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Quantitative Analysis of Competition in Posttranscriptional Regulation
Reveals a Novel Signature in Target Expression Variation
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ABSTRACT When small RNAs are loaded onto Argonaute proteins they can form the RNA-induced silencing complexes
(RISCs), which mediate RNA interference (RNAi). RISC-formation is dependent on a shared pool of Argonaute proteins and
RISC-loading factors, and is susceptible to competition among small RNAs. We present a mathematical model that aims to
understand how small RNA competition for RISC-formation affects target gene repression. We discuss that small RNA activity
is limited by RISC-formation, RISC-degradation, and the availability of Argonautes. We show that different competition
conditions for RISC-loading result in different signatures of RNAi determined also by the amount of RISC-recycling taking
place. In particular, we find that the small RNAs, although less efficient at RISC-formation, can perform in the low RISC-recycling
range as well as their more effective counterparts. Additionally, we predict that under conditions of low RISC-loading efficiency
and high RISC-recycling, the variation in target levels increases linearly with the target transcription rate. Furthermore, we
show that RISC-recycling determines the effect that Argonaute scarcity conditions have on target expression variation. Our
observations, taken together, offer a framework of predictions that can be used to infer from data the particular characteristics
of underlying RNAi activity.
INTRODUCTION
Posttranscriptional regulation (PTR) is mediated by RNA-
induced silencing complexes (RISCs) assembled from
Argonaute proteins and microRNA (miRNA) or small-inter-
fering RNA (siRNA) molecules (1). RISCs act on mRNA
transcripts via the RNA-interference pathway increasing
the mRNA turnover (degradation) rate via cleaving (2) or
destabilization (3). A single RISC can act multiple times
like an enzyme (4), even when target destabilization rather
than cleaving takes place (5–7). mRNA destabilization
and cleaving differ in the number of times a RISC can oper-
ate before dissociation or degradation of the loaded small
RNA. For example, let-7 miRNA-programmed RISCs
were found to each catalyze ~10 target molecules (4).
Another study showed that let-7 siRNA-programmed RISCs
participated each in 50 rounds of catalysis on average (5).
However, experiments using miR223-programmed RISCs
constitutively expressed in human 293T cells reported an
average of only two rounds of activity per RISC (7).
Conceptually, it is simpler to study PTR in the two limits
of RISC operational activity (8–11): the nonenzymatic
stoichiometric mode, where each RISC degrades with the
transcript it has targeted; and the fully enzymatic catalytic
mode, where RISC-degradation is independent of mRNA-
targeting. Part of the scope of this work is to understand
the dynamics of PTR activity in these two distinct opera-
tional regimes.

Posttranscriptional regulation is a mediated process and,
as such, is subject to competition and saturation effects.
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Mature small RNAs need to be loaded onto Argonautes to
be activated. This is a process that involves competition
to access and be loaded onto the Argonautes, and can lead
to saturation conditions for the underlying RISC-forming
machinery of the cell. This saturation can take place either
through the large number of mature small RNAs present,
or for example under Argonaute scarcity conditions.

The experimental evidence for competition and saturation
effects in PTR comes from multiple sources. For example, it
was shown that highly stable chemically modified siRNAs
are able to outcompete the less stable native siRNAs (12).
Another study presented in vitro evidence of intra-siRNA
competition and also siRNA-miRNA competition for Argo-
nautes (13). Additionally, upregulation of target gene
expression levels observed in transfection experiments was
shown to be likely due to RISC saturation effects (14).
Regulation during the maturation process of small RNAs
(15), miRNA sponges (16), and RISC cofactors (17) can
also induce competition-like and saturation-like effects of
various strengths to different small RNAs. On the other
end of the competition spectrum, with Argonautes highly
abundant, it has been found that small RNAs compete to
access targets (11), and that transcript abundance dilutes
the small RNA activity (18). This is because transcripts
with target sites for the same miRNA can compete for
binding, in which case the titration of miRNAs by a certain
target can release the repression from other targets (19).

In the first part of this article, we construct a mathematical
model of miRNA biogenesis and activity that explicitly
takes into account RISC-formation. Understanding how
saturation and competition in RISC-formation can influence
the dynamics of PTR is the second aspect of this work. We
will show that there is a distinctively different signature in
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the variation of target transcript expression, depending on
whether the mode of PTR is stoichiometric or catalytic.
METHODS

Synthesizing a minimal model of PTR

We construct a model of posttranscriptional regulation based on the loading

of small RNAs onto Argonautes. Our terminology is equally applicable to

miRNA and siRNAs, and comparisons with experiments will draw on both

prokaryotic and eukaryotic model systems. The biogenesis of a single

species of small RNA, the expression of targets, and RISC activity is

modeled along the lines of previous work (8,10). Creation and degradation

of molecules of a particular small RNA species (m), the target mRNA (R),

and the target protein (P) are described by the following set of reactions:

[%
km

dm
m; ðsmall RNAÞ; (1)

kR

[%

dR
R; ðtarget mRNAÞ; (2)

R!kP Rþ P

9=

P!dP [

;ðtarget ProteinÞ: (3)

The values for all parameters are provided in Table 1. We denote the

number of small RNA bound to Argonautes by Am, and the number of

unbound Argonautes by A. For simplicity, we take the total number of

Argonautes A0 ¼ A þ Am to be constant. We then describe RISC assembly

at rate kA and RISC disassociation at rate dA by

mþ A%
kA

dA
AmðRISCÞ: (4)

We stress that the RISC-formation process is independent of the RISC

targeting activity, the latter described by the reaction

Am þ R!dRm
�
A stoichiometric
Am catalytic

�
; ðPTRÞ; (5)
TABLE 1 Definitions of model parameters

Parameter Definition Value

m Small RNA number —

R Target mRNA number —

P Target protein number —

km Small RNA production rate 1/min

dm Small RNA degradation rate 1/h

kR mRNA transcription rate 1/min

dR mRNA basal degradation rate 1/h

dRm Target destabilization rate 1/h

kP mRNA translation rate 2/h

dP Protein degradation rate 0.5/h

kA RISC assembly rate (see M0)

dA RISC disassembly rate (see M0)

A0 Argonaute number 500

M0 dA/kA 1/600–600

R0 dA/dRm 0.1–60

Typical values correspond to the activity of siRNAs in Salmonella (10,32).

Rates are expressed in cell volume units.
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with a rate dRm, and an outcome which depends on the mode of PTR

operation, i.e., stoichiometric or catalytic. For simplicity, we describe

single-seed targets only, but our results are not conditional on this assump-

tion, because multiseed targets effectively result in higher values of dRm
(20). According to Eq. 5, a targeted mRNA via either mode of PTR cannot

be released back into the pool of active mRNAs available for translation.

We consider the set of Eqs. 1–5 as a minimal model of PTR mediated by

small RNAs.

Under this minimal model, the number of Argonautes available is deter-

mined by the parameter A0. This parameter is affected by Argonaute

biogenesis and turnover, as well as other small RNA species binding to

Argonautes, so it incorporates an element of the competition faced by the

modeled small RNAs to access the Argonautes. The actual formation of

RISCs is determined by the rate kA, which depends primarily on the indi-

vidual efficiency that the small RNA species has to load to an Argonaute.

The abundance of available RISC-loading factors, which in turn depends

on the presence of other competing small RNA species, can influence kA
as well. Overall, the ratio M0 ¼ dA/kA is a measure of the effectiveness of

small RNAs at RISC-formation which also takes into consideration how

stable the small RNAs are when incorporated in RISCs. Low values of

M0 indicate that the small RNAs considered are highly effective at incorpo-

rating and stabilizing themselves in RISCs (5). High values of M0 reduce

the inherent RISC-incorporating effectiveness, or increase the RISC-insta-

bility of the modeled small RNAs (13). The presence of other equally potent

or highly expressed small RNAs (12), or the saturation of cofactors involved

in RISC-assembly (17), are additional factors that contribute to high M0

values.

In our study, the Fano factor of the number of molecules is the measure

used to capture the strength of variation in different molecular species. It is

defined as the ratio of the variance over the mean of the expression level of

a molecular species. For example, a Fano factor of target transcripts equal to

unity arises from mRNA expression and degradation at constant rates (21).

A Fano factor exceeding unity indicates additional sources of mRNA vari-

ation (22). By harvesting repeated measurements under steady-state condi-

tions, we collect sufficient statistics of the PTR module simulated using the

Gillespie algorithm (direct method) (23). To draw direct comparisons with

previous theoretical work (10), the regime of PTR operation we present

here is that of Salmonella. However, PTR in mammals was simulated as

well, verifying that our results are not limited to PTR in bacteria only but

extend over a broader scope.
RESULTS

RISC-formation introduces an upper bound to the
efficiency of small RNAs

The system of reactions described by Eqs. 1–5 is approxi-
mated in the limit of large copy-numbers (24) by the
following rate equations:

dm

dt
¼ km � dmm� kAmAþ dAAm; (6)

dAm dA
dt
¼ �

dt
¼ kAmA� dAAm �dRmAmR|fflfflfflfflfflffl{zfflfflfflfflfflffl}

stoichiometric

; (7)

dR
dt
¼ kR � dRR� dRmAmR; (8)

dP
dt
¼ kPR� dPP: (9)
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The term over the bracket is present only in stoichiometric
regulation. If correlations among the constituents are ne-
glected, an analytic solution for Eqs. 6–9 can be found at
steady state. The part of the solution associated with
RISC-formation, when combined with our assumption of
A þ Am ¼ A0, yields

Am ¼ A0

m=M0

1þm=M0 þR=R0|fflfflfflffl{zfflfflfflffl}
stoichiometric

: (10)

For the constituents involved in RNA interference (RNAi),
we find

m ¼ km
dm

�dRm
dm

AmR|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
stoichiometric

; (11)

kR=dR

R ¼

1þ dRm
dR

Am

; (12)

where Am is given by Eq. 10 and in stoichiometric PTR can
depend also on the number of mRNAs. In Eq. 10, R0 ¼ dA/
dRm is a threshold that emerges in the stoichiometric regime
only and controls the targeting efficiency of the RISC
complex before it is destabilized with the target.

We find a Michaelis-Menten functional form for Eq. 10,
which is not surprising because the Argonautes operate in
a manner similar to enzymes (5). Experimental evidence
for Eqs. 10 and 12 comes from mammalian cell lines.
Cuccato et al. (25) fit different models of PTR to data
from cell lines expressing EGFP or tTA proteins. Some of
these models had a basis in explicit biochemical reactions,
but the best fit was provided by a phenomenological model
without a simple biochemical basis. These best-fitting equa-
tions were of the form of Eqs. 10 and 12, and we conclude
that RISC-formation is the key mechanism behind their
success.

When the expression level of a particular small RNA
increases in the cell, this species is more likely to be loaded
into Argonautes, be incorporated into RISCs and repress its
targets. In this case, the rate-limiting factor in the strength of
target repression is set byM0, i.e., the RISC-assembly mech-
anism. When the small RNA expression reaches m x M0,
the target repression rate begins to level off as Am saturates
due to competition between small RNAs and saturation of
the RISC-assembly machinery. This effect is the basis
behind particular experimental observations. For example,
it was found that differences of orders of magnitude among
small RNAs and target transcripts do not suffice to fully
suppress target expression (20,26), or that only moderate
changes in transcriptome expression levels are observed
when small RNAs are transfected into cells (3,14,27,28).
It is not only the number of small RNAs present in the cell
relative to the number of targets that determines the strength
of transcript suppression; it is also the relative competition
that the small RNAs face to perform their tasks, and the
number of targets that each small RNA has (18). The extra
term in Eq. 10, which is present only in stoichiometric
PTR, shows the mode of PTR operation also plays a crucial
role in this context. In stoichiometric PTR, RISCs are
degraded with the targets, but in fully catalytic PTR this
does not occur. As a result, target derepression becomes
easier under low RISC-recycling than high RISC-recycling
conditions.
RISC-assembly influences the variance of target
transcript expression

Different species of small RNAs differ in their efficiency of
RISC-incorporation. To simplify the discussion, we present
simulation data from two functional regimes of PTR opera-
tion: the high efficiency (HE) regime characterized by
M0 << m values, and the low efficiency (LE) regime char-
acterized byM0 >>m values. We stress that the same small
RNA species transfected or natively expressed in different
cell types can find itself facing HE or LE conditions, de-
pending on the presence and expression levels of other small
RNAs, and on the amount of freely available Argonaute
proteins. Furthermore, the mode of PTR can be affected
by competition as well. For example, it was found in
mammalian cells that miRNAs are randomly sorted to the
Argonautes, although the only Argonaute in mammals
with RNA slicer activity is Ago2 (29). As a result, the
same small RNA, when loaded onto an Ago2-programmed
RISC, will perform cleaving-mediated PTR activity faster
and possibly with higher RISC-recycling compared to
Ago1,3,4-programmed RISCs, which rely on the action of
nucleases and have, in principle, lower RISC-recycling.
The sorting of small RNAs to the Argonautes is random
(29); therefore, it is also highly susceptible to competition
conditions induced by the expression of other small RNAs.
Highly efficient small RNAs saturate the PTR
pathway

We simulate cell transfections with highly efficient small
RNAs and under conditions of Argonaute abundance.
Fig. 1 shows the Fano factors and average molecular
numbers per cell as functions of the target gene transcription
rate kR. The case of HE, stoichiometric PTR is shown in
Fig. 1 A. In stoichiometric PTR, RISCs are degraded with
the targets. However, when the target transcription rate is
lower than the small RNAs’ transcription rate (kR < km),
the RISC-target degradation has a weak effect in RISC
and substrate copy-numbers. The highly efficient small
RNAs titrate the Argonaute supply of the cell, as the inset
of Fig. 1 A shows, and additionally a number of free
Biophysical Journal 104(4) 951–958



FIGURE 1 PTR under high efficiency of RISC-formation. Fano factors

(main graphs) and average molecular numbers per cell (insets) of the free

small RNAs m (yellow), loaded RISCs Am (blue), and free target transcript

R (red) are plotted as functions of the target gene transcription rate kR under

low competition PTR conditions (M0 ¼ 1/600). (Colored y-axis lines and

labels refer to corresponding quantities plotted.). Small RNAs have a fixed

rate of production km¼ 1/min, which determines the derepression threshold

(8). (A) Stoichiometric PTR. RISC and substrate degradation occurs in

a short range around kR ¼ km, and the transition from repressed to dere-

pressed targets is sharp. (B) Catalytic PTR at sixfold increased kR range.

Argonautes are titrated by the highly efficient substrate throughout the kR
range because RISCs are not degraded with the targets, leading to strong

target repression.
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small RNAs remains as substrate. However, targets with
transcription rates close to the small RNA production rate
(kR x km) are expressed at compensatory levels to those
of the small RNAs, and begin to alleviate the PTR-mediated
repression (8,20).
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This occurs via substrate depletion, because the newly
available Argonautes from the degraded RISCs are quickly
recruited by the highly efficient small RNA substrate. The
result is a very sharp transition from target repression to
target derepression for those mRNAs with transcription
rates (kR R km). The main graph of Fig. 1 A shows this
sharp signature in expression level variation, especially for
the substrate and RISCs. Highly efficient small RNAs
force RISC-target degradation to take place over a shorter
kR range, and repression drops sharply for targets with
(kR > km). This property can be desirable, for example, for
miRNAs or siRNAs involved in sharp activation and deacti-
vation transitions of genes during the developmental phase
of organisms.

Fig. 1 B corresponds to HE catalytic PTR, where the
range of the target transcription rate is increased sixfold.
Here, there is no depletion of the free small RNA substrate
taking place, and the RISC-target interaction does not
degrade RISCs. For this reason the repression-derepression
threshold disappears, in agreement with experimental
observations (20). Titration of the Argonautes by the highly
efficient small RNAs takes place again, as the inset of Fig. 1
B shows, but this time over the full range of mRNA tran-
scription rates. The PTR module operates at maximum
target repression capacity, and targets are strongly repressed
and show small expression variation for any range of tran-
scription rates. Overall, we notice that targets with transcrip-
tion rates far from the derepression threshold, whether
catalytically or stoichiometrically regulated, show variation
of unity Fano factor strength.

Similar profiles in target expression variation were re-
ported by a theoretical study, which did not include the
RISC-assembly process explicitly (10). In view of our
results and analysis so far, this is not surprising. HE PTR
conditions are conditions of fast RISC assembly, in which
case an effective model that does not directly include this
process is accurate. However, it should be emphasized that
HE conditions, for a given small RNA gene, are LE condi-
tions for the rest of the small RNA genes expressed in the
cell. If Argonautes can be as efficiently titrated by the
product of a single or a few highly efficient small RNA
genes as Fig. 1 shows, then the rest of the expressed small
RNAs are facing Argonaute scarcity conditions.
High RISC-recycling for less efficient small RNAs
induces a novel signature in target expression
variation

We now investigate posttranscriptional regulation mediated
by small RNAs, which have a low efficiency at RISC-forma-
tion. Fig. 2 A shows the case of stoichiometric LE PTR.
Because the free small RNA substrate is less responsive to
RISC-formation, Argonaute titration becomes less efficient
and fewer RISCs are formed, with the latter becoming easier
to be degraded with targets. The transition from target



FIGURE 2 PTR under low efficiency of RISC-formation. Similar to

Fig. 1 but for small RNAs of low efficiency (M0 ¼ 600). (A) Stoichiometric

PTR. Less efficient small RNAs are incorporated into lower numbers of

Argonautes. The target repression to target derepression transition becomes

smoother. (B) Catalytic PTR at sixfold increased kR range. A distinctively

different signature in target expression level variation is found. The strength

in target repression is reduced compared to HE catalytic PTR, but the level

of variation in target expression increases linearly with kR.
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repression to target derepression becomes smoother, and the
peak Fano factor value in target levels is reduced compared
to the case of highly efficient small RNAs. It should be
mentioned that dRm, the rate at which RISCs target tran-
scripts, is the same for both HE and LE conditions.

The term dRmAmR in Eq. 8 implies that target variation is
affected by the RISC copy-number. Fast RISC-formation
leads to a larger pool of RISCs. Consequently, during
RISC-depletion close to the derepression threshold, targets
experience higher expression variation. This is the reason
why the peak of the Fano factor of target expression is lower
for LE thanHE small RNAs. Overall, we find that in stoichio-
metric PTR the less efficient small RNAs, which are not
demanding on PTR resources, can regulate targets as effec-
tively as highly efficient small RNAs, which tend to saturate
the PTR network. Viewed differently, our result suggests that
stoichiometric PTR involving small RNAs of low efficiency
has a capacity for many different independent channels,
where the different types of small RNAs are concurrently
involved in independent stoichiometric PTR tasks.

Fig. 2 B shows the case of catalytic LE PTR with the kR
range increased sixfold. As expected for PTR not operating
at capacity, target derepression occurs at lower kR values
compared to HE PTR. However, a qualitatively different
profile of PTR activity emerges. The Fano factor, and hence
the strength of variation in target mRNA numbers, increases
linearly with the target transcription rate. Target transcripts
with higher transcription rates than their regulators experi-
ence higher variation in their expression levels the higher
kR becomes. Target repression is again more effective
compared to stoichiometric PTR, but now the profiles in
variation of target expression under stoichiometric and cata-
lytic LE PTR are distinctively different.

It is known that the expression variation measured by the
Fano factor for the biogenesis of mRNA under constant
transcription and degradation rates is independent of the
transcription rate (21). This scenario is recovered far from
the derepression threshold kR >> km in stoichiometric LE
PTR, and in both stoichiometric and catalytic HE PTR.
However, we find under catalytic LE PTR that the Fano
factor becomes linearly dependent on the target transcrip-
tion rate. The root cause of this effect is suggested by
Eq. 12, showing that target abundance is affected by RISC
abundance. Due to the decreased ability at RISC-formation
of LE small RNAs, the average copy-number of targets
responds to sustained changes in RISC numbers. As a result,
there are long time intervals where target turnover readjusts
to changes in the number of RISCs. Any increase in kR
enlarges the pool of target transcripts R, but also increases
the turnover rate associated with the term dRmAmR of
Eq. 8, simply because the same amount of RISC is now
exposed to more targets. Consequently, a linear increase
of target expression variation with kR follows. In contrast,
small RNAs efficient at RISC-formation induce fast changes
to RISC copy-numbers, averaging over time to a constant
rate of RNAi activity. This is the reason why the LE range
of PTR operation could not be captured by previous models
lacking the RISC-formation process (10).
RISC-recycling determines the response of PTR
to Argonaute scarcity conditions

We have discussed that Argonaute abundance conditions for
small RNAs highly efficient in RISC-formation can result in
Biophysical Journal 104(4) 951–958



FIGURE 3 RISC-recycling determines the response of PTR to Argo-

naute scarcity conditions. The Fano factors of substrate small RNAs

(yellow), loaded RISCs (blue), target transcripts (red), and target protein

(gray) are plotted as functions of the Argonaute abundance A0 for LE

small RNAs. (A) Stoichiometric PTR near the derepression threshold

kR ¼ km ¼ 1/min. More RISCs are formed as more Argonautes become

available. However, RISC turnover increases also due to the joint RISC-

target degradation, which results in an increase in the strength of target

expression variation. (B) Catalytic PTR at kR ¼ 12 km. Absence of joint

RISC-target degradation renders the copy-number of small RNAs and the

strength of variation of RISC copy-number independent of A0. Lower

numbers of available Argonautes lead to a reduced PTR-mediated target

degradation rate, which approaches the basal target degradation rate, result-

ing in increased levels of variation in target copy-numbers.
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Argonaute scarcity conditions for other less efficient but
concurrently expressed small RNAs. Additionally, highly
efficient small RNAs due to competition from their iso-
forms, or from different small RNAs of similar efficiency,
can also face Argonaute scarcity conditions. So far, we
have investigated cells with A0 ¼ 500 Argonautes available.
In what follows, we are going to probe lower values of A0 for
the LE operational regime of PTR.

Fig. 3 A considers stoichiometric LE PTR close to the
derepression threshold kR ¼ km. As Argonaute availability
increases, more small RNAs can be incorporated into
RISCs, but more RISCs can also be degraded with targets.
Overall, the derepression threshold at kR¼ km remains fixed,
but the average copy-number of substrate small RNAs and
targets decreases with increasing A0, as Eqs. 11 and 12
predict as well. Consequently, as A0 levels increase in the
cell, m and Am show greater expression level variation,
which affects also the expression level variation of targets.

The picture reverses for catalytic LE PTR, as shown in
Fig. 3 B. RISCs can no longer be degraded with targets in
catalytic PTR, which renders the number of RISCs indepen-
dent of the number of targets. The RISC copy-number is
dependent on the Argonaute copy-number, but the amount
of variation of the RISC copy-number is independent of A0,
as shown in Fig. 3 B. Furthermore, for the substrate small
RNAs at steady-state both the copy-number, as Eq. 11
predicts, and strength of variation become independent of
A0. Lower Argonaute numbers reduce the PTR-mediated
degradation rate of targets close to the basal degradation rate.

Consequently, the lower A0 becomes, the more that vari-
ation in RISC copy-numbers influences variation in the turn-
over of targets. It should be mentioned that the monotonic
increase of the Fano factors with decreasing A0 shown in
Fig. 3 B is determined by the relative strength of the PTR-
mediated degradation rate of the target mRNA compared
to the basal degradation rate. At extreme Argonaute scarcity
conditions, where dRmAmR << dR, a nonmonotonic profile
emerges, and an inflection point appears close to the cross-
over range dRmAmR ~ dR (data not shown). In Fig. 3 B, the
crossover range corresponds essentially to A0 ¼ 0, therefore
no inflection point is observed.

Under LE PTR, the impact of Argonaute scarcity condi-
tions on target expression variation is dependent on RISC-
recycling. In the limit of weak RISC-recycling, a reduction
in Argonaute availability reduces the strength of variation in
target expression, however in the limit of strong RISC-recy-
cling the opposite holds true. This finding complements our
conclusion from our study of stoichiometric regulation that
less efficient small RNAs can be favored because they
require fewer Argonautes to perform tasks equally well. If
multiple stoichiometric PTR channels are open, the channel
with the least efficient or lowest expressed small RNAs will
be operating under Argonaute scarcity conditions. On the
one hand, as Fig. 3 A shows, the level of noise in PTR for
this channel will be reduced compared to the rest of the acti-
Biophysical Journal 104(4) 951–958
vated channels. On the other hand, for catalytic regulation
when multiple types of small RNAs are coexpressed, Argo-
naute scarcity conditions induce an increase to the strength
of variation in the expression of targets, leading to more
noisy PTR activity.
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DISCUSSION

Understanding competition effects within the PTR pathway
is of central importance to PTR. For example, transfection
protocols using synthesized small RNAs to target particular
genes require taking into account and optimizing for the
strength of perturbation induced by the small RNA intro-
duced to the cellular environment. Highly expressed small
RNAs, or small RNAs efficient in RISC-formation, face
low competition for RISC-loading in the transfected cell
lines. However, the natively expressed small RNAs in these
cell lines face high competition, which may not be part of
the physiological range of activity. Endogenous aberrant
expression of miRNAs in cancer cells can lead also to
PTR competition conditions (30). Here, abnormalities in
the expression or efficiency of small RNAs due to mutations
or DNA damage can perturb the rest of the normally func-
tioning PTR pathway.

Accumulated insight into the mechanisms of PTR sug-
gests that competition effects are ubiquitous also under
normal physiological conditions. For example, most mam-
malian miRNA genes have multiple isoforms (1). When
different isoforms have similar efficiency at RISC-forma-
tion, one can expect competition to set in even when low
numbers of miRNA or siRNA genes are expressed. Similar
conditions also arise for PTR in prokaryotes, with differ-
ences to eukaryotic PTR being quantitative rather than qual-
itative (31).

It is important to understand that within the same cellular
environment, in principle different PTR conditions can apply
for the different small RNA species and their targets. If
multiple highly efficient or abundant small RNA genes are
natively expressed, their targets will exhibit the variation pre-
dicted under LE instead of HE PTR conditions, because the
different species of small RNAs will compete for the Argo-
nautes. Additionally, targets of the rest of the natively ex-
pressed small RNAs in these cell lines might experience
PTR under Argonaute scarcity conditions, if the majority of
the Argonautes are titrated by themore efficient small RNAs.

We have developed a mathematical model of RISC-
formation from which several principles of posttranscrip-
tional regulation emerge. Argonaute proteins operate on
the substrate of free small RNAs as enzymes, and when
modeled as such, the functional form of Eqs. 10 and 12
emerges. This functional form was used as a heuristic
without biochemical basis to model PTR data (25), where
it gave a superior fit to the data compared with several other
models not incorporating RISC-formation. Our results indi-
cate that the upper bound in the efficiency of small RNAs is
set not only by the number of Argonautes in the cell but also
by the RISC-degradation rate dA present in the RISC-satura-
tion thresholds M0 and R0 in Eq. 10. Furthermore, RISC
turnover is affected in stoichiometric PTR by the joint
RISC-target degradation process and becomes dependent
on dRm as well.
Small RNAs play a crucial role during the developmental
phase of organisms by activating or deactivating networks of
genes, or by maintaining expression thresholds. Our mathe-
matical model predicts that, in stoichiometric PTR, the
target derepression transition is sharp under HE conditions
but smoother and less noisy under LE conditions. On the
one hand, highly efficient small RNAs can perform their
tasks better and faster; on the other hand, they can outcom-
pete the less efficient small RNAs concurrently involved in
PTR, thus can saturate the capacity of the PTR pathway for
multitasking. The profiles of stoichiometric PTR under LE
and HE conditions are similar, but small RNAs less efficient
at RISC-formation use fewer shared cellular resources. This
opens up the possibility for greater numbers of independent
PTR pathways to coexist, allowing for more complex
cellular functionality to emerge.

Mukherji et al. (20) reported a similar repression-
derepression pattern when they administered miRNA-
mimicking siRNAs to aid miR-20 in target repression, or
introduced additional target seed sites. Both measures did
not change the RISC-loading efficiency of miR-20, but led
to an increase in the target repression efficiency via an effec-
tive increase in the value of dRm. This increase of repression
efficiency resulted in a sharpening of the repression-dere-
pression threshold. Our analysis shows that even when the
targeting efficiency of miRNAs is held fixed by keeping
dRm constant, one would still expect differences in the sharp-
ness of the derepression threshold due to differences in the
RISC-loading efficiency of the miRNA species.

Small RNAs with low RISC-formation efficiency induce
a novel signature in the variation of target expression levels.
Although target suppression is less severe compared to PTR
mediated by highly efficient small RNAs, our model
predicts that the variation in the target expression levels
(measured by the Fano factor) increases linearly with the
target transcription rate. Transcripts targeted catalytically
and kept at a threshold level show larger expression varia-
tion around the threshold when they are targeted under
low efficiency than high efficiency PTR conditions.

This finding suggests that, for example, an organism with
two posttranscriptionally regulated paralogous genes (one
with accumulated mutations in the seed-region, and the other
perfectly complementary to the small RNA regulators) will
show different RNAi dynamics, depending on which copy
is expressed. The transcripts with imperfect complemen-
tarity to the small RNA regulators tend to follow the stoi-
chiometric mode of PTR and will be stably repressed or
kept at a threshold. The transcripts with perfect comple-
mentarity follow the catalytic mode, and when kept at a
threshold, will show greater expression level variance.
Essentially, this organism will possess the capacity to
control the expression profile of a particular protein simply
by activating the corresponding copy of the paralogous gene.

We have presented data of PTR corresponding to two
limiting RISC-recycling rates: stoichiometric and catalytic.
Biophysical Journal 104(4) 951–958
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However, our investigation was extended also to interme-
diate RISC-recycling rates. Highly efficient small RNAs of
intermediate RISC-recycling were studied before in Hao
et al. (10). For low efficiency small RNAs, we find that
the fully catalytic profile of Fig. 2 B is modified and an
inflection point appears at a level of target expression where
the joint RISC-target degradation is able to deplete the small
RNA substrate (data not shown). The higher the RISC-recy-
cling rate, the further away in kR>> km values this inflection
point appears. Overall, our results and conclusions based on
stoichiometric and catalytic regulation are not significantly
modified. High RISC-recycling rates tend to reproduce the
fully catalytic PTR profile, and low RISC-recycling rates
approach the stoichiometric PTR profile.

Recent experiments identified the average number of
Argonautes in mammalian cells to be of ~105 proteins per
cell (29). In human 293T cells, it is found that unregulated
targets of 15,000–25,000 copies per cell are reduced approx-
imately fivefold by miR-223 reaching levels of 2700 copies
per cell (7). To test whether our results and conclusions
based on PTR in bacteria apply to other organisms, we
have simulated PTR in mammals using the above expression
levels (data not shown). We find qualitatively similar results
and we conclude that our predictions hold also for mamma-
lian PTR.

In summary, our work elucidates how the molecular
machinery behind PTR, and in particular competition of
miRNAs and siRNAs during RISC-formation, can influence
the dynamics in target expression. We find two distinct
regimes of PTR activity associated with low and high varia-
tion in the levels of target transcripts. It is possible for future
work to construct a protocol to infer the mode of PTR, stoi-
chiometric or catalytic, based on the variation of target
expression levels, as well as elucidate the effects of Argo-
naute competition across different species of small RNA.
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