with

an accuracy of 72%. However, the accuracy of classification of

hubs with 3 or fewer interfaces, the cut-off value for distinguishing

SIH and MIH, was considerably lower. The sensitivity of

predictions for MIH improves as the number of interfaces of the

hub protein increases (See Figure S2). The sensitivity of predicting

a protein hub with four or more interfaces is 96% (119/124) and

97% (108/111) for protein hubs with 5 or more interfaces. The

majority (11/18) of our misclassifications were caused by a strong

homology between proteins with differing numbers of interaction

partners that were 2 or fewer (e.g. a protein with two interaction

partners had a strong homology with a protein that had four

interaction partners). Details of the misclassifications can be found

in Table 5.

Kinetic prediction: discriminating Date from Party hub

proteins. To assess kinetic predictions on hub proteins, we

created Dataset 4. Dataset 4 contains 199 hub proteins including

91 date hubs and 108 party hubs. Dataset 4 was originally created

by Han et al. [31]; this dataset had relatively low sequence

homology so no sequences were removed. Tables S5 and S6 show

the results of using standard machine learning approaches on this

dataset. The accuracies for Dataset 4 ranged from 51.0% to 66.2%

and the correlation coefficients from 0.01 to 0.30; precision from

50% to 70% and recall from 42% to 62%. The results of

HybSVM on Dataset 4 (see Table 6) provided an accuracy of

69.2% and a correlation coefficient of 0.37, which are compar-

atively better than the best individual method (NB 3-gram).

HybSVM had a marginally lower AUC value (0.68) as compared

to the Naive Bayes (0.70). HybSVM also had the best F-Score

(62.6) and precision (0.71). Figure 4 shows ROC curves for each of

the methods on Dataset 4. The ROC curves were similar to the

curves generated by building classifiers on the SIH/MIH dataset.

The results show that HybSVM method can be used in settings

where a low false positive rate is desirable.

A study by Mirzarezaee et al. has recently proposed methods for

distinguishing date hub proteins from party hub proteins [15]

using a variety of features including 4 composition measurements,

48 physicochemical properties, six GO term features, domain

occurrence presence, disordered regions, and position specific

scoring matrices (PSSM). They reported accuracies of up to 77%

with correlation coefficients of 0.74 for both date and party hubs.

Their dataset also used yeast proteins, but it was a different set of

proteins and consisted of over 5,000 non-hub proteins. Their

methodology consisted of classifying proteins into the following

four classes: non-hub, intermediately connected, date, and party.

The HybSVM approach we report here focused instead on the

binary classification task of distinguishing date hubs from party

hubs. Our method does not need functional annotations (GO

terms) of proteins, their domain composition, or their sequence

alignments with their homologs. Our method also provides

probability scores for each prediction. These scores allow an

investigator to trade-off the reliability of predictions against the

coverage of the predictions. HybSVM runs quickly and is easy to

implement and update, which are ideal characteristics to serve the

method through a web server. A web server implementation of

HybSVM can be found here: http://hybsvm.gdcb.iastate.edu.

Table 4. Dataset 3 (SIH vs. MIH) prediction results from classifiers trained using machine learning methods.

Approach Best k Accuracy F1 Score Precision Recall C.C. AUC

NB k-gram 4 83.8 53.8 .42 .75 .47 .71

NB(k) 3 83.2 45.3 .31 .84 .44 .69

Decision Tree 3 71.0 40.3 .38 .43 .21 .57

SVM 2 76.1 41.0 .46 .37 .27 .62

ANN 2 79.0 14.1 .60 .08 .10 .55

Naive Bayes 3 81.2 52.8 .62 .46 .41 .70

Domain-based N/A 76.4 0.0 .00 .00 2.01 .42

Homology-based N/A 66.4 46.6 .74 .34 .32 N/A

HybSVM N/A 89.0 76.0 .75 .77 .69 .85

Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area under the receiver operating characteristic curve (AUC) of classification for the
multi-interface versus singlish-interface dataset are presented. Accuracy and F-measure are reported in percentage. For each machine learning approach, values of k
ranged from 1 to 4. Only the classifier with the best performing k-value (as defined by highest correlation coefficient) is shown. Our methods were estimated by cross-
validation. The highest performing value(s) for each performance measure is highlighted in bold.
doi:10.1371/journal.pone.0056833.t004
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Validating the three-phase approach
To validate our three-phase approach, we tested each phase on

additional datasets. Since Dataset 1 (PB versus NPB) was created

independently of Dataset 3 (SIH versus MIH) and Dataset 4 (Date

versus Party), we used these two datasets along with the data used

in the Mirzarezaee paper (Date versus Party) as a test set for the

HybSVM classifier for predicting protein-binding proteins (Phase I).

The union of these three datasets included 900 yeast hub proteins.

The Phase I HybSVM classifier predicted 99.7% of the proteins as

protein-binding proteins. Only three multi-interface proteins were

misclassified.

We also used the data from the Mirzarezaee study as an

additional test set to predict hub proteins (Phase II) and for the

HybSVM classifier to discriminate date hubs from party hubs

(Phase III). The Phase II classifier correctly predicted 147 proteins

as hub proteins and 116 as likely hub-proteins. The classifier

misclassified 45 proteins as non-hub proteins and 23 as likely non-

hubs proteins (12% error rate). All other proteins were labeled as

Table 5. Details for misclassified proteins in Dataset 3 using HybSVM.

Misclassified proteins Protein with highest homology

Class Gene Interfaces Gene Interfaces e-value Difference

Singlish RHO1 3 CDC42 2 1E-52 1

singlish STE11 4 CLA4 2 2E-37 2

singlish ARP2 3 ACT1 2 1E-102 1

singlish MAK5 9 DRS1 2 6E-42 7

singlish PRP28 8 DRS1 2 2E-49 6

singlish PUB1 3 SGN1 1 1E-05 2

singlish CMD1 4 MLC1 2 1E-15 2

singlish SEC22 7 YKT6 2 9E-10 5

singlish SNP1 3 SGN1 1 8E-05 2

multi YKT6 2 SEC22 7 9E-05 25

multi CDC42 2 RHO1 3 1E-05 21

multi ACT1 2 ARP2 3 1E-05 21

multi SGN1 1 PUB1 3 1E-05 22

multi YTA7 1 RPT4 6 8E-05 25

multi MLC1 2 CMD1 4 1E-05 22

multi MTR3 1 (No hit) N/A N/A N/A

multi BOI2 2 (No hit) N/A N/A N/A

multi CLA4 2 STE11 4 2E-05 22

Details for the misclassified proteins in Dataset 3 based on using the HybSVM method including: actual class (multi, singlish), gene name, and number of interfaces as
predicted by Kim et al. [16] are shown. For each misclassified protein, information about the protein with the highest homology based on the nearest BLAST hit is also
shown. This information includes: gene name, number of interfaces as predicted by Kim et al. [16], e-value of the BLAST results between the two proteins, and the
difference between the number of predicted interfaces for the misclassified protein and its nearest BLAST hit.
doi:10.1371/journal.pone.0056833.t005

Table 6. Dataset 4 (Date vs. Party hubs) predictions from classifiers trained using machine learning methods.

Approach Best k Accuracy F1 Score Precision Recall C.C. AUC

NB k-gram 3 67.1 59.8 .54 .67 .33 .71

NB(k) 3 65.1 58.0 .53 .64 .29 .65

Decision Tree 1 53.5 55.4 .50 .62 .08 .53

SVM 3 62.1 59.0 .59 .59 .24 .66

ANN 2 66.2 55.5 .70 .46 .30 .69

Naive Bayes 1 65.2 57.5 .66 .51 .29 .70

Domain-based N/A 59.1 30.2 .62 .20 .14 .57

Homology-based N/A 29.8 22.0 .22 .22 2.43 N/A

HybSVM N/A 69.2 62.6 .71 .56 .37 .68

Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area under the receiver operating characteristic curve (AUC) of classification for the
multi-interface versus singlish-interface dataset are presented. Accuracy and F-measure are reported in percentage. For each machine learning approach, values of k
ranged from 1 to 4. Only the classifier with the best performing k-value (as defined by highest correlation coefficient) is shown. Our methods were estimated by cross-
validation. The highest performing value(s) for each performance measure is highlighted in bold.
doi:10.1371/journal.pone.0056833.t006
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being of unknown category. The Phase III classifier used to

discriminate date and party hub proteins predicted 67.9% of the

546 proteins correctly with a correlation coefficient of 0.36. One of

the advantages of our approach over the Mirzarezaee study is that

a probability score is assigned to the predictions. In this example, a

majority of the misclassifications had a probability score under

0.70. Predictions with higher scores are more reliable. For

example, in the case of predictions with score greater than 0.70

(337 proteins), accuracy improves to 74.2% (0.46 correlation

coefficient). The predictions with score greater than 0.90 (78

proteins) yield even more reliable results: 84.6% accuracy, and

0.54 correlation coefficient. These results show that investigators

can benefit from our method, which needs only sequence

information, to control the quality of the predictions by sacrificing

the coverage of the classifier. SIH and MIH class labels were not

readily available for the Mirzarezaee dataset, so the structural

classifier of Phase III was not evaluated on this dataset.

Conclusion
We have demonstrated that it is possible to fairly reliably classify

proteins in a three-phase approach: the first phase distinguishes

protein-binding (PB) versus non-protein-binding (NPB) proteins;

the second phase predicts if the protein is likely to be a hub; the

third phase classifies protein-binding proteins into SIH versus

MIH and date versus party hubs. Our approach uses only

sequence information and therefore will be highly useful for the

analysis of proteins lacking structural information. These classifi-

cations provide insights into the structural and kinetic character-

istics of the corresponding proteins in the absence of interaction

networks, expression data, three-dimensional structure, sequence

alignment, functional annotations, domains, or motifs. We note

that the performance of our classifier for predicting structural

characteristics of hubs (i.e., classifying hubs into SIH versus MIH)

is better than that of the classifier for predicting kinetic or

expression related characteristics of hubs (i.e., classifying hubs into

date versus party hubs).

Materials and Methods

Here we used four datasets for training and testing classifiers for

different phases of prediction. Because protein interaction datasets

tend to have high false positive rates, when building these datasets,

our main goal was to use high-quality data. Our second goal was

to remove sequence bias in the datasets. The first dataset consists

of proteins that are involved in binding with other proteins (PB)

and proteins that are not involved in PB (NPB). This dataset was

used in the first phase of our prediction. The second dataset

consists of hub and non-hub proteins. This set of proteins was used

in the second phase of predictions. Datasets 3 and 4 were used by

the third phase to distinguish singlish/multiple and date/party hub

proteins (Figure 2).

Dataset 1 – Protein-binding (PB) versus non-protein-
binding (NPB) proteins

The first dataset consists of two subsets of proteins. The first

subset is generated using high-quality sets of proteins that are

known to interact with other proteins. These proteins form a

protein-binding (PB) subset. The second subset consists of proteins

that are unlikely to bind with other proteins (NPB). To create the

PB subset, 3,640 yeast proteins were downloaded from HINT [9]

(High-quality protein interactomes) (http://hint.yulab.org/)–

HINT is a database of high-quality protein-protein interactions

for different organisms, which was obtained by integrating protein-

protein interaction data from various sources and filtered to

remove low-quality interactions.

The NPB subset consists of proteins that bind with small

molecules, but not with proteins. Identifying such a subset is a

challenging task, because the available protein-protein interaction

data are incomplete at best. It has been estimated that the fraction

of identified interactions of the full human interactome is between

5% and 13% [8,54,55] and up to 30% for the yeast interactome

[54]. The efforts to increase the coverage will most likely increase

the false positive rate as well [56]. Therefore, it is inevitable that

any NPB dataset will be subject to these inherent limitations of

incompleteness and incorrectness in experimental protein-protein

interaction sets. Considering these limitations, we used the

following methodology to create the NPB subset: a set of 8,443

proteins were downloaded from BindingDB [57] (http://www.

bindingdb.org/bind/index.jsp). This includes the entire set of

protein targets that bind to small-molecules. In order to filter

proteins that are interacting with other proteins, these 8,443

BindingDB proteins were BLASTed [58] against the PB set and

any protein that had a positive hit was removed. Additional

filtering was performed with the remaining BindingDB proteins

against the 5,000 yeast proteins that have an experimental protein-

protein interaction evidence in BioGrid [50] (http://thebiogrid.

org/). The remaining set of non-interacting proteins was 4,567

proteins. To minimize sequence bias, we clustered the proteins in

both subsets where at least 80% of the sequence shared 50% or

more sequence identity. A representative sequence was randomly

chosen for each cluster to obtain the final dataset. The resulting

dataset, Dataset 1, consists of a total of 5,010 proteins including

3,418 proteins in the PB subset and 1,592 proteins in the NPB

subset.

Dataset 2 – Hub proteins versus non-hub proteins
Manna et al. [18] had previously created a dataset of hubs and

non-hubs. This dataset was originally assembled by downloading

human protein-protein interaction data from BioGRID [50]. Any

protein that had more than five interactions was labeled as a hub,

proteins with fewer than three interactions were labeled as non-

hub. Proteins with three, four, or five interactions were not

considered as they were near the arbitrary cut-off value for

defining a hub and had high potential for being mislabeled. Their

resulting dataset included 2,221 hub proteins and 2,889 non-hub

proteins. The data ranged from proteins with a single interaction

partner to 170 interaction partners. To minimize sequence bias in

this dataset, we applied the same methodology we used to obtain

Dataset 1: we clustered the protein where at least 80% of each

sequence shared 50% or more sequence identity and randomly

chose a representative sequence from each cluster. The resulting

dataset, Dataset 2, consists of 4,036 proteins including 1,741 hub

proteins and 2,295 non-hub proteins.

Dataset 3 - Singlish interface hubs (SIH) versus multiple
interface hubs (MIH)

Previously Kim et al. [16] created SIH and MIH datasets by

combining yeast interaction data from various sources [4,16,59–

63] and associating these proteins with Pfam domains [49,64],

which were then subsequently mapped onto known PDB

structures using iPfam [65]. They filtered out interactions that

were not consistent with protein complexes as defined by iPfam to

obtain a yeast protein interaction network. Kim et al. used this set

to analyze evolutionary patterns in hub proteins and it uses a

robust structure-based definition of hubs, which was useful in our

study. Here, we follow their definition of hubs such that a protein

is defined as a hub protein if it has five or more interaction
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partners. A hub protein with 1 or 2 mutually exclusive interactions

is defined as singlish-interface hub (SIH); a hub protein with 3 or

more mutually exclusive interactions is defined as multi-interface

hub (MIH). The original dataset consists of 1,269 interactions

involving 873 proteins with 167 hub proteins including 36 SIH

and 131 MIH proteins. We downloaded the original dataset from

http://sin.gersteinlab.org. We filtered non-hub proteins out and

applied the same sequence filtering that we used for Dataset 1 and

Figure 5. Venn-diagram for Dataset 3 and Dataset 4. Each of the 272 hub proteins belong to one or more of the following classes: singlish,
multi, date, party. Dataset 3 consists of 35 singlish hub proteins and 120 multi hub proteins (Yellow circles). Dataset 4 consists of 91 date hub proteins
and 108 party hub proteins (Blue circles). Please see text for more details about the datasets.
doi:10.1371/journal.pone.0056833.g005

Figure 6. Example of a singlish-interface date and multi-party hub proteins. Images A and B show the quaternary structure for the singlish-
date protein Rab GDP dissociation inhibitor alpha (GDI1, YER136W) binding with two different proteins. Image C shows the quaternary structure for
the yeast protein beta 6 subunit of the 20S proteasome (PRE7, YBL041W) binding with multiple proteins at the same time. A: GDI1 (green) binding
with GTP-binding protein YPT31/YPT8 (purple). PDB ID of the complex: 3cpj [79,80]. B: GDI1 (green) binding with GTP-binding proteinYPT1 (yellow).
PDB ID of the complex: 1ukv [80,81]. The protein binds at one location (singlish-interface) with one partner at a time (date). C: PRE7 (green) binds
with PUP1 (orange), PUP3 (red), C5 (pink), PRE4 (purple). PDB ID of the complex: 3bdm [80,82]. The protein binds at multiple locations (multi-
interface) with many partners at same time (party).
doi:10.1371/journal.pone.0056833.g006

Predicting the Binding Patterns of Hub Proteins

PLOS ONE | www.plosone.org 11 February 2013 | Volume 8 | Issue 2 | e56833



Dataset 2. The resulting dataset, Dataset 3, consists of 155 hub

proteins with 35 SIH and 120 MIH proteins.

Dataset 4 - Date hubs versus Party hubs
Han et al. [31] created a protein set of date and party hubs by

merging the results of multiple methods [4,31,32,59–62,66–71].

Similar to Kim et al. [16], they defined a protein as a hub protein

if it has five or more interaction partners. They based their

definition of date and party hubs on co-expression patterns: hubs

that have low degree of co-expression with their interaction

partners (Pearson correlation coefficient of 0.5 or lower) are

assumed to bind different partners at different time points or

locations and are classified as date hubs. In the same vein, hubs

that exhibit high degree of co-expression with their interaction

partners (Pearson correlation coefficient greater than 0.5) are

assumed to interact simultaneously with their interaction partners.

Their resulting yeast interaction dataset consists of 1,379 proteins

and 2,493 interactions, which contains both hub and non-hub

proteins. We filtered non-hub proteins out and applied the same

sequence filtering that we used on the previous datasets. The

sequence bias was already removed in the original dataset; so no

additional sequences were removed. The resulting set, Dataset 4

consists of 199 hub proteins including 91 date hubs and 108 party

hubs.

Overlap among Dataset 3 and Dataset 4
It is worth noting that the SIH-MIH and Date-Party classes

show some overlap. Figure 5 is a Venn diagram showing the

distribution of the 41 proteins in their respective classes. For

example, 6 singlish-interface proteins are also date hub proteins.

Similarly, there are 2 singlish-party hubs, 6 multi-date hubs, and

27 multi-party hubs. Figure 6 show examples of singlish-interface

date hub and multi-party hub proteins respectively.

Classification framework
For each class within our dataset we built a binary classifier that

predicts if that protein belonged to that class or not. The reported

accuracy estimates are based on stratified 10-fold cross validation.

Each of the individual classifiers is described below:

Machine learning methods
Support Vector Machines. A support vector machine

(SVM), given a training set, that is linearly separable in a kernel-

induced feature space, implements a linear decision boundary that

maximizes the margin of separation between the classes [46]. If the

dataset is not perfectly separable, slack variables are used to

minimize the number of misclassified training examples. Logistic

regression models were applied to the outputs of the SVM to get a

probability score. These scores can be used to evaluate the quality

of a prediction. Even if the overall accuracy of the prediction

model does not meet high standards, the quality of individual

predictions may be suitable based on the probability score. The

score also allows an investigator to determine and set the trade-off

between the sensitivity and selectivity of the classified (as shown in

the ROC-curves). The scores range from 0.5 (50% or equal

probability of belonging to either class) to 1 (100% probability of

belonging to the specified class). We used the Weka version 3.6.0

SMO implementation [45] of the support vector machine

algorithm [46] with a polynomial kernel.

Naive Bayes Multinomial Classifier. The Naive Bayes

multinomial classifier models each sequence by a bag of letters

sampled from a fixed alphabet. In our case, the bag of letters is the

amino acid composition of a protein sequence. Thus, each element

(amino acid) of the sequence is assumed to be independent of the

other elements in the sequence given the class label. Based on this

assumption, a multinomial Naive Bayes classifier can be built over

all of the sequences for a given class. This is similar to the bag of

words approach previously used for text classification [72].

Naive Bayes k-grams Classifier. The Naive Bayes k-grams

(NB k-grams) method [73] uses a sliding a window of size k along

each sequence to generate a bag of k-grams representation of the

sequence. Much like in the case of the Naive Bayes classifier

described above, the Naı̈ve Bayes k-grams classifier treats each k-

gram in the bag to be independent of the others given the class

label for the sequence. Given this probabilistic model, the

previously outlined method for classification using a probabilistic

model can be applied. A problem with the NB k-grams approach is

that successive k-grams extracted from a sequence share k-1

elements in common. This grossly and systematically violates the

independence assumption of Naive Bayes.

NB (k). NB(k) [73] constructs, for each class, a Markov model

of order k -1. It modifies the Naı̈ve Bayes model to explicitly model

the dependencies (of order k-1) between the letters of a sequence. It

is easily seen that when k = 1, Naive Bayes k-grams as well as Naive

Bayes (1) reduce to the Naive Bayes model. The relevant

probabilities required for specifying the above models can be

estimated using standard techniques for estimation of probabilities

using Laplace estimators [74].

Naı̈ve Bayes (NB) k-grams and NB(k) models were constructed

and evaluated on the dataset with k ranging from 1 to 4. Values of

k larger than 4 were not considered because at higher values of k,

the available data are insufficient to obtain reliable probability

estimates.

PSI-Blast. The homology-based tool PSI-BLAST [51] ver-

sion 2.2.9 was used to construct a binary classifier for each class.

We used the binary class label predicted by the PSI-BLAST-based

classifier as an additional input to our HybSVM classifier. Given a

query sequence to be classified, we used PSI-BLAST to compare

the query sequence against the training set. In 10-fold cross-

validation, we ran PSI-BLAST with the query sequences in a given

fold against the reference database comprised of the remaining

nine folds. We repeated this process for each of the ten folds. For

HybSVM, a class was assigned to the query sequence based on the

top-scoring hit (i.e., the sequence with the lowest e-value) from the

PSI-BLAST results. The resulting binary prediction of the PSI-

BLAST classifier for class c is 1 if the class label for the top scoring

hit is c. Otherwise, it is 0. An e-value cut-off of 161024 was used

for PSI-BLAST, with all other parameters set to their default

values. For predicting hub proteins, the four top-scoring hit were

used. If there was a consensus among the top four hits then the

class label of the four hits is assigned to the query sequence. If

three of the four top-scoring hits had the same class, the query

sequence is labeled as ‘likely’ belonging to that class. In addition to

the prediction, we report the number of interaction partners

belonging to the top hit, the range of interaction partners of the

top four hits, and a weighted average (based on the BLAST score)

of number of interaction partners of the top four hits.

Domain-based Method. The domain-based method builds

a classifier by using a class-conditional probability distribution

based on the frequency of SCOP [47,48] and PFAM [49] domains

in the following manner. For each protein, the count for each type

of domain was determined by the number of domains listed at the

Saccharomyces Genome Database (SGD) [75]. This method was

used to rule out a simple direct correlation between the number of

domains and the number of interaction sites on a hub protein.

Decision Tree. A Decision Tree builds a predictive model by

recursively partitioning the dataset based on choosing features that
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provide the most information gain. In our example, the feature set

is the observed k-gram composition of amino acids given a class.

For binary classes (e.g., SIH versus MIH), the decision tree

algorithm chooses a k-gram feature that partitions the data to

maximize the information gain between classes. The process is

recursively repeated on the new partitions until no more

information gain can be achieved. Additional techniques are

performed (e.g., pruning) to help prevent overtraining. For these

experiments we used the commonly used decision tree algorithm

C4.5 [44] implemented as the J4.8 algorithm [43] in Weka version

3.6.0.

Multi-layer perceptron. A multi-layer perceptron, often

referred to as a multilayer artificial neural network [76,77]

(ANN) implements a non-linear decision function by using a

weighted linear combination of non-linear (typically sigmoid)

transformations of linear functions of input features. The ANN is

typically trained using error back-propagation or generalized

gradient descent algorithm that minimizes a function of the error

between the desired and actual outputs of the ANN. We used the

Multilayer Perceptron artificial neural network (ANN) implemen-

tation [43] in Weka version 3.6.0.

HybSVM Method. We introduce HybSVM classifier that is a

support vector machine (SVM) classifier that assigns the class label

to a target sequence based on the class labels output by the Naive

Bayes (NB), NB k-gram, NB(k) classifiers, and an additional

attribute, the output from the PSI-BLAST classifiers. Since there

are eight classifiers Naive Bayes, NB 2-gram, NB 3-gram, NB 4-

gram, NB(2), NB(3), NB(4), and PSI-BLAST, the input to the

HybSVM classifier consists of a 8-tuple vector of class labels

assigned to the sequence by the 8 classifiers. A SVM is trained to

predict the class label for each sequence based on the 8-tuple of

class labels predicted by the eight individual classifiers.

Performance evaluation
The performance measures accuracy, precision, recall, f-measure, and

correlation coefficient are used to evaluate the performance of our

machine learning approaches [78]. Accuracy is the fraction of

overall predictions that are correct. Precision is the ratio of

predicted true positive examples to the total number of actual

positive examples. Recall is the ratio of predicted true positives to

the total number of examples predicted as positive. The F-measure

(F1 score) is the harmonic mean of precision and recall. The F-

measure has a range between 0 (worst value) and 1 (best value).

Correlation coefficient measures the correlation between predictions

and actual class labels. The correlation coefficient has a range of -1

(worst value) and 1 (best value).

Table S7 summarizes the definitions of performance measures

in the two-class setting (binary classification), where M represents

the total number of classes and N represents the total number of

examples. TP, TN, FP, and FN are the true positives, true

negatives, false positives, and false negatives for each of our

classification problems. For example, when predicting SIH

proteins: TP refers to a SIH correctly predicted, FP to MIH

predicted as SIH, FN as SIH predicted as a MIH, and TN to MIH

correctly predicted.

Where possible, we used the area under the receiver operating

characteristic (AUC) curve. The ROC curve plots the true positive

rate versus false positive rate for a binary classifier system (a

protein belongs to a given class or not) as its discrimination

threshold is varied. The area ranges from 0 (worst) to 1 (best); the

value of 0.5 refers to the expected value of a random method.

Supporting Information

Figure S1 The accuracy curve of predicting singlish-
interface and multiple-interface hub proteins as a
function of the number of interaction sites. The curve

shows the prediction accuracy for proteins with number of

interactions sites less than the given maximum threshold. For

example, the value of 5 on the x-axis refers to all hub proteins with

5 or fewer interfaces and the value on the curve (83%) at x = 5,

represents the accuracy of this set.
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Figure S2 The sensitivity curve of predicting singlish-
interface and multiple-interface hub proteins as a
function of the number of interaction sites. The curve

shows the prediction accuracy for proteins with number of

interactions sites more than the given minimum threshold. For

example, the value of 5 on the x-axis refers to all hub proteins with

5 or more interfaces and the value on the curve (97%) at x = 5,

represents the sensitivity of this set.

(DOCX)

Table S1 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the protein-binding
versus non-protein-binding dataset are presented for
internal machine learning methods. For each machine learning

approach, values of k ranged from 1 to 4. The performance of the

results were estimated using cross-validation. The highest performing

value(s) for each performance measure is highlighted in bold.

(DOCX)

Table S2 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the protein-binding
versus non-protein-binding dataset are presented for
standard machine learning methods. For each machine

learning approach, values of k ranged from 1 to 2. The

performances of the results were estimated using cross-validation.

The highest performing value(s) for each performance measure is

highlighted in bold.

(DOCX)

Table S3 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the multi-interface
versus singlish-interface dataset are presented for inter-
nal machine learning methods. For each machine learning

approach, values of k ranged from 1 to 4. The performances of the

results were estimated using cross-validation. The highest perform-

ing value(s) for each performance measure is highlighted in bold.

(DOCX)

Table S4 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the multi-interface
versus singlish-interface dataset are presented for
standard machine learning methods. For each machine

learning approach, values of k ranged from 1 to 3. The

performances of the results were estimated using cross-validation.

The highest performing value(s) for each performance measure is

highlighted in bold.

(DOCX)

Table S5 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the date versus
party dataset are presented for internal machine
learning methods. For each machine learning approach, values

of k ranged from 1 to 4. The performances of the results were

estimated using cross-validation. The highest performing value(s)

for each performance measure is highlighted in bold.

(DOCX)
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Table S6 Accuracy, precision, recall, and correlation
coefficient (CC) of classification for the date versus
party dataset are presented for standard machine
learning methods. For each machine learning approach, values

of k ranged from 1 to 3. The performances of the results were

estimated using cross-validation. The highest performing value(s)

for each performance measure is highlighted in bold.

(DOCX)

Table S7 The formula for binary classification for each
of our five performance measures is provided. TP, TN,
FP, FN are the true positives, true negatives, false
positives, and false negative predictions.
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