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SUMMARY
Intelligent agents balance speed of responding with accuracy of deciding. Stochastic accumulator
models commonly explain this speed-accuracy tradeoff by strategic adjustment of response
threshold. Several laboratories identify specific neurons in prefrontal and parietal cortex with this
accumulation process, yet no neurophysiological correlates of speed-accuracy tradeoff have been
described. We trained macaque monkeys to trade speed for accuracy on cue during visual search
and recorded the activity of neurons in the frontal eye field. Unpredicted by any model, we
discovered that speed-accuracy tradeoff is accomplished through several distinct adjustments.
Visually responsive neurons modulated baseline firing rate, sensory gain, and the duration of
perceptual processing. Movement neurons triggered responses with activity modulated in a
direction opposite of model predictions. Thus, current stochastic accumulator models provide an
incomplete description of the neural processes accomplishing speed-accuracy tradeoffs. The
diversity of neural mechanisms was reconciled with the accumulator framework through an
integrated accumulator model constrained by requirements of the motor system.

INTRODUCTION
The speed-accuracy tradeoff (SAT) is a strategic adjustment in the decision process adapting
to environmental demands exhibited by humans (Fitts, 1966; Wickelgren, 1977; Bogacz et
al., 2010) as well as rats (Kaneko et al., 2006), bees (Chittka et al., 2003), and ant colonies
(Stroeymeyt et al., 2010). Computational decision models explain SAT in terms of a
stochastic accumulation of noisy sensory evidence from a baseline level over time;
responses are produced when the accumulated evidence for one choice reaches a threshold.
Elevating the decision threshold (or reducing the baseline) produces slower, more accurate
responses; lowering the threshold (or raising the baseline) produces faster, less accurate
responses.

Recent neuroimaging studies have presented evidence consistent with these predictions,
suggesting a parallel between stochastic accumulator models and neural processing
(Forstmann et al., 2008, 2010; Ivanoff et al., 2008; van Veen et al., 2008; Mansfield et al.,
2011; van Maanen et al., 2011). However, the neurophysiological mechanisms
accomplishing SAT are unknown, as no test of SAT adjustments in non-human primates has
been reported. Only neurophysiology provides the spatial and temporal resolution necessary
to decisively test the implementation of computational decision models. Multiple
laboratories have demonstrated how the stochastic accumulation process is instantiated
through the activity of specific neurons in the frontal eye field (FEF; Hanes and Schall,

©2012 Elsevier Inc.
*Correspondence: richard.p.heitz@vanderbilt.edu.

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and one movie and can be found with this article online at http://dx.doi.org/10.1016/
j.neuron.2012.08.030.

NIH Public Access
Author Manuscript
Neuron. Author manuscript; available in PMC 2013 November 08.

Published in final edited form as:
Neuron. 2012 November 8; 76(3): 616–628. doi:10.1016/j.neuron.2012.08.030.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1016/j.neuron.2012.08.030
http://dx.doi.org/10.1016/j.neuron.2012.08.030


1996; Boucher et al., 2007; Woodman et al., 2008; Purcell et al., 2010, 2012; Ding and
Gold, 2012), lateral intraparietal area (LIP; Roitman and Shadlen, 2002; Wong et al., 2007),
superior colliculus (SC; Ratcliff et al., 2003; 2007), and basal ganglia (Ding and Gold,
2010). However, no study has investigated whether single neurons accomplish SAT as
predicted by the models. We addressed this by training macaque monkeys to perform
voluntary, cued adjustments of SAT during visual search while recording from single
neurons in the FEF.

Monkeys exhibited proactive and immediate changes in behavior when SAT cues changed.
As observed in human SAT, an accumulator model described their behavioral data with
systematic variation of just one parameter between SAT conditions—decision threshold.
However, the neural correlates of SAT were much more diverse, affecting preperceptual,
perceptual, categorical, and premovement activity in distinct functional types of neurons.
Moreover, although the accumulator models exhibit greater excursions from baseline to
threshold when accuracy is stressed relative to speed, the neurons that have been identified
most clearly with stochastic accumulation exhibited smaller excursions. Thus, these results
demonstrate that the simple stochastic accumulator model framework provides an
incomplete description of the brain processes mediating SAT.

These discrepancies were reconciled by recognizing constraints of the brainstem circuitry
generating the saccades, which had invariant dynamics across all SAT conditions. These
constraints require that the final net influence of FEF movement neurons is equivalent across
SAT conditions. Our data were consistent with this; we discovered that leaky integration of
FEF movement neuron activity terminated at the same level across SAT conditions. These
relationships led naturally to an integrated accumulator model that reconciles the key
features of stochastic accumulator models with the variety of neural adjustments we
observed during SAT.

RESULTS
Assessing Speed-Accuracy Tradeoff in Visual Search

Two Macaca radiata (Q and S) performed a visual search task to locate a target item
presented among distractor items (T or L among Ls or Ts; Figure 1A). Each trial began
when monkeys fixated a central point, the color of which cued one of three SAT conditions
—Accurate, Neutral, or Fast. SAT conditions were presented in blocks of 10–20 trials.
Besides fixation point color, the conditions employed several reward (juice) and punishment
(time out) contingencies (Experimental Procedures). The Accurate and Fast conditions were
enforced with response deadlines similar to some human studies (Rinkenauer et al., 2004;
Heitz and Engle, 2007), adjusted so that ~20% of trials would be too fast after Accurate or
too slow after Fast cues. Reward and time outs were jointly determined both by response
accuracy and response time (RT) relative to the deadlines. Through extensive training,
monkeys learned to adopt three different cognitive sets cued by fixation point color. While
response deadlines were crucial in training and retaining the SAT, they were not necessary
in the short term; both monkeys maintained RT adjustments without the deadline
contingencies.

After training, monkeys were tested in 40 experimental sessions (25 from monkey Q, 15
from monkey S). Both monkeys demonstrated a pronounced SAT in every session,
characterized by decreasing RT and accuracy with increasing speed stress (Figure 1B). Also,
both monkeys responded to SAT cue changes with an immediate adjustment rather than a
slow discovery of reinforcement contingencies; RT increased or decreased significantly on
the first trial of a block switch (Figure 1C, see Movie S1 available online). These
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observations demonstrate the voluntary and proactive behavioral adjustments monkeys
produced.

Accumulator Models Explain Monkey SAT with a Change in Decision Threshold
Human performance in decision-making tasks has been explained as a stochastic
accumulation of evidence (Ratcliff and Smith, 2004). Accumulator models explain SAT by
a change in the decision threshold or equivalently the baseline (reviewed by Bogacz et al.,
2006). Relative to a Neutral condition, lowering the decision threshold promotes faster but
more error-prone responses, whereas raising the threshold promotes slower and more
accurate responses. To determine whether the monkey SAT performance accords with this,
we fit performance with the Linear Ballistic Accumulator (LBA; Brown and Heathcote,
2008). This model has been used extensively to address SAT in humans (Forstmann et al.,
2008; Ho et al., 2012). LBA differs from accumulator models that include within-trial
variability in the accumulation process but leads to equivalent conclusions (Donkin et al.,
2011b). Consistent with previous research, the variation of performance across SAT
conditions was fit best only with variation of threshold (Figure 1D; Table 1). Moreover, the
best-fitting models exhibited the predicted ordering of threshold from highest in the
Accurate condition to lowest in the Fast. Model variants without threshold variation across
SAT conditions produced considerably poorer fits (Figure S1). Thus, the SAT performance
of monkeys, as humans, can be explained computationally as a change of decision threshold
in a stochastic accumulation process.

Neural Correlates of Speed-Accuracy Adjustment
Although accumulator models explain SAT with one parameter adjustment, we discovered
that SAT is accomplished through multiple adjustments in the activity of visual,
visuomovement, and movement neurons in FEF including (1) baseline activity before the
array appeared, (2) visual response gain, (3) target selection duration, and (4) magnitude of
movement activity.

We will first describe SAT adjustments in visually responsive neurons that increase firing
rate when contextually salient items appear in their receptive field (RF); considering data
from visual and visuomovement neurons individually or collectively did not change the
results. Many previous studies have shown that these neurons signal the evolving
representation of search stimulus salience (Thompson et al., 1996; Sato et al., 2001; Sato
and Schall, 2003). Besides FEF (Ogawa and Komatsu, 2006; Lee and Keller, 2008; Schafer
and Moore, 2011), this representation is distributed among neurons in posterior parietal
cortex (Gottlieb et al., 1998; Constantinidis and Steinmetz, 2005; Ipata et al., 2006;
Buschman and Miller, 2007; Thomas and Paré, 2007; Balan et al., 2008; Ogawa and
Komatsu, 2009), SC (McPeek and Keller, 2002; Shen and Paré, 2007; Kim and Basso, 2008;
White and Munoz, 2011), substantia nigra pars reticulata (Basso and Wurtz, 2002), and
ocular motor thalamic nuclei (Wyder et al., 2004). These neurons represent the evidence on
which the decision is based.

We found three adjustments of visual activity. First, SAT cues induced a shift of baseline
firing rates preceding array presentation. Across the population of visual salience neurons (n
= 146), 54% demonstrated significant SAT-related variability in baseline firing rate. For
most (n = 65), spike rate increased after the Fast cue and decreased after the Accurate cue
(Figures 2A and S2A). Baseline activity discriminated SAT conditions within 300 ms after
fixating the central cue (Figure 2A, inset), and the baseline shift emerged immediately after
SAT cues changed (Figure 2B), mirroring the flexibility of behavioral adaptation.
Interestingly, the effect was cell specific. Neurons with and without baseline modulation
were recorded within single sessions and even single electrode penetrations. Thus, SAT is
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accomplished in part through an immediate adjustment of cognitive set before stimuli are
presented.

Second, we found evidence for adjustments of perceptual processing. Although search
arrays were identical across SAT conditions, visual response magnitude increased
considerably with speed stress (population average in Figure 2C; distribution in Figure S2B;
note that the attenuated baseline modulation in Figure 2C is simply a consequence of
averaging across neurons with and without that effect). Third, neural activity discriminated
target and distractor items more quickly in the Fast condition and more slowly in the
Accurate (Figure 2C). This robust effect was obtained across the population of visually
responsive neurons (Figure 2D). Thus, SAT during visual search is accomplished in part
through adjustments of the timing and magnitude of stimulus discrimination.

We next describe SAT adjustments in movement neurons identified with the stochastic
accumulation process (Hanes and Schall, 1996; Boucher et al., 2007; Ratcliff et al., 2007;
Woodman et al., 2008). Recent modeling specifies how visual neurons can provide the
evidence that is accumulated by movement neurons (Purcell et al., 2010, 2012). Unlike
visual neurons, movement neurons in FEF and SC project to omni-pause neurons of the
brainstem that are responsible for saccade initiation (Huerta et al., 1986; Langer and
Kaneko, 1990; Seg-raves, 1992). Thus, they are uniquely poised to trigger saccades based on
accumulating evidence. Movement neurons with no visual response are encountered less
commonly than neurons with visual responses (Bruce and Goldberg, 1985; Schall, 1991).
Here they comprised ~10% of task-related neurons (n = 14). Many more neurons had both
visual responses and pre-saccadic movement activity (n = 70); we will present data from
these separately. We found four major adjustments in movement activity. First, the baseline
shift reported earlier was significant in 29% of movement neurons (Figure S2A). Second,
the rate of evidence accumulation varied with SAT condition (Figures 3A and 3B). For each
movement neuron separately, we fit a regression line to the accumulating discharge rate in
the 100 ms preceding the saccade on trials when the target was correctly located in the RF.
On average, the slope was lowest in the Accurate condition, intermediate in the Neutral, and
largest in the Fast condition. We observed identical effects for visuomovement neurons
(Figures S3A and S3B). Third, the magnitude of movement neuron activity at saccade
initiation was lowest in the Accurate condition, intermediate in the Neutral, and highest in
the Fast condition (Figure 3B; visuomovement neuron activity in Figure S3B). Like baseline
neural activity and mean RT, this effect emerged immediately after a change in SAT cue
(Figure S2C). Thus, SAT during visual search is accomplished in part through adjustment of
the magnitude of neural activity producing responses. However, this result is puzzling
because the direction of the change is opposite that of accumulator models that explain SAT
through decreases in threshold with increasing speed stress. We will address this in detail
below. Fourth, within each SAT condition, movement neuron activity accumulated to an
invariant level at saccade initiation across RT quantiles (Figures 3C–3E; visuomovement
activity in Figures S3C–S3E). This replicates previous studies from multiple laboratories
and tasks: when SAT is not manipulated, or when task conditions cannot be predicted or
remain constant, activity at saccade does not vary with RT (Hanes and Schall, 1996; Paré
and Hanes, 2003; Ratcliff et al., 2007; Woodman et al., 2008; Ding and Gold, 2012). In
contrast, when conditions are precued or blocked, movement activity in FEF and SC
sometimes differs (Everling et al., 1999; Everling and Munoz, 2000; Sato and Schall, 2003).

Response Time Variability, Response Withholding, Guessing, and Firing Rate Excursion
Do Not Account for SAT Adjustments

We verified that these results were not confounded by simple variation of RT across
conditions and that modulation in the Accurate condition was not simply a byproduct of
response withholding. First, we examined activity in visually responsive and movement
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neurons on trials in which monkeys missed response deadlines and produced premature
Accurate or late Fast responses (see Experimental Procedures). This necessarily reversed the
RT effect (mean RT was faster after premature Accurate [367 ms] than late Fast [499 ms]
trials, though error rates were unaffected; Figure 4A). If our results were due to RT rather
than cognitive state, neural activity levels should also reverse. This did not occur; activity
levels remained higher in the Fast condition than the Accurate condition for both visually
responsive (Figure 4B) and movement (Figure 4C) neurons. Interestingly, we also observed
that target selection time was delayed for late Fast responses relative to premature Accurate
trials (Figure 4B, arrows), suggesting that response deadlines were missed due to late or
premature target localization (Ho et al., 2012).

Second, we compared neural activity in the three SAT conditions holding RT constant. We
matched trials from the Accurate and Fast conditions to a restricted range of RTs around the
median RT in the Neutral condition (see legend to Figure 4). Once again, neural activity
varied with SAT condition independent of RT (Figures 4D and 4E). Together, these results
demonstrate that changes in cognitive state elicited by SAT cues persisted across the range
of RT. In other words, fast responses in the Fast condition and equally fast responses in the
Accurate condition were qualitatively different.

Were monkeys simply guessing in the Fast condition? The high accuracy rates in the Fast
condition (~70%) indicate that they were not. To investigate further, we reasoned that fast
guesses should result in a nonuniform distribution of errors in the Fast condition.
Specifically, guesses should be more prevalent for the fastest responses than for comparably
slower responses. We divided the Fast condition into RT quintiles and found that error rates
differed by less than 0.3%. Further evidence against a guessing strategy is provided by our
previous work showing that guesses are associated with attenuated, rather than magnified,
neural activity in FEF (Heitz et al., 2010), opposite of the pattern reported here.

Some investigators have suggested that SAT is mediated not by the level of a response
threshold but rather by the excursion of firing rate from baseline to threshold (Forstmann et
al., 2008, 2010; van Maanen et al., 2011). We observed variation in both baseline and
presaccadic activity, so it is possible that the total excursion was larger in the Accurate than
Fast condition. We evaluated this by subtracting baseline firing rate (average activity in the
100 ms before the array) from presaccadic firing rate (average activity 20–10 ms before
saccade) for each neuron. Contrary to this hypothesis, we found that the firing rate excursion
was significantly larger in the Fast condition than the Accurate condition for the vast
majority of neurons, irrespective of neuron type (Figure S4).

Leaky Integration of FEF Movement Activity Terminates at Fixed Threshold
The variety and direction of neural adjustments we observed during SAT does not
correspond intuitively to the account of SAT provided by stochastic accumulator models.
Reconciliation begins with the recognition that the brainstem circuitry responsible for
saccade production places constraints on the form that SC and FEF movement activity can
take. Stochastic accumulator models overlook these considerations because the terminal
motor stage lies outside the model. This, along with a stimulus encoding stage, is captured
simply by a residual time parameter. However, much is known about the anatomy,
physiology, and chronometry of these afferent and efferent stages for saccades during visual
search.

The following considerations demonstrate that brainstem neurons receiving movement
neuron output reach a fixed level of activity across all SAT conditions when saccades are
initiated. The burst neurons in the brainstem responsible for producing contraction of the
extraocular muscles are gated by omnipause neurons (OPNs; Büttner-Ennever et al., 1988;
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Scudder et al., 2002; Kanda et al., 2007; Shinoda et al., 2008; Van Horn et al., 2010; Figure
S5A). In their default state, OPNs prevent saccade generation through tonic inhibition of
burst neurons; saccades are initiated precisely when this inhibition is released. Movement
cells in FEF, SC, and elsewhere initiate saccades through direct, and ultimately inhibitory,
projections to OPN (Raybourn and Keller, 1977; Huerta et al., 1986; Stanton et al., 1988;
Segraves, 1992). Crucially, saccade velocity scales with the magnitude of OPN
hyperpolarization (Yoshida et al., 1999). The invariance of saccade velocity across hundreds
of milliseconds of RT variation across SAT conditions (Figure 1) entails that the level of
OPN hyperpolarization must be invariant across SAT conditions.

How can the level of OPN hyperpolarization be invariant across SAT conditions if
presaccadic movement neuron activity varies across SAT conditions? An answer is offered
through the observation that neurons are leaky integrators. Consequently, the OPN response
to FEF movement activity is a function of both its magnitude and rate of increase over time.
In our data, the influence of FEF movement neurons on OPN is lower and slower in the
Accurate condition and higher but briefer in the Fast condition. We reasoned that we could
approximate the net inhibition onto OPN by submitting the movement neuron activity to
leaky integration. For each movement neuron and each trial, activity was integrated with
leak from search array presentation until saccade initiation (Experimental Procedures). The
integrated value immediately before saccade initiation was indeed invariant across RT, SAT
condition, and deadline accuracy (Figures 5 and S5B). The same invariance was found for
visuomovement neurons (Figure S5C) but expectedly not for visual neurons. Thus, the
changes observed in movement neurons across SAT conditions can translate simply into an
invariant saccade trigger threshold.

An Integrated Accumulator Model Reconciles Behavioral and Neural Data
This observation motivated an alternative accumulator model architecture. Referred to as the
integrated accumulator (iA), the model is identical to LBA in several respects: activation
functions begin at some start point and increase linearly with some drift rate. The process
terminates (either correctly or incorrectly) when an accumulator reaches threshold. RT is
determined by the time the threshold is reached plus some amount of time for stimulus
encoding and response production, and accuracy is determined by which accumulator wins
the race (Figure 6; Experimental Procedures). iA differs from LBA in two key ways. First,
to capture the motor control constraints of response initiation, the linear accumulator was
submitted to leaky integration and the terminal value at saccade initiation was required to be
invariant across SAT conditions. Second, multiple parameters (besides threshold) could vary
across SAT conditions.

The iA model reproduced both the correct and error RT distributions and accuracy rates
(Figure 6). The best-fitting iA model produced the ordering of start point and drift rate
parameters across SAT conditions observed in the neurons (Table 2). Thus, iA accomplishes
SAT by systematically adjusting starting level (baseline) and drift rate and accounts
naturally for the variation of movement neuron activity across SAT conditions.

DISCUSSION
We report the first single-neuron correlates of SAT. Monkeys performed visual search at
three levels of speed stress and exhibited SAT indistinguishable from humans. Recordings
from the FEF revealed distinct and diverse neural mechanisms of SAT. When accuracy was
cued, baseline discharge rate was reduced before visual search arrays appeared, visual
response magnitude was attenuated, neural target selection time was delayed, and
movement-related activity accumulated more slowly to a lower level before saccades. The
neural modulation could not be explained by guessing or procrastinating strategies. This
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diversity of neural mechanisms was reconciled with the stochastic accumulator model
framework through an integrated accumulator model constrained by requirements of the
motor system.

Stochastic Accumulator Models Provide an Incomplete Description of the Neural
Mechanisms of SAT

With unprecedented resolution of the neural mechanisms mediating SAT, we found
adjustments in preperceptual, perceptual, categorical, and response processes. The
distinction between perceptual and response stages is beyond dispute (e.g., Miller, 1983;
Osman et al., 1995; Requin and Riehle, 1995; Sato et al., 2001; Murthy et al., 2009;
reviewed by Sternberg, 2001). Our results indicate that adjustments mediating SAT occur in
both perceptual and response stages. Adjustments of visual responses indicated that even the
representation of evidence was modulated by SAT condition, and adjustments of movement
activity parallel a modulation in the accumulation process itself. Moreover, shifts of baseline
discharge rate in many neurons indicated proactive changes in preparatory state. Such
widespread influence of SAT has not been observed before, though previous human
electrophysiological studies are consistent with a multistage locus of SAT (Osman et al.,
2000; Rinkenauer et al., 2004).

The standard stochastic accumulator models of decision making account for SAT as an
elevation of threshold (or excursion) to achieve greater accuracy (Bogacz et al., 2010). Other
accounts suggest that SAT is achieved through an urgency signal varying the weight of
sensory evidence (Cisek et al., 2009; Standage et al., 2011). However, these accounts are
incomplete, as they cannot accommodate the diversity and direction of the neural
adjustments we observed.

Our data are also incompatible with recent neuroimaging studies identifying SAT entirely
with the excursion between accumulator baseline and threshold (Forstmann et al., 2008,
2010; Mansfield et al., 2011; van Maanen et al., 2011; Wenzlaff et al., 2011). While
mathematically equivalent in some accumulator models, baseline and threshold are
decisively not neurally equivalent. The independence we observed of baseline and pre-
movement activity certainly supports this. Thus, equating baseline and threshold as a single
“response caution” metric demonstrates a lack of specificity that appears important.
Moreover, when we calculated firing rate excursion directly, we observed patterns still
inconsistent with accumulator model predictions.

On the other hand, these neuroimaging studies have suggested that systematic modulation in
medial frontal cortex contributes to SAT. This inference is consistent with
neurophysiological evidence showing that weak electrical stimulation of SEF can elevate RT
(Stuphorn and Schall, 2006), even though neurons in SEF do not directly control saccade
initiation (Stuphorn et al., 2010; see also Scangos and Stuphorn, 2010).

This conclusion does not invalidate the models as effective parametric descriptions of
performance in various tasks (Ratcliff and Smith, 2004; Bogacz et al., 2006) and participant
groups (White et al., 2010; Starns and Ratcliff, 2012). However, the intuitions provided by
the models about neural mechanisms that have guided recent neuroimaging studies
(Forstmann et al., 2008, 2010; Mansfield et al., 2011; van Maanen et al., 2011) are
inconsistent with neurophysiological mechanisms.

The diversity of results can be unified by recognizing that decision making is not a unitary
process; “decide that” (categorization) and “decide to” (response selection) are semantically,
logically, and mechanistically distinct (Schall, 2001). Visual neurons in LIP, FEF, and SC
arrive at a representation of stimulus evidence categorizing targets and nontargets. This
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representation can be used to initiate a gradual response selection and preparation process
that is completed when a ballistic motor phase is initiated that produces muscle contraction.
This general hypothesis has been formalized in a model in which a search salience
representation provides evidence that is accumulated by movement neurons to initiate a
response (Purcell et al., 2010, 2012). This model utilizes gating inhibition to establish a
criterion level of evidence representation necessary to begin response accumulation. It was
demonstrated that SAT could be accomplished by elevating this gate to delay RT (Purcell et
al., 2012). Our findings of the modulation of the salience representation in visual neurons
and the direction of modulation of movement neuron activity were not anticipated by this or
any other stochastic accumulator model.

Integrated Accumulator Model
The iA model reconciles the stochastic accumulator model framework with the neural data.
The model is inspired by the insight that characteristics of postdecision motor processes
constrain the stochastic decision accumulation process and is anchored on invariance at the
beginning of the ballistic motor process. Variation in saccade velocity arises from variation
in the magnitude of presaccadic movement activity (van Opstal and Goossens, 2008) and of
OPN hyperpolarization (Yoshida et al., 1999). We found no variation of saccade velocity
across the large variation of RT across SAT conditions. Hence, the magnitude of neural
activity triggering the saccades must be invariant. The iA model achieves that invariance by
integrating through time the evidence accumulator. We discovered that the slower
accumulation to a lower terminal level in the Accurate condition integrated to the same
value as the faster accumulation to a higher terminal level in the Fast condition. This leaky
integration is regarded as a proxy for the net hyperpolarization of the OPNs that prevent
saccade generation. The iA model architecture fit the performance measures as well as the
typical LBA model while replicating key characteristics of the neural modulation.
Recordings of SC and OPNs will be critical tests of this model.

The iA model is not proposed as a replacement for conventional accumulator models; it
simply proves that the architecture embodied by the model is plausible. In fact, iA and LBA
are mirrors of each other that emphasize different assumptions or aspects of the
accumulation and response process. The mimicry of computational models with different
architectures is well known (Dzhafarov, 1993; Ratcliff et al., 1999; Usher and McClelland,
2001; Ratcliff and Smith, 2004) and represents a fundamental problem of exclusively
computational accounts (Moore, 1956).

The apparent incompatibility of stochastic accumulator models and the underlying
neurophysiology exposes another important theoretical issue. Since Hanes and Schall (1996)
first proposed that the activity of certain neurons can be identified with stochastic
accumulator models, many investigators have explored this in multiple brain regions (e.g.,
Roitman and Shadlen, 2002; Ratcliff et al., 2003, 2007; Ding and Gold, 2010, 2012). The
unexpected diversity of effects observed with the SAT manipulation revealed that the
mapping is not as simple as was imagined.

Limitations
The interpretation of this study rests on the following two major assumptions: (1) monkeys’
performance of SAT is a useful model of human performance and (2) FEF neurons
contribute essentially to the processes required for this task and SAT adjustments. We
discuss each in turn.

The paradigm is comparable to that used in human SAT studies. With verbal instructions,
humans have no difficulty producing deliberate, slow responses (Wickelgren, 1977).
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Monkeys prefer fast responding and are impervious to verbal instruction, so it was necessary
to introduce temporal deadlines to train the monkeys. The following observations confirm
that these data correspond usefully to human SAT performance. First, both monkeys
sustained SAT performance when the deadline contingency was removed. Second, the
patterns of neural modulation persisted when RT was equated across premature Accurate
and late Fast responses or across Accurate and Fast trials subsampled to match median RT in
Neutral trials. Indeed, our major conclusions would remain if we disregarded the Accurate
condition altogether and compared the Neutral and Fast conditions alone. Finally, the range
of correct and error RTs and percent correct were fit as well by the LBA as comparable data
from humans (e.g., Forstmann et al., 2008). Thus, the conclusions cannot be rejected on the
grounds that monkey SAT differs meaningfully from human SAT.

Second, perhaps FEF is not mediating the stochastic accumulation that accomplishes SAT.
This possibility entails at least three logical possibilities: (1) FEF neural activity precedes
the actual accumulation process, or (2) FEF neural activity follows the accumulation
process. Both of these possibilities seem difficult to reconcile with the fact that the activity
in FEF coincides with the interval during which a stochastic accumulator must be occurring
to produce the response. (3) FEF has nothing at all to do with the accumulation process. This
conclusion is difficult to reconcile with the aforementioned evidence obtained from
multiple, independent empirical and modeling studies. Nevertheless, entertaining this notion,
if the stochastic accumulation process is not in FEF, then where? One possibility is the SC,
like FEF, receives inputs from multiple cortical visual areas (Lui et al., 1995; Schall et al.,
1995) and projects to the brainstem saccade generator (Harting, 1977; Figure S5A). The
target selection process during visual search occurs in SC (McPeek and Keller, 2002; Shen
and Paré, 2007; Kim and Basso, 2008; White and Munoz, 2011), and the activity of
presaccadic movement neurons in SC has been identified with stochastic accumulator
models (Boucher et al., 2007; Ratcliff et al., 2007). However, given the dense network
connectivity of SC and FEF and the equivalence of neural modulation during visual search
and other tasks, it is difficult to understand how SC could be the bridge locus while FEF is
not. Another possible bridge locus is posterior parietal cortex in which the activity of select
neurons can be identified with evidence accumulation in a motion discrimination task (Gold
and Shadlen, 2007). However, when tested in the motion discrimination task, neurons in
FEF satisfy the same criteria, with the clearest examples being the movement neurons (Ding
and Gold, 2012). Furthermore, during visual search, the activity of parietal neurons parallels
that of the visual neurons in FEF (Gottlieb et al., 1998; Constantinidis and Steinmetz, 2005;
Ipata et al., 2006; Buschman and Miller, 2007; Thomas and Paré, 2007; Balan et al., 2008;
Ogawa and Komatsu, 2009), but parietal cortex has very few movement neurons (Gottlieb
and Goldberg, 1999) and no direct projections to the brainstem saccade generator (May and
Andersen, 1986; Schmahmann and Pandya, 1989). Thus, parietal cortex can contribute only
indirectly to response production.

Conclusions
SAT occurs commonly and plays a key role in models of decision making. This work
establishes a nonhuman primate model of the SAT and so opens the door to further study its
neural mechanisms. Single-unit recordings revealed widespread and unexpected influence of
SAT that cannot be readily accommodated by current models of the decision process. An
integrated accumulator model reconciles the patterns of neural modulation with the
stochastic accumulator framework. Neurophysiological data from other cortical and
subcortical structures will be critical in establishing the generalizability of these results.
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EXPERIMENTAL PROCEDURES
Task

Monkeys performed T/L visual search for a target item presented among seven distractor
items. Trials began when monkeys fixated a central point for ~1,000 ms. Each monkey was
extensively trained to associate the color of the fixation point (red, white, or green) with a
SAT condition. After fixating, an isoeccentric array of T and L shapes appeared, of which
one was the target item for that day. Distractor items were drawn randomly from the
nontarget set and oriented randomly in the cardinal positions. For a few sessions, all
distractor items were oriented identically, but this had no effect on behavioral or neural data.

Trials were run in blocks of 10–20 trials. In the Accurate condition, saccades to the target
item were rewarded if RT exceeded an unsignaled deadline. Pilot testing of each monkey led
to a deadline at which ~20% of responses were too fast (Q: 500 ms; S: 425 ms). Errant
saccades and saccades that were correct but too fast were followed by a 4,000 ms time out.
In the Neutral condition, saccades to the target item with any RT were rewarded. Errant
saccades were met with a 2,000 ms time out. In the Fast condition, correct saccades were
rewarded if RT preceded a deadline such that ~20% of responses were too slow (Q: 365 ms;
S: 385 ms). RTs exceeding the deadline (whether or not accurate) were followed by a 4,000
ms time out. Inaccurate saccades within the deadline had no time out. However, monkeys
had difficulty discriminating lack of reward from an inaccurate saccade and lack of reward
from slow responding. Hence, the display was removed on 25%–50% of missed-deadline
trials. Monkeys quickly learned that reinforcement was only available prior to this time. All
patterns of results and conclusions were unchanged by these trials. Monkeys respected the
response deadlines (proportion of missed deadlines: Q Accurate: 0.18, Fast: 0.16; S
Accurate: 0.19, Fast: 0.13). Some sessions included only the Fast and Accurate conditions;
for that reason, variability should be expected to be higher in the Neutral condition.

Neurophysiology
We recorded neurons in FEF, located on the anterior bank of the arcuate sulcus, using
tungsten microelectrodes (2–4 MΩ, FHC) referenced to a guide tube in contact with the
dura. Location was verified by evoking eye movements though low-threshold (<50 μA)
microstimulation. The number of electrodes lowered on a given session ranged from one to
eight. Single-unit waveforms were isolated online, sampled at 40 kHz, and resorted offline
(Offline Sorter; Plexon). All surgical and experimental procedures were in accordance with
the National Institutes of Health Guide for the Care and Use of Laboratory Animals and
approved by the Vanderbilt Institutional Animal Care and Use Committee.

Neuron Types
Neurons are categorized into three major types: visual, visuomovement, and movement.
Though classification operates along a continuum, many observations demonstrate that these
populations are functionally distinct (Cohen et al., 2009; Ray et al., 2009; Gregoriou et al.,
2012). Visual neurons increase discharge rates significantly immediately after array
presentation but have no saccade-related modulation. Movement neurons increase discharge
rate significantly before saccade initiation but have no visual response. Visuo-movement
neurons exhibit both periods of modulation. To classify neurons, we used activity from a
memory-guided saccade task. To test for visual responses, we used t tests to compare the
average activity in the interval 75–100 ms after target presentation to the activity in the 100
ms interval preceding target presentation. To test for presaccadic activity, we used t tests to
compare the average activity in the 100 ms interval before saccade initiation to the activity
in the interval 500–400 ms before saccade initiation.
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Proactive Modulation and Target Selection Time
To determine when neurons responded differently to two SAT conditions or when the target
as compared to distractors appeared in the RF, we computed ms-by-ms Wilcoxon rank-sum
tests, evaluating the null hypothesis that target-in-RF activity was significantly different
from distractor-in-RF activity. Target selection time (TST) was the first of ten successive
time points significant at the p < 0.01 level. Population TST was computed using
jackknifing.

Statistical Analyses
Spike trains were convolved with a kernel that resembled a postsynaptic potential to create a
spike density function (SDF). For population analyses, SDFs were normalized to the peak
average activity irrespective of all conditions and behavioral outcome (i.e., over all SAT
conditions, all RT, correct and errant responses, etc.) in a particular session. Because not all
sessions included the Neutral condition, we had to deal with the problem of missing data. To
respect the fact that these data were paired observations while obviating the need to drop
missing cases, we took a regression-based approach (Lorch and Myers, 1990). Succinctly,
we estimated the slope of a regression line considering average neural activity patterns in the
Accurate, Neutral, and Fast conditions when all were available; when only the Accurate and
Fast conditions were available, the slope was estimated using only those two conditions.
This was computed separately for each individual neuron, and the resulting parameter
estimates were tested against 0 using a one-sample t test.

Accumulator Model
We fit behavioral data with the LBA (Brown and Heathcote, 2008). Although simpler than
stochastic accumulator models, it has been used in several recent studies of SAT (Forstmann
et al., 2008, 2010; Mansfield et al., 2011; van Maanen et al., 2011; Ho et al., 2012), and
conclusions derived from any of these models agree (Donkin et al., 2011b). LBA includes
the following five parameters: A (maxima of start point distribution), b (threshold), v (drift
rate), T0 (nondecision time), and s (between-trial variability in drift rate; Figure 1E, inset).
As is common, s was fixed to 0.10 for all models, leaving four parameters (A, b, v, and T0)
that were shared or free to vary across SAT conditions. To reduce model complexity, we
assumed equivalence between all nontarget units, leading to a race between two
accumulators: one representing the target stimulus and one representing distractor items.
The drift rate for distractor items was set to 1 − v. Outliers (median ± 1.5 × the interquartile
range, calculated separately for each SAT condition) were removed. We fit 16 variants,
representing all possible combinations of free and shared parameters, using established
methodology (Donkin et al., 2009, 2011a). Models were fit to the observed defective CDFs
that were normalized to mean accuracy rate (Ratcliff and Tuerlinckx, 2002), using
maximum likelihood estimation. Fits obtained for single sessions and across the population
led to identical conclusions: the threshold parameter (b) was the most critical in accounting
for SAT-related variability.

Leaky Integration of Movement Neuron Activity
We submitted the FEF movement activity to a leaky integrator according to

where i is the value of the integrator at time t > 0, A is the value of neural activity at time t >
0, and τ is a decay constant varied from 1 to 1,000 ms. Each integrator was initialized to 0 at
the beginning of each trial. Time step dt was set to 1 ms. We computed the leaky integration
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for each neuron, with movement activity integrated trial-by-trial from search array
presentation until saccade initiation. For each condition and decay, the value of the integral
20–10 ms before saccade initiation was recorded as the trigger threshold (Figure S5B). We
found that the trigger threshold was invariant with respect to task conditions (Fast/Neutral/
Accurate condition) and made or missed deadline (premature Accurate/late Fast) when the
decay constant was in the range of plausible values (7.1 ms < τ < 166.7; McCormick et al.,
1985). What differed between SAT conditions was the amount of time needed for this
integration to reach a single, constant threshold (Figures 5 and S5B). We also computed the
time course of integration for each RT quantile, separated by made/missed deadline and
SAT condition. Remarkably, the trigger thresholds remained constant for both movement
and visuomovement neurons (Figures S5B and S5C).

Integrated Accumulator Model
For each of 5,000 simulated trials per SAT condition, a start point (A) was drawn from a
uniform distribution, and a drift rate (v) was drawn from a normal distribution with standard
deviation s. The drift rate for distractor items was set to 1 − v. Activation functions that
increased linearly with rate v were integrated with leak τ in the same manner as the
movement activity described above. The values for A, v, and nondecision time T0 were
allowed to vary between SAT conditions. Leakage τ was not fixed but was shared across
SAT conditions because cognitive state is unlikely to influence brainstem saccade-triggering
mechanisms. The distribution of simulated RTs and proportions correct were compared
against Vincentized behavioral data using χ2. Outliers were removed from the behavioral
and simulated data by eliminating values beyond median ± 1.5 × the interquartile range for
each condition separately. Data are presented as defective CDFs, normalized to the mean
accuracy rate. Minimization was carried out in several steps, first using multiple runs of the
genetic algorithm in MATLAB with different random number seeds and values for s. The
best fitting of these were minimized again with bounded simplex algorithms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Speed-Accuracy Manipulation of Visual Search Performance
(A) Trials began with a fixation cue signifying whether the trial was to be Fast (green),
Accurate (red), or Neutral (black). Monkeys searched for a target item (rotated T or L)
presented with seven distractors (rotated L or T). In some sessions, distractors were of
homogeneous orientation; in other sessions, they were randomly rotated. Eye position
plotted for correct trials in a session illustrates the effect of the cue on RT. Vertical lines
indicate response deadlines for Fast (green) and Accurate (red) conditions for this session.
(B) Mean RT and accuracy rate across all sessions for each monkey. RT decreased and error
rate increased with speed stress in both monkeys (monkey Q RT: t24 = −19.4, accuracy: t24
= −11.1; monkey S RT: t14 = −13.7, accuracy: t14 = −5.6, all p < 0.001, linear regression).
Vertical bars show ±1 SE.
(C) Mean RT on trials before and after change of SAT cue. Data from all sessions are
plotted with each session contributing two lines, one for Fast to Accurate (green to red)
switches and one for Accurate to Fast (red to green). RT increased immediately and
significantly between Fast and Accurate blocks (two-tailed t39 = −20.3, p < 0.001) and
decreased between Accurate and Fast blocks (t39 = 30.3, p < 0.001). Data from the Neutral
condition are not displayed.
(D) Accumulator model fits for Accurate (left), Neutral (middle), and Fast (right) conditions.
Observed (circles) and predicted (lines) defective cumulative probability of correct (solid)
and error (dashed) RTs for all trials sampled are shown. Only threshold varied across
conditions; other parameters were shared (inset).
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Figure 2. Adjustment of Salience Processing with SAT
(A) Average normalized activity for visual salience neurons with significantly different
baseline activity in Fast versus Accurate conditions. All trials were included irrespective of
upcoming target location or response. The discharge rate in the 300 ms before array
presentation was significantly greater in the Fast than in the Accurate condition (t64 = 11.1,
p < 0.001, linear regression). Vertical bars represent ±1 SE at the interval of statistical
analysis. Inset shows evolution of proactive modulation after a SAT cue change; the arrow
marks when the activity first signaled a change between Fast and Accurate conditions.
(B) Adjustment of baseline activity after change of SAT cue. Difference on the trials before,
during, and after a SAT cue change of normalized baseline activity relative to overall
average is shown. An immediate change with the presentation of a new SAT cue occurred
for transitions from Accurate to Fast (two-tailed t64 = −10.1, p < 0.001) and from Fast to
Accurate (t64 = 7.8, p < 0.001). Data from the Neutral condition are not displayed.
(C) Adjustment of salience processing. Average normalized discharge rates for all visual
salience neurons when the target (solid) or distractors (dashed) appeared in the RF on
correct trials. The baseline adjustment is less apparent because of averaging across neurons
with and without the effect. Speed stress increased responsiveness (t144 = 7.9, p < 0.01, 100–
125 ms after array; t144 = 9.8, p < 0.001, 250–300 ms after array, linear regression) and
decreased target selection time (arrows; Accurate 162 ms > Neutral 154 ms, t145 = 5.1, p <
0.001; Neutral 154 ms > Fast 143 ms, t145 = 77.0, p < 0.001, jackknifed t tests). Vertical bars
represent ±1 SE.
(D) Cumulative distribution of target selection times for all visual salience neurons. Mean
RTs in the Fast, Neutral, and Accurate SAT conditions were, respectively, 271 ms (green
arrowhead), 314 ms (black arrowhead), and 614 ms (beyond axis).
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Figure 3. Adjustment of Response Preparation with SAT
(A) Average normalized discharge rate of all movement neurons for correct trials when the
target fell in the neuron’s movement field, aligned on array presentation. Plots are truncated
at mean RT. Note that the baseline adjustment reported in text is obscured by averaging
across neurons with and without the effect.
(B) Average normalized discharge rate of all movement neurons for correct trials when the
target fell in the neuron’s movement field, aligned on saccade initiation. Activity before
mean RT is plotted lighter. On average, the slope of activity in the 100 ms preceding
saccade increased with speed stress (Accurate: 2.0 < Neutral: 4.0 < Fast: 4.6 normalized sp/
s2; t13 = 3.1, p < 0.01, linear regression). Activity 20–10 ms before saccade significantly
increased with speed stress (t13 = 2.2, p < 0.05, linear regression).
(C–E) Discharge rates in Accurate (C), Neutral (D), and Fast (E) conditions for correct
target-in-RF trials separated into fastest (thick), intermediate (thinner), and longest (thinnest)
RT quantiles. Activity 20–10 ms before saccade varied across but not within SAT conditions
(all p > 0.05, linear regression). All vertical bars represent ±1 SE.
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Figure 4. Experimental Controls for RT across SAT
(A) RT and error rate for missed deadlines (premature Accurate and late Fast responses).
Mean RT was necessarily reversed (monkey Q t24 = −5.9, p < 0.001; monkey S t14 = −13.2,
p < 0.001, two-tailed t tests), but error rate remained greater in the Fast condition (monkey Q
t24 = −7.6, p < 0.001; monkey S t14 = −10.9, p < 0.001, two-tailed t tests).
(B) Average normalized activity for all visual salience neurons when the target (solid) or
distractors (dashed) appeared in the RF on premature Accurate and late Fast trials (Neutral
condition data are not included because there were no deadlines). Despite the reversal of RT,
enhanced activity persisted 100–125 ms postarray onset in Fast compared to Accurate trials
(t144 = −2.8, p < 0.01, two-tailed t test). Activity in a later period (250–300 ms) was not
significantly different (p > 0.05). However, target selection time (vertical arrows) was
significantly slower in late Fast (241 ms) than premature Accurate (157 ms) trials (jackknife
test t144 = −2,923.2, p < 0.001).
(C) Average normalized activity for all movement neurons when the target appeared in the
movement field on premature Accurate and late Fast trials. Even with the reversal of RT,
movement activity 20–10 ms before saccade remained higher in late Fast than in premature
Accurate trials (t13 = −2.0, p = 0.06, two-tailed t test).
(D) Average normalized activity for all visual salience neurons when the target appeared in
the RF on Accurate, Neutral, and Fast trials equated for RT. RTs were equated by
constructing a range of RTs based on ±1 SD of the median RT in the Neutral condition. RTs
in Accurate, Neutral, and Fast conditions falling outside of this range were excluded, which
resulted in low variability between the conditions (e.g., before correction: 614 [Accurate] –
271 [Fast] = 343 ms; after correction: 315 – 269 = 46 ms). Visual salience activity remained
elevated in Fast versus Accurate trials 250–300 ms postarray onset (t45 = 4.8, p < 0.001,
linear regression) but not in the interval 100–125 ms postarray onset (t45 = 1.7, p = 0.10,
linear regression).
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(E) Average normalized activity for all movement neurons when the target appeared in the
movement field on Accurate, Neutral, and Fast trials equated for RT. Movement activity in
the interval 20–10 ms prior to saccade increased with speed stress (t29 = 3.1, p < 0.01, linear
regression). Vertical bars in all panels represent ±1 SE drawn at the interval of statistical
analysis.
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Figure 5. Leaky Integration of Movement Neuron Activity
Average activity of all movement neurons when the target appeared in the RF on correct
trials, integrated with a decay constant of 100 ms from array presentation until saccade
initiation. Integrated values 20–10 ms before saccade initiation were not significantly
different between SAT conditions, even when the RT deadline was missed (all p > 0.05,
linear regression). Invariance of integrated values at saccade initiation was observed with
time constants of 7–167 ms. Vertical bars represent ±1 SE.
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Figure 6. Integrated Accumulator Model
(A) Sample accumulation functions for correct trials from the best-fitting model for Fast and
Accurate trials. Starting levels and slopes were highest for Fast, intermediate for Neutral
(data not shown), and lowest for Accurate. Arrows denote mean simulated RT.
(B) Sample and average integrated accumulation functions aligned on array (left) and
response (right). The distribution of finish times to an invariant threshold (histogram)
reproduce distribution of RTs (overlaid).
(C) iA model predicts probability and times of correct and error responses across Accurate
(left), Neutral (middle), and Fast (right) SAT conditions. Observed (circles) and predicted
(lines) defective cumulative probability of correct (solid) and error (dashed) RTs are shown.
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