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Abstract
The dorsal striatum plays a key role in the learning and expression of instrumental reward
associations that are acquired through direct experience. However, not all learning about
instrumental actions require direct experience. Instead, humans and other animals are also capable
of acquiring instrumental actions by observing the experiences of others. In this study, we
investigated the extent to which human dorsal striatum is involved in observational as well as
experiential instrumental reward learning. Human participants were scanned with fMRI while they
observed a confederate over a live video performing an instrumental conditioning task to obtain
liquid juice rewards. Participants also performed a similar instrumental task for their own rewards.
Using a computational model-based analysis, we found reward prediction errors in the dorsal
striatum not only during the experiential learning condition but also during observational learning.
These results suggest a key role for the dorsal striatum in learning instrumental associations, even
when those associations are acquired purely by observing others.

INTRODUCTION
Much is known about the neural underpinnings of how associations between stimuli,
actions, and rewards are learned through experience and about how those associations guide
choices (Montague, King-Casas, & Cohen, 2006; Dayan & Balleine, 2002). Humans and
other animals can learn not only by direct experience but also through observing others’
experiences (Heyes & Dawson, 1990; Bandura, 1977; Myers, 1970). In spite of the
ubiquitous nature of observational learning, its neural substrates remain poorly understood.

Considerable progress has been made in elucidating candidate neural substrates for
experiential reward learning. The finding that phasic activity in dopamine neurons resembles
a reward prediction error signal from computational models of reinforcement learning (RL)
has led to the proposal that these neurons underlie experiential reward learning in dopamine
target regions, particularly the striatum (Daw & Doya, 2006; O’ Doherty, 2004; Schultz,
Dayan, & Montague, 1997). Consistent with this proposal, many human neuroimaging
studies have reported activity in the striatum during learning, likely reflecting (at least in
part) dopaminergic input (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; McClure,
Berns, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003).
Moreover, different regions of striatum are differentially correlated with reward prediction
errors, depending on the nature of the learned association. Although ventral striatum appears
to correlate with prediction errors during both Pavlovian and instrumental learning, the
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dorsal striatum appears to be specifically engaged when participants must learn associations
between instrumental actions and rewards (Delgado, 2007; O’Doherty et al., 2004; Tricomi,
Delgado, & Fiez, 2004). These findings have been interpreted in the context of actor/critic
models of RL, whereby a ventral striatal “critic” is hypothesized to mediate learning of
stimulus–reward associations, whereas a dorsal striatal “actor” is hypothesized to support
learning of instrumental action values (Suri & Schultz, 1999; Sutton & Barto, 1998).

In spite of the large body of research on the dorsal striatum in experiential instrumental
reward learning, very little is known about this region’s function in observational reward
learning. One recent study reported activity in ventral striatum and ventromedial pFC during
observational learning (Burke, Tobler, Baddeley, & Schultz, 2010) but did not find dorsal
striatal activation. The goal of the present study was to address the role of the dorsal striatum
in mediating learning of associations between instrumental actions and rewards when those
associations are acquired through observation and to compare and contrast prediction error
activity in the dorsal striatum during observational and experiential instrumental learning.

To investigate these questions, we scanned participants using fMRI while they underwent
both observational and experiential instrumental conditioning for liquid juice rewards. We
used a computational model-based analysis to test for brain regions correlating with reward
prediction errors in both observational and experiential cases. To isolate prediction errors
specifically related to action learning, we included matched noninstrumental control
conditions in which the participant faced reward cues that did not require action selection.
We hypothesized that dorsal striatal activity would be correlated with prediction errors
during both observational and experiential instrumental conditioning and that the dorsal
striatum would be more engaged during observational instrumental conditioning than during
noninstrumental conditioning.

METHODS
Participants

Nineteen healthy volunteers from the Trinity College Dublin student population
participated; one was excluded for excessive head motion (>6 mm in one run), and two were
excluded for showing no evidence of learning, leaving 16 participants for analysis (10
women, 6 men; M = 22.19 years). One participant’s postexperiment ratings were lost
because of technical error, and a different participant’s RT data were excluded for being
more than 3 SD below the grand mean. All were free of current psychiatric diagnoses.
Participants were asked to refrain from eating or drinking anything but water for 6 hr before
the scan to ensure that they were motivated by the liquid rewards. All participants gave
informed consent, and the study was approved by the research ethics committee of the
Trinity College School of Psychology.

Task Overview
On each trial, participants encountered a single two-armed slot machine cue, with the trial
condition signaled by color and position. There were six randomly intermixed reward cue
conditions: two Experienced (instrumental and noninstrumental), two Observed
(instrumental and noninstrumental), and two Test (instrumental and noninstrumental).
Briefly, on Experienced trials, participants made their own responses and received their own
rewards, whereas on Observed trials, participants observed a confederate outside the scanner
performing an identical task. On Test trials, participants made responses for the
confederate’s cues without receiving any outcomes. To enhance the salience of the
confederate’s live presence and the visual similarity between trials, all trials were shown on
a single monitor in the control room outside the scanner, at which the confederate was
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seated and to which both the participant’s and confederate’s response boxes were connected
(see Figure 1A for schematic). The participant viewed this monitor and part of the
confederate’s response box over a live video feed (see Figure 1B for schematic) and was
instructed that he or she would be playing on the same computer and responding to the same
monitor as the confederate.

Experienced Trials
On Experienced trials, participants were shown a slot machine cue on “their” half of the
screen (either top or bottom, counterbalanced by participant), indicating that they were to
make a response and receive an outcome on that trial. Two kinds of Experienced trials were
presented (see Figure 1B for trial time course). On Experienced instrumental trials, the slot
machine was shown with two arms, and participants had 2 sec to select either the left or
right arm. Selection was shown on-screen by depressing the selected arm. Following a
variable length delay (1 sec followed by a delay randomly drawn from a truncated Poisson
distribution; total delay mean = 2.5 sec, range = 1–7 sec) intended to allow separate
estimation of the neural response to cues and outcomes, a liquid reward or neutral outcome
was delivered by plastic tubing controlled by electronic syringe pump into the participant’s
mouth during the outcome phase (2 sec). Rewards were 1 ml of a sweet blackcurrant juice
(Ribena; GlaxoSmithKline, London, United Kingdom). Neutral outcomes were 1 ml of an
affectively neutral tasteless solution consisting of the main ionic components of saliva (25
mM KCl and 2.5 mM NaHCO3), delivered by a separate tube. The two arms had
independent probabilities of being rewarded on each trial, each of which varied over the
experiment to ensure learning continued throughout the task (see Figure 1C for sample
curves). Each arm’s reward probability was a sine curve set to drift between 0 and 100%
reward probability (with random starting point and half-period randomly set between 0.87
and 1.67 times the number of trials per condition and the machine’s arms constrained to be
correlated with each other at less than r = 0.02) plus a small amount of Gaussian noise on
each trial (M = 0, SD = 6%; noise was added before scaling sines to have a range of 0–
100%). Outcome delivery was also immediately followed by a visual signal for reward
(green square) or neutral outcomes (gray square). These signals ensured visual equivalence
with Observed trials, where visual cues were required to enable observational learning (see
below). The outcome phase was followed by a variable-length intertrial interval (1 sec
followed by a delay randomly drawn from a truncated Poisson distribution, total delay mean
= 2.5 sec, range = 1–7 sec), for a mean total trial length of 9 sec. Failure to respond resulted
in a neutral outcome; missed responses (2.7% of trials) were omitted from analysis.

On Experienced noninstrumental trials, which controlled for reward learning without action
selection, a differently colored slot machine cue was presented without arms. After 500
msec, a single indicator was shown on either the left or right sides, and participants had 1.5
sec to indicate, with a button press, which side was selected. Participants, thus, did not select
an action but instead passively followed an action selection made by the computer. Trials
afterwards followed an identical structure to instrumental trials, including separate
independent reward probabilities for each side of the noninstrumental machine, constructed
with an identical algorithm. The computer selected the side with higher probability of
reward 70% of the time (randomly distributed across trials).

Both Experienced instrumental and noninstrumental trials also had a “neutral” control
machine intended to control for visuomotor confounds. Both neutral control machines were
identical to their respective reward cue machine but were gray in color, and each was always
followed by a neutral outcome regardless of the arm or side selected.
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Observed Trials
Observed trials were designed to mirror Experienced trials in every way, except instead of
the participant making choices and/or responses, the participant observed a confederate
outside the scanner perform similar trials. On Observed trials, participants were shown a slot
machine on the other half of the screen from the Experienced trials (top or bottom), with a
different set of colors from the Experienced machines. Participants never received an
outcome themselves on Observed trials. Instead, participants were instructed that the
confederate would make responses and receive outcomes on the Observed trials. This single-
monitor split-screen design provided an important control by ensuring that Observed trials
and Experienced trials were visually as similar as possible.

Two kinds of Observed trials were shown, instrumental and noninstrumental. Both were
identical to the respective Experienced trials in their timing, contingencies, and reward
probabilities (with independently constructed reward probability curves for each arm of each
machine). Participants could thus observe on-screen which arm was chosen or which side
was selected and could see whether a reward or neutral outcome was given by the visual
signals presented at outcome delivery. Unknown to the participant, the confederate’s button
box and outcome tubes were actually not connected; instead, the confederate’s choices were
made by selecting the arm with higher reward probability 70% of the time to approximate
average participant likelihood of selecting the arm with higher reward probability in
Experienced instrumental trials (based on pilot data). The camera angle was set to obscure
the confederate’s physical button presses. Participants were instructed to observe the
confederate’s choices and do their best to learn which arm and which side were rewarded
most often.

As with Experienced trials, two Observed neutral control machines were also presented
(instrumental and noninstrumental); both were identical to their respective reward cue
machine but gray in color (and displayed on the confederate’s half of the screen), and both
were always followed by a neutral outcome for the confederate regardless of which arm or
side was selected.

Test Trials
Test trials gave participants an opportunity to demonstrate their learning for the Observed
trials. Two kinds of Test trials were presented, instrumental and noninstrumental. On Test
instrumental trials, participants were shown the confederate’s Observed instrumental slot
machine on their own half of the screen and had 2 sec to select either the left or right arm.
Similarly, on Test noninstrumental trials, participants were shown the confederate’s
Observed noninstrumental slot machine on their own half of the screen, then had a side
indicated after 500 msec, and had 1.5 sec to indicate which side was selected. The purpose
of these trials was to gain a behavioral measure of the participant’s observational learning
and provide an incentive for the participant to pay attention to Observed trials. If participants
successfully learned through observation, they should have favored arms most recently
associated with reinforcement for the confederate. To prevent participants learning about
Observed trials through direct experience on Test trials, no outcomes were presented on
these trials during the experiment, and Test trials ended after the response (followed by
intertrial interval). Instead, participants were told rewarded outcomes on these trials would
be put in a “bank,” and that “banked” rewards would be multiplied in volume by 10 and
given to participants after the scan. Neutral control machines were never shown on Test
trials.
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Task Procedure
There were 72 trials each of the Experienced instrumental, Experienced noninstrumental,
Observed instrumental, and Observed noninstrumental conditions. Within each condition, 48
trials were with reward cue machines and 24 were with neutral control machines. In
addition, there were 24 trials of each of the Test instrumental and Test noninstrumental
conditions. Each condition’s trials were divided equally between four scanner runs (so that
each run had 18 Experienced instrumental trials, 6 Test instrumental trials, etc.), and trial
types were intermixed randomly throughout each run. Participant screen halves (top or
bottom) and machine colors were counterbalanced across participants.

Before the task, participants underwent 10 min of training outside the scanner with no
outcomes to ensure they understood each slot machine and the outcomes, including the Test-
trial “bank.” They also met the confederate and observed the pumps and camera setup before
entering the scanner room. After the task, participants made a series of ratings of each
machine outside the scanner on 9-point Likert scales, including how much they liked each
machine and each outcome.

Scanning
Participants were scanned with a Phillips 3 T MRI scanner using the standard head coil,
padded to minimize head motion. Functional images covered the whole brain with 38
contiguous 3.2-mm thick axial slices with gradient-echo T2*-weighted echoplanar imaging
(repetition time = 2 sec, echo time = 28 msec, in-plane voxel size = 3 × 3 mm, matrix = 80 ×
80). The acquisition plane was tilted about 30° to the anterior–posterior commissure plane to
optimize sensitivity in the ventral pFC (Deichmann, Gottfried, Hutton, & Turner, 2003).
Each participant’s scan consisted of four functional runs of 363 images each; the first four of
each run were discarded to account for magnetic equilibration. A high-resolution structural
image was also acquired before the task (3-D acquisition; T1-weighted spoiled gradient
sequence; voxel size = 0.9 × 0.9 × 0.9 mm, matrix = 256 × 256 × 180).

Stimuli were presented using Cogent 2000 (Wellcome Trust Centre for Neuroimaging,
London). To account for swallowing-related motion, pressure data from a sensor attached to
the throat was recorded with BioPac hardware and AcqKnowledge software (MP-150
system and TSD160A transducer; BioPac Systems, Inc., Goleta, CA).

Statistical Analysis
fMRI images were analyzed with SPM8 (Wellcome Department of Imaging Neuroscience,
London) and MATLAB (The Mathworks, Inc., Natick, MA). Functional images were
preprocessed with standard parameters, including slice timing correction (to the center
slice), realignment (to each participant’s first image), coregistration of the in-plane
anatomical image, normalization (to the International Consortium for Brain Mapping
(ICBM)/MNI152 template with parameters estimated from each participant’s coregistered
in-plane image, using SPM8 default normalization parameters), and spatial smoothing (with
a 4-mm FWHM Gaussian kernel).

Prediction errors were estimated with a hybrid RL model. Instrumental trials used a SARSA
learning model (Sutton & Barto, 1998). The value of the chosen action was updated on each
trial according to the rule:
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where δt is that trial’s prediction error, Ot is that trial’s outcome (set to 1 for reward and 0
for neutral), and Va is the value for the chosen action. The probability of selecting left or
right on each trial was given by a softmax function of the difference between Vleft and
Vright. For Observed cues, values, and prediction errors were based on the observed
confederate outcomes. Initial values were set to 0 for all actions. A single pooled learning
rate for the group on Experienced instrumental trials was estimated by fitting the parameters
α and β (the logistic slope or stochasticity parameter) to participant choices with maximum
likelihood estimation; estimating a fixed rate tends to produce better estimates of neural
activity due to increased regularization (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).
A separate learning rate for Observed instrumental trials was estimated by fitting the model
to participant choices on Test trials, using values based on the observed outcomes. Fitted
learning rates are comparable with earlier studies using similar designs (Experienced
learning rate = 0.38, Observed learning rate = 0.26; Gläscher, Daw, Dayan, & O’Doherty,
2010; Schönberg et al., 2010; Valentin & O’Doherty, 2009); these parameters are, however,
likely to be highly task and domain dependent.

For noninstrumental trials, we used a Rescorla–Wagner learning model (Rescorla &
Wagner, 1972), which has an identical learning rule to that used in the RL model described
above, but without an action selection component. The model was fit using trial-by-trial RTs
(log-transformed) as a measure of conditioning (Bray & O’Doherty, 2007), minimizing the
difference between the chosen side’s value on each trial and that trial’s RT (inverted so that
high value corresponded to low RT). This model, therefore, captured within-condition
variation in RT, predicting faster RTs for trials when that condition’s value was higher.
Values and prediction errors for Observed trials again reflected the observed confederate
outcomes. As in instrumental trials, learning rates for the group were estimated separately
for Experienced and Observed trials, using Experienced and Test RTs. Learning rates were
again comparable to earlier studies (Experienced = 0.18, Observed = 0.53); however,
because the model fit to Observed noninstrumental trials was nonsignificant (see Results),
that condition’s rate should be interpreted with caution. Higher learning rates also imply
faster forgetting, and thus, the high Observed noninstrumental learning rate may reflect a
greater reliance on the recent past for these trials (full RT distributions are provided in
Supplementary Figure S1, available at www.odohertylab.org/supplementary/
Cooperetal_FigureS1.html.)

A general linear model was created for each participant to estimate experimental effects.
The model included delta function regressors for the cue period (3-sec duration) and
outcome period (0-sec duration) for each of the four key conditions: Observed/Experienced
× Instrumental/Noninstrumental. Both reward cue and neutral control trials were included in
each regressor. Two delta function regressors also modeled the Test instrumental and Test
noninstrumental cues. Each cue regressor had a parametric modulator for the trial-specific
chosen value, set to 0 for neutral control trials; as our focus was on learning from outcomes,
cues were not analyzed here. Each outcome regressor had a parametric modulator for the
trial-specific estimated prediction error, set to 0 for neutral control trials. Because neutral
control machines were visually similar and had identical motor requirements but led to no
learning, this provided an implicit baseline for the prediction error regressors. All regressors
of interest were convolved with the SPM8 canonical hemodynamic response function.
Regressors of no interest included six for estimated head motion parameters, one indicating
scans with greater than 2-mm head motion in any direction, one for throat pressure to
account for swallowing, and a constant term for each session.

General linear models included an AR(1) model for temporal autocorrelation and were
estimated using maximum likelihood (with autocorrelation hyperparameter estimation
restricted to voxels passing a global F-threshold using SPM8 defaults). A high-pass filter
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(cutoff, 128 sec) removed low-frequency noise. Beta-weight images for each regressor were
combined to form appropriate contrasts within participants, and contrast images were carried
forward to group level analyses. Significant effects were tested with one-sample t tests
across the group.

We examined activations within separate, a priori, dorsal, and ventral ROIs in the striatum.
First, an overall striatal region was hand-drawn on the average group anatomical; next, it
was divided at the Montreal Neurological Institute (MNI) coordinate z = 0 into a bilateral
dorsal region encompassing dorsal caudate and putamen and a bilateral ventral region
encompassing ventral putamen, ventral anterior caudate, and nucleus accumbens.
Activations were thresholded voxelwise at p < .005, and significant clusters were identified
in each ROI using an extent threshold estimated by Gaussian random field theory to correct
for multiple comparisons within each ROI’s volume (Worsley et al., 1996). To examine
whole-brain activations, we used a voxelwise threshold of p < .001 and extent threshold
estimated by Gaussian random field theory for each contrast to correct for multiple
comparisons across the whole brain. Peaks are reported in ICBM/MNI coordinates.

To examine beta weights across specific clusters, we used leave-one-out extraction to
provide an independent criterion for voxel selection (Kriegeskorte, Simmons, Bellgowan, &
Baker, 2009): for each participant, beta weights were extracted from significant voxels for
that cluster in a group model excluding that participant. For Bayesian model comparison in a
cluster, we used SPM8’s Bayesian model selection algorithm with beta weights across
participants as input (Stephan, Penny, Daunizeau, Moran, & Friston, 2009). We again used a
leave-one-out procedure to extract beta weights for the prediction error regressor from the
main general linear model (averaged across the cluster within participant). We compared
these to beta weights from the same voxels and same regressor in a baseline general linear
model that was identical, except every chosen value was set to 0.5 (or 0 for neutral control
trials) and every prediction error was set to (outcome – 0.5) (or 0 for neutral control trials).
This baseline model provided a conservative test that the signals we observed fit better to an
RL model prediction error than any signal related to the outcome itself.

RESULTS
Behavior

Participants rated how much they liked the reward and neutral outcomes following the scan
to confirm the motivational value of the rewards. Participants rated the reward outcomes
significantly higher than the neutral outcomes, with a mean rating of 6.93 (SEM = 0.32)
compared with 3.80 for the neutral (SEM = 0.55; t(14) = 5.29, p < .001). The ratings suggest
participants still found the reward outcomes valuable through the end of the experiment.

To assess how participants learned from their rewards over time, we examined whether their
instrumental choices could be described accurately by a RL model (see Methods for model
details and Figure 2B for example of model fits). We fit the model separately to Experienced
and Test choices and tested it against several alternatives (Figure 2A). For both Experienced
and Test choices, the model fit better than either a baseline model that predicted equal action
probabilities on every trial (RL model: Experienced-trial Bayesian Information Criterion
(BIC) = 968.26, Test-trial BIC = 508.58; baseline model: Experienced-trial BIC = 1039.72,
Test-trial BIC = 512.93) or a saturated model that assigned a separate parameter to every
choice (saturated model: Experienced-trial BIC = 4965.06, Test-trial BIC = 2188.0).

For Test trials only, we also compared the RL model to two simple alternatives that would
require no learning: one in which participants simply imitated the confederate’s last action
(“last-action”), and one in which participants remembered only the confederate’s last
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action–outcome pairing, choosing the same action if the confederate won or the other action
if the confederate lost (“last-outcome”). Both alternatives used one fewer parameter than the
RL model (eliminating the learning rate while retaining a fitted choice stochasticity). Even
after adjusting for the number of free parameters in the models, the RL model fit better than
either alternative (last-action model: Testtrial BIC = 513.11; last-outcome model: Test-trial
BIC = 511.07). The model fits confirmed that the RL model accounted for instrumental
learning whether the outcomes were delivered to the participant or to the confederate and
suggested that participants learned about the confederate’s outcomes over time rather than
adopting a simple imitation strategy.

For noninstrumental trials, we evaluated the RL model fit by examining whether the model
explained a significant amount of variance in RTs (after log-transforming RTs to account for
their skew); this is equivalent to testing the RL model against a baseline model predicting
equal values on every trial (as the baseline would only predict the mean RT). For
Experienced noninstrumental trials, the RL model fit was significant (F(1, 678) = 9.1814, p
< .005), confirming that participants learned conditioned responses to the Experienced cues.
For Test noninstrumental trials, the model fit was not significant (F(1, 321) = 0.18, ns),
suggesting that participants did not develop strong conditioned responses for Observed
noninstrumental cues.

Finally, participants also rated how much they liked each cue, as a self-reported measure of
conditioned preference (Figure 2C). Repeated measures ANOVA confirmed that liking
differed significantly across cue categories (F(7, 98) = 15.25, p < .001). In particular,
planned comparisons between each reward cue machine and its corresponding neutral
control machine found that participants rated the reward cue machine higher for
Experienced instrumental (t(14) = 5.56, p < .001), Experienced noninstrumental (t(14) =
6.61, p < .001), and Observed instrumental trials (t(14) = 2.88, p = .012). The comparison
for Observed noninstrumental trials was not significant (t(14) = 0.12, ns). The ratings
suggest that for Observed instrumental trials, participants developed conditioned preferences
for the Observed cues, although they were never rewarded on them.

Average RTs differed across cue categories (Table 1 and Supplementary Figure S1; F(5,
2655) = 140.40, p < .001); the key difference was between instrumental and noninstrumental
trials, with all noninstrumental trial averages significantly faster than all instrumental trial
averages. Experienced instrumental reward cue trials were also significantly faster than Test
instrumental trials or Experienced instrumental neutral control trials.

Imaging
Observational Instrumental Prediction Errors—To identify regions underlying
prediction errors for observational instrumental learning, we examined activation correlating
with the prediction error regressor for Observed instrumental trials (Figure 3A). In the dorsal
striatum, a significant cluster in right dorsal caudate was positively correlated with
prediction errors (x, y, z = 21, 17, 7; Z = 3.94; extent = 20 voxels, p < .05 corrected for
dorsal striatal volume; see also Figure 3C). A smaller cluster in the left dorsal caudate was
also detected, although this did not reach the extent threshold for significance (x, y, z = −15,
14, 7; Z = 2.93; extent = 5 voxels). By contrast, no significant positive clusters were present
in the ventral striatum. No significant clusters in either dorsal or ventral striatum were
negatively correlated with prediction errors. At the whole-brain threshold, no significant
regions were positively or negatively correlated with prediction errors.

In a post hoc analysis, to directly examine the selectivity of the dorsal caudate for
observational instrumental prediction errors, we extracted average beta weights for each trial
type from the significant right caudate cluster (using a leave-one-out extraction procedure to
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avoid nonindependence issues [Kriegeskorte et al., 2009]; see Methods). A 2 × 2 repeated
measures ANOVA revealed a main effect for instrumental trials greater than
noninstrumental trials (F(1, 63) = 12.65, p < .005), but no other main effect or interaction
(Figure 3B). This cluster was significantly more active for prediction errors in Observed
instrumental trials than baseline (t(15) = 3.29, p < .01); no other condition’s activation,
however (including Experienced instrumental trials), was significantly different from
baseline (all ts < 1.71, ns). This region of dorsal caudate, then, was selectively active for
instrumental as compared with noninstrumental Observed prediction errors but relatively
similarly active for Experienced and Observed instrumental prediction errors.

To examine whether activation in this cluster truly reflected reinforcement learning
prediction errors, we used Bayesian model comparison within the significant right caudate
cluster to compare whether its activation in each condition was better fit by prediction errors
or by a baseline model that responded to outcome valence but did not learn over time (see
Methods). For instrumental Observed trials, the exceedance probability of the prediction
error model compared with baseline was 99.67%; that is, activation in this region was
99.67% likely to have been produced by prediction errors from the RL model as opposed to
a static response to instrumental Observed outcomes over time.

To examine whether learning performance related to dorsal caudate activation, we examined
learning performance (i.e., RL model fit, indexed by each participant’s model log-likelihood
for Test instrumental trials) in a simple Condition × Performance ANCOVA; this analysis
revealed no main effect of Learning Performance (F(1, 56) = 0.1, ns) and no interaction with
Condition (F(3, 56) = 1.51, ns). This finding, however, should be qualified by the relatively
low variation in learning performance (after screening out nonlearners).

Experiential Instrumental Prediction Errors—For comparison, we next examined
activation for prediction errors in the Experienced instrumental trials (Figure 4A). In the
ventral striatum, a significant cluster in right nucleus accumbens was positively correlated
with prediction errors (x, y, z = 9, 11, −4; Z = 3.19; extent = 16 voxels, p < .05 corrected for
striatal volume). In the dorsal striatum, a cluster near the corrected threshold in left dorsal
putamen was also positively correlated with prediction errors (x, y, z = −24, −1, 10; Z =
3.87; extent = 14 voxels, p = .055 corrected for striatal volume). This cluster’s location was
similar to that in a recent study of instrumental prediction error activation (Schönberg et al.,
2010) and met a small-volume corrected cluster threshold centered on that study’s
coordinates (extent = 8 voxels within 8-mm-radius sphere centered at −27, 6, 9, p < .05
corrected for small volume). By contrast to the dorsal caudate cluster from the Observed
instrumental trials, a 2 × 2 ANOVA on the leave-one-out extracted beta weights from the
dorsal putamen cluster revealed a main effect of Experienced greater than Observed trials
(Figure 4B; F(1, 63) = 11.64, p < .005), but no other main effect or interaction. This
cluster’s activation for prediction errors in Experienced instrumental trials was significantly
greater than baseline (t(15) = 2.92, p < .05); no other condition’s activation (including
Experienced noninstrumental trials) was significant different from baseline (all ts < 1.77,
ns). Together, the dorsal and ventral clusters are consistent with earlier studies that find
prediction error activation in both dorsal and ventral striatum for experiential prediction
errors (O’Doherty et al., 2004).

No significant clusters in dorsal or ventral striatum were negatively correlated with
prediction errors. At the whole-brain threshold, no significant regions were positively or
negatively correlated with prediction errors; in addition, in direct whole-brain t tests between
Experienced and Observed instrumental prediction error regressors, no clusters were
significantly different between conditions. Finally, a conjunction analysis over prediction
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error activations for Experienced and Observed instrumental trials revealed no significant
overlap between activated regions for the two trial types.

Noninstrumental Prediction Errors—To examine whether prediction error activations
were specific to instrumental learning, we also examined activation for prediction errors in
Observed and Experienced noninstrumental trials. For Observed noninstrumental trials, no
significant clusters were positively or negatively correlated with prediction errors in either
dorsal or ventral striatum or at the whole-brain threshold. For Experienced noninstrumental
prediction errors, by contrast, a significant cluster in left ventral putamen was positively
correlated with prediction errors (Figure 5; x, y, z = −21, 5, −4; Z = 3.24; extent = 13 voxels,
p < .05 corrected for ventral striatal volume). No significant clusters were present in dorsal
striatum, and no significant clusters were negatively correlated in either striatal ROI. At the
whole-brain threshold, no regions were positively or negatively correlated nor were any
significantly different in direct tests between Experienced and Observed noninstrumental
prediction errors.

DISCUSSION
Prediction error signals have been reported throughout the human striatum during
experiential reward learning, with the dorsal striatum playing a specific role during
instrumental experiential learning. In the present study, we extend these findings by showing
that activation in parts of the human dorsal striatum correlates with reward prediction errors
even when those error signals are computed while observing another person perform an
instrumental learning task. A Bayesian model comparison suggested these signals were
better explained by prediction errors than merely observed outcomes. The dorsal striatum is,
thus, involved in encoding prediction errors during learning of instrumental associations
whether those associations are acquired through experience or purely through observation.
This involvement is selective for prediction errors during instrumental learning, as shown by
comparison with a noninstrumental reward learning control. Observed instrumental and
noninstrumental trials both required only passive observation by the participant, yet only the
instrumental condition recruited the dorsal striatum.

These findings provide new insights into the functions of dorsal striatum in instrumental
reward learning. The selectivity for instrumental prediction errors fits with theories that
propose a role for this region in updating action values, as opposed to updating stimulus-
specific cue values (Balleine, Delgado, & Hikosaka, 2007; Samejima, Ueda, Doya, &
Kimura, 2005; Haruno et al., 2004; O’Doherty et al., 2004). This study extends that role to
updating even observed action values but also advances our understanding of how action
values are represented in the dorsal striatum. Participants made no motor responses on
Observed trials and did not receive any outcomes. The updating process in this region
cannot therefore operate on an action representation as simple as a reflexive linkage between
an instrumental cue and a personal motor response. Instead, it must operate on a more
abstract representation that can be affected by how an individual interprets an observed
outcome and that can be translated at the proper moment (when that instrumental response
can be performed by the individual herself) into a specific personal motor action.

By contrast, observational reward prediction errors did not activate the ventral striatum in
either instrumental or noninstrumental trials. Reward prediction errors were found for both
instrumental and noninstrumental experienced outcomes in ventral and posterior striatum,
replicating earlier findings (Schultz, 2006; McClure et al., 2003; O’Doherty et al., 2003). As
the experienced rewards involved greater sensory involvement, as well as higher subjective
rewards (as measured by the liking ratings), one possibility is that the ventral striatum is
more sensitive than the dorsal striatum to these sensory and subjective factors. Prior
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evidence suggests ventral striatum is critical for encoding subjective reward value per se in
stimulus–outcome associations (Cardinal, Parkinson, Hall, & Everitt, 2002). This possibility
is consistent with the ideas suggested by actor/critic accounts of ventral striatum: namely,
that ventral striatum is selectively involved in updating stimulus- or state-based subjective
values, which are used in both instrumental and noninstrumental conditioning, as opposed to
the action values updated by dorsal striatum, which are used only during instrumental
conditioning. Observing another person’s reward after she selects a given action might
increase the odds that you will produce that action given the chance; this increase
corresponds to an increased action value. The same observation, though, may not improve
your estimation of how rewarded you will feel for the next observed reward; this
corresponds to an unchanged stimulus value for the observed cues.

One caveat to the interpretation that dorsal striatum is selective for instrumental versus
noninstrumental observational learning (as it is in experiential learning) is that participants
did not exhibit strong behavioral evidence of learning in the noninstrumental Observed
condition (as measured by the nonsignificant model fit to RTs and the liking ratings
compared with neutral cues). It may simply be the case that passive observation of cues
predicting reward in others is an insufficiently salient event to drive learning. Perhaps
including the affective responses generated by the observed partner in response to the cues
or outcomes in the observational paradigm could enhance behavioral learning in the
noninstrumental condition; this is an important direction for future research on observational
conditioning. Because learning was not clearly established in this noninstrumental
observational condition we cannot conclude anything about the representation of
noninstrumental observational prediction errors in the present study. However, including the
noninstrumental observational condition in our analysis does allow us to exclude the
contribution of stimulus- or motor-related confounds in the instrumental observational
condition, as these features were similar between instrumental and noninstrumental
conditions. Thus, the noninstrumental condition still acts as a useful control condition in the
present task.

These findings are consistent with a growing literature that suggests processing other
people’s outcomes involves some, but not all, of the same neural systems as processing the
same outcome when it happens to oneself (Singer & Lamm, 2009; Keysers & Gazzola,
2006). Observing others in pain, for example, activates some of the regions involved in
experiencing pain (like the anterior insula and anterior cingulate), but other regions are not
necessarily activated by that observation—specifically those thought to encode the primary
sensory experience of pain (like sensorimotor cortex and posterior insula; Decety & Lamm,
2009; Singer et al., 2004). Observing errors in others can activate both regions involved in
personal errors (such as cingulate cortex) and those involved in personal rewards (such as
ventral striatum), depending on context (de Bruijn, de Lange, von Cramon, & Ullsperger,
2009). Observed rewards can also activate regions that process personal rewards, like the
ventral striatum or ventromedial pFC (Burke et al., 2010), but these regions tend to be more
active for personal than observed rewards (Mobbs et al., 2009). The current work extends
these findings into the dorsal striatum and not only highlights that the regions involved can
be consistent between experience and observation but also identifies their specific
computational roles.

These results differ somewhat from a recent study of observational learning, which found
that the ventromedial pFC encoded a positive reward prediction error and the ventral
striatum encoded a negative reward prediction error for others’ outcomes during an
instrumental learning task that also included experienced rewards (Burke et al., 2010).
Social context plays an especially important role in the response to others’ outcomes
(Cooper, Kreps, Wiebe, Pirkl, & Knutson, 2010; Mobbs et al., 2009; Singer et al., 2006;
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Delgado, Frank, & Phelps, 2005), and variations between the tasks may help explain the
differences. Burke et al. suggest their findings in the ventral striatum may have been driven
by comparison effects between the observed outcomes and the participants’ own; our
experiment used liquid instead of monetary outcomes, which may lend themselves less to
social comparisons. In addition, in their task, participants received experienced outcomes for
choices between the same stimuli as the observed partners, immediately following the
observed outcomes. Regions like the ventromedial pFC and ventral striatum are more
engaged in updating stimulus-based values, which were likely more relevant in their task. In
our task, by contrast, participants never received experienced outcomes following the
Observed cues, and so updating subjective stimulus values for those cues was likely less
salient in our study. Finally, although their study did not find dorsal striatal activation, it had
participants choose between stimuli, whereas ours had participants make instrumental
choices with an explicitly action-based cue (a slot machine arm); this may have made
encoding action values more salient. Future studies should test how these task variations
affect the computations supporting observational learning.

Although this study focused on dorsal striatal function, another important question for future
research is how dorsomedial pFC (including anterior cingulate) may be involved in
observational learning. These regions are thought to be involved both in representing others’
mental states (Amodio & Frith, 2006; Mitchell, Macrae, & Banaji, 2005) and in personal
action-based decision-making (Jocham, Neumann, Klein, Danielmeier, & Ullsperger, 2009;
Rushworth, Mars, & Summerfield, 2009). The current study did not find prediction error
activation in this region, perhaps because of the incentive domain (liquid rewards compared
with symbolic or monetary rewards), task design (comparing rewards to neutral instead of to
punishments), or task demands (e.g., ACC response to prediction errors is thought in part to
encode uncertainty or volatility in expected rewards, which changed only slowly in this
study). These regions may also be promising targets for study with more complex
computational models than the simple RL model employed here, such as models explicitly
modeling beliefs about others’ mental states (Behrens, Hunt, Woolrich, & Rushworth, 2008;
Hampton, Bossaerts, & O’Doherty, 2008).

Another important direction for future study will be to understand the contributions of
different subregions of the dorsal striatum to different learning processes. In this study,
Experienced prediction errors (instrumental and noninstrumental) were found in a lateral,
posterior region of dorsal putamen, whereas instrumental prediction errors (Observed and
Experienced) were found in an anterior region of dorsal caudate. These findings might relate
to accumulating evidence that suggests neuroanatomical and functional differentiation
within the dorsal striatum in both rodents and humans, with dorsomedial striatum being
closely connected to dorsal prefrontal regions and supporting goal-directed behavior and
dorsolateral putamen being more closely connected to ventral and motor cortex and
supporting habitual behavior (Balleine & O’Doherty, 2010; Haber & Knutson, 2010;
Tricomi, Balleine, & O’Doherty, 2009; Tanaka, Balleine, & O’Doherty, 2008; Yin, Ostlund,
& Balleine, 2008; Yin, Ostlund, Knowlton, & Balleine, 2005). In the current findings, the
more anterior medial activation may thus be more related to more abstract goal-directed
processes within reward learning, which may be relatively more important without primary
reward (as in Observed learning). The more posterior activation may be more related to
more habitual or sensory processes within reward learning, which would be more important
for Experienced than Observed trials and present to some extent on noninstrumental trials.
More research in humans is needed, however, to clearly distinguish the functions of these
distinct areas of dorsal striatum.

The finding of observational reward prediction error signals in the dorsal striatum may also
relate to previous findings reporting prediction error signals in the dorsal striatum during

Cooper et al. Page 12

J Cogn Neurosci. Author manuscript; available in PMC 2013 February 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



learning about counterfactual events (Lohrenz, McCabe, Camerer, & Montague, 2007). As
in the observational case, counterfactual prediction errors are elicited in relation to an
outcome that is not directly experienced; instead, these errors correspond to what would
have been obtained had an alternative action been selected. The finding that counterfactual
prediction errors and observational prediction errors both recruit dorsal striatum could
suggest that these two signals may depend on similar underlying computational processes,
although future work will be necessary to directly compare and contrast these two types of
learning signal.

In summary, we found that a region of dorsal caudate was activated by instrumental reward
prediction errors during observational learning, indicating that this region may update an
abstract representation of action values even when the actions and outcomes are observed.
These results extend our understanding of the functions of the dorsal striatum in
instrumental reward learning and in RL by showing that this region can be engaged during
learning of instrumental actions without either direct experience of the outcomes or
requiring the actions to be personally performed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experiment setup and trial structure. (A) Schematic of experimental setup. Participants lay
in the MRI scanner while a confederate partner sat at the experiment computer outside
(shown as hand with buttons, not to scale; confederate button presses were obscured from
view). Participants viewed the entire experiment via a live video camera feed aimed at the
outside monitor. Responses from inside the scanner were connected to the experiment
computer, and liquid outcomes were delivered by pumps controlled by the experiment
computer. (B) Trial structure and schematic of participant view. Two trial types are shown,
as viewed on participant screen. Participant screen showed experiment computer and
confederate hand (with button presses obscured). In Experienced trials, participants saw a
slot machine cue on their half of the screen (e.g., top) and made their response. After a
variable delay, the cue was followed by a liquid reward or neutral outcome, as well as a
colored indicator (reward shown). In Observed trials, participants saw the slot machine cue
on the confederate’s half of the screen and observed her response; the liquid outcome was
then nominally delivered to the confederate instead of the participant, whereas the visual
indicator was identical to Experienced trials (neutral outcome shown). On instrumental
trials, the participant or confederate selected between two arms; on noninstrumental trials,
the computer chose one side or the other (left indicator shown) and the participant or
confederate responded to the chosen side with a button press. (C) Representative reward
probability curves for two conditions. Each line indicates the probability of reward for one
arm or side of a given condition’s slot machine over the experiment for a single participant.
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Figure 2.
Conditioning for experienced and observed outcomes. (A) Model fit for RL model of
instrumental learning compared with alternative models. Fit is measured by BIC (smaller
indicates better fit). See Results for model details. Saturated model not shown for clarity. (B)
Time course of instrumental choices and RL model predictions for single representative
participant. Top: Experienced trials. Circles indicate choice of left or right action (top or
bottom of y axis); color indicates reward or neutral outcome. Dashed line indicates average
choice probability over previous four trials at each time point (a smoothed measure of
behavior). Solid line indicates model-predicted choice probability at each time point.
Bottom: Observed and Test trials. Colored circles indicate Observed confederate choices;
color indicates reward or neutral outcome for confederate. Dark circles indicate participant
Test-trial choices, which were performed in extinction (without any outcome during scan).
Lines indicate average Test-trial choice probability and model predictions. (C) Average self-
reported liking for cues after experiment. Exp = Experienced, Obs = Observed, Ins =
instrumental, Nonins = Noninstrumental, Rew = reward cue, Neut = neutral control. Error
bars indicate SEM across participants. Only significant differences between reward cue and
neutral control machines within condition are shown. ***p < .001, *p < .05.
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Figure 3.
Dorsal caudate activation for Observed instrumental prediction errors. (A) Activation for
Observed instrumental prediction error regressor. Maps are thresholded at p < .005
voxelwise with 5 voxel extent threshold for display; cluster in right dorsal caudate meets
extent threshold corrected for multiple comparisons across dorsal striatum. Coordinates are
in ICBM/MNI space. Color bar indicates t statistic. R indicates right. (B) Average beta
weights (calculated with leave-one-out extraction; see Methods) in significant dorsal caudate
cluster. Error bars indicate SEMs across participants. Only significant differences from
baseline shown; between-condition tests show only main effect of instrumental versus
noninstrumental conditions (F(1, 63) = 12.65, p < .005). **p < .01. (C) Dorsal caudate
activation by prediction error size. Bars indicate estimated effect size (in percent signal
change) in significant dorsal caudate cluster (calculated with leave-one-out extraction) for
outcomes on instrumental Observed trials by prediction error size and valence. Effect sizes
estimated as canonical hemodynamic response peak, adjusted for all other conditions
(Gläscher, 2009). Neg = prediction error < −0.33. Med = prediction error ≥ −0.33 and <
0.33. Pos = prediction error ≥ 0.33. Significant differences are not shown. Error bars are
SEM across participants.
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Figure 4.
Dorsal and ventral striatum activation for Experienced instrumental prediction errors. (A)
Activation for Experienced instrumental prediction error regressor. Ventral striatal cluster
(right) meets extent threshold corrected for multiple comparisons across ventral striatum.
Maps are thresholded at p < .005 voxelwise with 5 voxel extent threshold for display.
Coordinates are in ICBM/MNI space. Color bar indicates t statistic. R indicates right. (B)
Average beta weights (calculated with leave-one-out extraction; see Methods) in significant
dorsal putamen cluster. Error bars indicate standard errors of the mean across participants.
Only significant differences from baseline shown; between-condition tests show only main
effect of Experienced vs. Observed conditions (F(1, 63) = 11.64, p < .005). *p < .05.
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Figure 5.
Ventral striatum activation for Experienced noninstrumental prediction errors. Left cluster
meets extent threshold corrected for multiple comparisons across ventral striatum. Map is
thresholded at p < .005 voxelwise with 5 voxel extent threshold for display. Coordinates are
in ICBM/MNI space. Color bar indicates t statistic. R indicates right.

Cooper et al. Page 20

J Cogn Neurosci. Author manuscript; available in PMC 2013 February 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Cooper et al. Page 21

Table 1

Average Reaction Time

Condition Mean Reaction Time,
msec (SEM)

Experienced instrumental
 reward cue

973.93a (39.87)

Experienced instrumental
 neutral control

1039.64b (44.28)

Test instrumental 1041.13b (41.18)

Experienced noninstrumental
 reward cue

613.89c (23.94)

Experienced noninstrumental
 neutral control

606.39c (29.55)

Test noninstrumental 637.68c (24.99)

n = 15 (one participant’s data excluded as an outlier). Entries that do not share subscripts differ at p < .05 by Tukey’s honestly significant
difference; entries that share subscripts do not significantly differ. Differences were calculated on log-transformed RTs; original data are shown for
clarity. SEMs are calculated across participants within condition. Only reward cues were shown in Test trials. See Supplementary Figure S1 for full
distributions.
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