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Assays for detecting levels of antiretroviral drugs in study participants are increasingly popular in preexposure

prophylaxis (PrEP) trials, since they provide an objective measure of adherence. Current correlation analyses of

drug concentration data are prone to bias. In this article, we formulate the causal estimand of prevention efficacy

among drug compliers, those who would have had a threshold level of drug concentration had they been as-

signed to the drug arm of the trial. The identifiability of the causal estimand is facilitated by exploiting the exclu-

sion restriction; that is, drug noncompliers do not acquire any prevention benefit. In addition, we develop an

approach to sensitivity analysis that relaxes the exclusion restriction. Applications to published data from 2 PrEP

trials, namely the Preexposure Prophylaxis Initiative (iPrEx) trial and the Centre for the AIDS Programme of

Research in South Africa (CAPRISA) 004 trial, suggest high efficacy estimates among drug compliers (in the

iPrEx trial, odds ratio = 0.097 (95% confidence interval: 0.027, 0.352); in the CAPRISA 004 trial, odds

ratio = 0.104 (95% confidence interval: 0.024, 0.447)). In summary, the proposed inferential method provides an

unbiased assessment of PrEP efficacy among drug compliers, thus adding to the primary intention-to-treat anal-

ysis and correlation analyses of drug concentration data.

causal inference; compliance; exclusion restriction; potential outcome; principal stratification; two-phase sampling

Abbreviations: CACE, complier-average causal effect; CAPRISA, Centre for the AIDS Programme of Research in South Africa;

CI, confidence interval; HIV, human immunodeficiency virus; iPrEx, Preexposure Prophylaxis Initiative; ITT, intention-to-treat;

PrEP, preexposure prophylaxis.

Preexposure prophylaxis (PrEP) for human immunodefi-
ciency virus (HIV) prevention is a promising strategy that
is currently being tested globally using antiretroviral agents
delivered either orally or topically prior to sexual exposure.
In the Preexposure Prophylaxis Initiative (iPrEx) trial,
where men who have sex with men were randomized to
receive either daily emtricitabine–tenofovir disoproxil fu-
marate pills or placebo pills, the intention-to-treat (ITT)
analysis found a 44% reduction in HIV incidence in the
active drug arm as compared with the placebo arm (1). In
the Centre for the AIDS Programme of Research in South
Africa (CAPRISA) 004 trial, coitus-related use of a tenofo-
vir 1% vaginal gel was shown to reduce HIV acquisition
by 39% among high-risk South African women (2).
Several other clinical trials (either recently completed or

still ongoing) are evaluating or have evaluated tenofovir-
based PrEP regimens in different risk groups, such as het-
erosexuals and injection drug users (3).
Adherence to the daily or coitus-related regimen is criti-

cal to PrEP effectiveness. Both the iPrEx trial and the
CAPRISA 004 trial found that study participants who used
PrEP consistently were less susceptible to HIV infection.
Precise measurement of drug adherence, however, has been
a major challenge in PrEP studies. Self-reported adherence
has often been overreported (1, 4). Several more objective
measures of adherence have been used in PrEP studies, in-
cluding pill counts, counts of used gel applicators, and
measurements of drug concentrations in participants’ blood,
tissue, or hair. In the iPrEx trial, for instance, a nested case-
control study was conducted to detect the presence of the
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drug in plasma and in peripheral-blood mononuclear cells
at the infection visit for cases and for HIV-negative con-
trols matched by study visit and site (1). No drug was de-
tected among participants in the placebo arm, as expected.
Remarkably, comparison of the HIV risks between partici-
pants with a detectable level of drug concentration and par-
ticipants without a detectable level yielded a 92% reduction
in HIV risk (1). In the CAPRISA 004 trial, tenofovir con-
centrations in undiluted aspirated cervicovaginal fluid were
assessed for women in the tenofovir gel arm (5). Drug
assays were performed using samples collected at the first
visit postinfection for seroconverters and using samples
from a randomly selected visit for uninfected women.
Results suggested that women with a tenofovir concentra-
tion greater than 1,000 ng/mL had a 74% reduction in HIV
incidence compared with women in the placebo group (2.4
per 100 person-years vs. 9.1 per 100 person-years; inci-
dence rate ratio = 0.26; P = 0.01).

All of these analyses attempted to assess PrEP efficacy
among compliers using drug concentration as a marker of ad-
herence. Formally, we define “prevention efficacy” in PrEP
trials as the treatment effect from an antiretroviral drug
among persons who comply with the assigned regimen. It
describes the biological effect of the drug, while “prevention
effectiveness,” the average treatment effect estimated by
means of ITT analysis, depends on both the biological effect
of the drug and compliance with the regimen. Drug concen-
tration assays provide a biomarker proxy for adherence,
which is more accurate than self-reported adherence, but they
are available only for persons in the drug arm of a trial. Cor-
relation of drug concentrations and HIV infections in the
drug arm (e.g., the iPrEx analysis) is prone to selection bias,
since compliers and noncompliers may have different health
conditions and different HIV risk profiles. Comparison of
compliers in the drug arm with the placebo recipients is not
protected by randomization either. Consequently, unless
strong and unverifiable assumptions are made, none of the
aforementioned drug-level analyses yield an effect estimate
that is interpretable as being due to PrEP use, since the com-
parisons are not conducted between the randomized drug and
placebo assignment groups.

Using the potential outcomes framework in causal infer-
ence (6–9), we present here an estimation procedure for as-
sessing the prevention efficacy of a PrEP regimen among
drug compliers, defined as persons who would have
achieved a threshold level of drug concentration had they
been assigned to the drug arm. To unify notation in the two
trials, we define a threshold level of drug concentration as
the level above which investigators hypothesize that the drug
would protect against HIV infection if the drug were effica-
cious. In the iPrEx analysis of the daily pill-taking regimen,
the threshold is any detectable level of the drug in the
sampled blood. In the CAPRISA 004 analysis, this threshold
level is defined as a cervicovaginal fluid tenofovir concentra-
tion greater than 1,000 ng/mL. We note that having a drug
concentration above the threshold level is driven mostly by
adherence, but it is also affected by the dosing regimen and
individual genetic variation in pharmacological properties
and host-cell biology (5). For the daily regimen prescribed
in the iPrEx trial, for example, drug levels are probably

detectable if a tablet was taken in the last 14 days. For the
coitally dependent use of gel in the CAPRISA 004 trial, the
value of drug levels as a marker of adherence depends on
the timing of the last sex act before a clinic visit.

Our causal estimand relates to the treatment effect among
“would-be treatment compliers” studied in the compliance
literature (10–12), defined as persons who adhere to the
active treatment regimen, irrespective of their potential com-
pliance status under the control treatment. This estimand is
of interest in a superiority trial, double-blind or open-label,
when the control is some basic and standard condition, or an
inert placebo, so that compliance with the control regimen
does not produce any effect. Another related estimand is the
well-known complier-average causal effect (CACE) (13), the
average effect of the treatment in the subpopulation of partic-
ipants who would adhere to whatever regimen they were
assigned. Often the CACE is assessed in open-label ran-
domized clinical trials, where participants are classified into
4 types: compliers, defiers, never-takers, and always-takers,
assuming that participants have access to the alternative treat-
ment other than the one they are assigned to (13). In the double-
blind PrEP trials we considered here, antiretroviral drugs
seem to be well tolerated and there is no major safety con-
cern, so blinding to treatment assignment is well kept. There-
fore, similar to Rubin (12), we may assume that participants
are comprised only of compliers and noncompliers; the latter
group fails to comply under either assignment. To this end,
our estimand can be viewed as a special form of CACE in
double-blind trials.

The unique feature of the two trials we consider is that
compliance in the drug arm is measured by an objective
biomarker, rather than error-prone self-report question-
naires. The challenge in estimating prevention efficacy is
that although drug compliers are directly identified in the
drug arm, the drug compliers in the placebo arm are not
identifiable. To achieve identifiability, we exploit the condi-
tion that drug noncompliers do not derive any protection
against HIV infection, a version of the exclusion restriction
widely known in the econometrics and statistics literature
(14). Furthermore, we formulate a general sensitivity model
that includes both situations where the exclusion restriction
holds and situations where it does not hold. We develop a
maximum likelihood estimation procedure accounting for
the commonly used case-control sampling for drug assays
and obtain prevention efficacy estimates for the iPrEx trial
and the CAPRISA 004 trial. By varying the sensitivity pa-
rameter, we examine the impact of a nonzero protection
effect in the drug noncompliers on estimating the preven-
tion efficacy among drug compliers.

MATERIALS AND METHODS

Counterfactuals, principal stratification, and causal

estimand

The counterfactual approach to causal analysis focuses
on the collection of potential responses, say HIV infection
status Y(z), under all possible treatment options Z = z (7, 8).
In the context of PrEP trials, let us denote Z = 1 if a partici-
pant is assigned to the antiretroviral arm and Z = 0 if the
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participant is assigned to the placebo arm. For a subject i,
the counterfactuals contain a pair of potential outcomes
(Yi(1), Yi(0)), among which only 1 potential outcome is real-
ized, since in the trial participants receive only 1 treatment
assignment. The causal effect of the treatment on HIV infec-
tion for this subject is based on the comparison between
Yi(1) and Yi(0), say Yi(1) – Yi(0), but the individual-level
causal effect is not identifiable. Because the treatment as-
signment is randomized, the average Yi(z) in the trial can be
estimated by the average Y among persons who actually
receive the treatment assignment z, for z = 0 or z = 1, that is,
E[Yi(z)] = E[Yi(z)|z] = E[Yi|z]. Thus, the average causal treat-
ment effect in the target population is identifiable.
A common use of the counterfactual framework is ad-

justing treatment effects for postrandomization variables,
which are defined as those measured during follow-up,
such as treatment noncompliance (13, 15, 16). Standard ad-
justment by means of regression modeling is susceptible to
selection bias (17). One way to control for postrandomiza-
tion variables is to compare values for the study endpoint
in subgroups that share the same union of both sets of po-
tential outcomes for the postrandomization variable, termed
“principal strata” in the statistical literature (18). The key
property of a principal stratum is that because it is based on
potential outcomes every participant could have had, it is
independent of treatment assignment and can be treated as
a baseline covariate. Thus, the treatment effect estimated in
a principal stratum is not affected by the postrandomization
variable. We next illustrate the concept and the use of prin-
cipal strata for the drug concentration data in the iPrEx trial
and the CAPRISA 004 trial.
Define by D(1) the potential outcome of whether the drug

concentration would have been above the prespecified thresh-
old level had a participant been assigned to the drug arm, and
define by Y(z) the potential outcome of the HIV infection had
a participant been assigned to the z arm. Two principal strata
are formed by D(1): persons who have D(1) = 1 and those
who have D(1) = 0. To ease the notation, we call the former
stratum “drug compliers” and the latter stratum “drug non-
compliers,” even though the definition of D(1) is based solely
on the potential drug concentration. As we discussed above,
drug concentration serves as an approximate measure of ad-
herence, as it is also affected by the dosing regimen and
genetic variability of pharmacological parameters. This defini-
tion of compliers connects to the would-be treatment complier
previously discussed in the compliance literature (10, 11).
Compared with the well-known pill-taking complier strata in
CACE (13), the principal strata here are only defined by D(1)
and thus are observable in the drug arm, but not D(0) because
the latter is identically zero for all placebo recipients. These
properties are similar to principal strata in evaluating surro-
gates of protection in HIV vaccine trials (19, 20), where
vaccine-induced immune responses are present only in the
vaccine recipients.
A causal estimand measuring the efficacy of the PrEP

regimen among drug compliers is defined as

PrðYð1Þ ¼ 1jDð1Þ ¼ 1Þ
PrðYð0Þ ¼ 1jDð1Þ ¼ 1Þ ;

which compares the HIV incidence among drug compliers
in the active arm with the HIV incidence among those in
the control arm, who would have been drug compliers had
they been assigned to the active arm. This estimand is the
ITT effect in the subgroup of drug compliers, addressing
the question, For the subgroup that is assigned to the active
treatment arm and complies with the dosing regimen, what
is the average treatment efficacy when compared with the
counterfactual scenario that they were assigned to the
placebo arm? This is different from the question asked by
the widely known CACE estimand, where a complier must
adhere to whatever treatment (active or control) he or she is
assigned. Indeed, if the active treatment does not create
adverse effect and blinding is strictly maintained, compli-
ance should not differ by arm; thus, the treatment effect
among drug compliers is the CACE in this setting (12).
Neither of the aforementioned reported analyses of drug

concentration data in the two trials yields a causal effect
estimate. In the iPrEx trial, the analysis of the prophylaxis
effect is essentially comparing HIV incidence among drug
compliers in the drug arm with HIV incidence among drug
noncompliers in the drug arm (1). In our notation, the esti-
mand in that analysis is

PrðYð1Þ ¼ 1jDð1Þ ¼ 1Þ
PrðYð1Þ ¼ 1jDð1Þ ¼ 0Þ :

The conditioning on z = 1 is taken out both in the numera-
tor and in the denominator because treatment assignment is
independent of all potential outcomes. This estimand does
not have a causal interpretation, because the contrast of
HIV infection risk is not based on the same principal
stratum. In other words, the participants who took their
pills in the drug arm may systematically differ from the par-
ticipants who did not take pills in the drug arm in terms of
characteristics that are related to the risk of HIV infection.
For example, drug compliers may have lower sexual risk-
taking behavior. In the CAPRISA 004 trial, the comparison
was conducted between the group of drug recipients who
had tenofovir concentrations of more than 1,000 ng/mL and
the placebo recipients, denoted in our notation by

PrðYð1Þ ¼ 1jDð1Þ ¼ 1Þ
PrðYð0Þ ¼ 1Þ ;

which again is not a causal estimand for the same reason.

Identifiability, sensitivity parameter, and estimation

Drug compliers and drug noncompliers are not identifi-
able in the placebo arm. An experimental solution for
future PrEP trials, if compliance across 2 arms is the same,
would be to put an inert tracer into both the active product
and the placebo, so that compliers in both arms could be
identified. Analytically, we invoke a version of the exclu-
sion restriction to facilitate identifiability (14). Contrary to
typical self-reported adherence data, drug concentration
as a proxy of adherence makes it defensible to invoke such
an assumption, because it is a more accurate measure of
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adherence. In the iPrEx trial, the absence of a detectable
drug level is primarily caused by failure to have taken a pill
in the past 14 days, and to some extent by the variability of
individual pharmacokinetics. It seems plausible to assume
that persons without a detectable level of the antiretroviral
drug would be unlikely to receive any prevention benefit
from the drug. To start, we make the following exclusion
restriction assumption for the identifiability:

PrðYð1Þ ¼ 1jDð1Þ ¼ 0Þ ¼ PrðYð0Þ ¼ 1jDð1Þ ¼ 0Þ; ð1Þ

that is, those potential drug noncompliers do not derive any
treatment effect. This is irrespective of their compliance
status if assigned to the placebo arm. Because of the inert
placebo being used, even if these persons switch from non-
complying in the drug arm to complying in the placebo
arm for some reason, they still do not obtain any benefit
from the treatment.

Let the proportion of drug compliers be α = Pr(D(1) = 1).
Because of randomization, there will be the same propor-
tions of drug compliers in the treatment arm and in the
placebo arm. Thus, the observed HIV infection rate in the
control arm, Pr(Y|Z = 0), is a mixture of 2 weighted proba-
bilities:

PrðY ¼ 1jZ ¼ 0Þ ¼ PrðYð0Þ ¼ 1Þ
¼ aPrðYð0Þ ¼ 1jDð1Þ ¼ 1Þ þ ð1� aÞ
� PrðYð0Þ ¼ 1jDð1Þ ¼ 0Þ:

ð2Þ

In the drug arm, both α and Pr(Y(1) = 1|D(1) = 0) are esti-
mable, as is the infection rate in the placebo arm Pr(Y|
Z = 0). From equations 1 and 2, we are now able to identify
PrY(0) = 1|D(1) = 1).

More generally, it is necessary to formulate a sensitivity
model to assess the impact of deviating from the exclusion
restriction. This is particularly useful for the CAPRISA 004
data, as 1,000 ng/mL was used as the threshold concentra-
tion. One can envision some residual protection remaining
in those women with less than 1,000 ng/mL. Women could
also show a low level of drug concentration because they
have not engaged in recent sex acts. Even for the iPrEx
trial, the exclusion restriction may not always be true for
every participant, because the drug assay was conducted at
only a single visit. A participant may have missed pills or
gel use right before the visit but been an adherer all along,
and thus may have received some degree of protection from
the drug regimen. Similar approaches have been used for
assessing the effect of preventive vaccines on postinfection
outcomes in HIV vaccine trials (21, 22).

Consider the following logistic regression model for the
association between treatment assignment, D(1) as a base-
line predictor, and infection status,

log
PrðYðzÞ ¼ 1jz;Dð1ÞÞ
PrðYðzÞ ¼ 0jz;Dð1ÞÞ

� �
¼ b0 þ dzþ b1Dð1Þ

þ b2zDð1Þ:

Additional covariates in sexual risk-taking can be included
to adjust for differential exposures between drug compliers
and drug noncompliers. In this model, δ is the sensitivity
parameter which captures the treatment effect among drug
noncompliers, as we elaborate below. The parameter β1
quantifies the difference in HIV risks between compliers
and noncompliers in the placebo arm, a direct measure of
selection bias when making inference on the 2 groups. The
parameter of primary interest is β2, the log odds ratio
between treatment and control among persons who have
D(1) = 1,

PrðY ¼ 1jZ ¼ 1;Dð1Þ ¼ 1Þ=PrðY ¼ 0jZ ¼ 1;Dð1Þ ¼ 1Þ
PrðY ¼ 1jZ ¼ 0;Dð1Þ ¼ 1Þ=PrðY ¼ 0jZ ¼ 0;Dð1Þ ¼ 1Þ

¼ PrðYð1Þ ¼ 1jDð1Þ ¼ 1Þ=PrðYð1Þ ¼ 0jDð1Þ ¼ 1Þ
PrðYð0Þ ¼ 1jDð1Þ ¼ 1Þ=PrðYð0Þ ¼ 0jDð1Þ ¼ 1Þ :

This approximates the relative risk, since HIV infection is
generally a rare event. The set of parameters (β0, δ, β1, β2)
is not identified, since we do not observe D(1) for every-
one. However, if we fix δ to a value in a user-specified,
scientifically plausible range, then the rest of the parameters
are identified. In the 2 applications we consider, we restrict
δ to be a nonpositive value in [τ, 0] for some constant τ <
0, because there is no evidence that the antiretroviral drug
could increase the probability of HIV acquisition. In partic-
ular, δ = 0 indexes the exclusion restriction; that is, there is
no treatment effect among drug noncompliers.

Given a fixed δ, the estimation can be cast as a missing-
covariate problem in the statistical literature. The potential
outcome D(1) for a placebo recipient is missing completely
at random in Rubin’s (23) sense. The standard likelihood-
based method can be used for estimation, with incomplete
data being taken expectation in the observed-data likeli-
hood. When there is a case-control sample selected from
the drug arm for drug assay, as in the iPrEx trial and the
CAPRISA 004 trial, additional missing data are generated
for persons who were not selected into the case-control
sample. Assuming random dropout and missing visits, the
measurements for D(1) for these drug recipients are missing
at random, since the missingness depends on case-control
status. This constitutes so-called 2-phase sampling in the
statistical literature (24, 25): In the first phase, HIV infec-
tion status and treatment assignment are observed for every-
one; in the second phase, a proportion of participants are
sampled to measure more expensive covariates, such as
drug presence. Statistical methods have been extensively
studied for estimating regression coefficients when some of
the covariates are missing due to 2-phase sampling. When
the covariate partially observed is discrete, one can use an
expectation-maximization algorithm to estimate the param-
eters in a generalized linear model (26). The confidence inter-
vals of the estimated effect can be computed by inverting
the observed-data informationmatrix (27). In theWebAppen-
dix (available at http://aje.oxfordjournals.org/), we describe
the likelihoodand theexpectation-maximizationalgorithmfor
estimating (α, β0, β1, β2) when a case-control sample from
the drug arm is selected for drug assay. A simulation study

Estimation of PrEP Efficacy for HIV Prevention 259

Am J Epidemiol. 2013;177(3):256–263

http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/


is also presented in Web Table 1 to show the validity of the
estimation procedure.
Note that a similar efficacy estimate among compliers has

been studied in a vitamin supplement intervention (10),
though not constructed under the potential outcomes frame-
work. Sommer and Zeger (10) considered the simplest
scenario, in which all participants in the active arm have data
on compliance, and they derived the treatment effect among
compliers using a method-of-moments type of estimator for
the proportions of compliers and for the HIV infection proba-
bility among the compliers Pr(Y(0) = 1|D(1) = 0), also exploit-
ing the exclusion restriction. This estimator is not a maximum
likelihood estimator and therefore may not be statistically effi-
cient. Our causal estimand is based on the potential outcomes
framework, estimated using a maximum likelihood method
for missing covariate data. Our method accommodates case-
control sampling for drug assay and, in addition to obtaining
the efficacy estimate, provides a general sensitivity model that
includes the exclusion restriction as a special case.

RESULTS

In the iPrEx trial, 36 out of 1,251 antiretroviral drug recipi-
ents who were included in the modified ITT analysis had
emergent HIV infection, while 64 out of 1,248 placebo recipi-
ents were HIV-positive (1). Blood samples were taken for se-
roconverters at the infection visit and the seronegative controls
matched by visit. In the correlation analysis between drug de-
tection and HIV infection in the antiretroviral arm, at least one
of the study drugs was detected in 3 of 34 subjects with HIV
infection and in 22 of 43 seronegative control subjects (1). In
the CAPRISA 004 trial, among 445 women randomized to the
gel arm, there were 38 seroconverters (2, 5). Among 444
women assigned to receive the placebo gel, 60 became infect-
ed during the trial. Samples were available from 34 sero-
converters and from 301 women who remained uninfected
(5). Three of 34 seroconverters and 79 of 301 uninfected
women had a tenofovir concentration of 1,000 ng/mL or more.
The estimated odds ratios and confidence intervals are

shown in Table 1. In the iPrEx trial, because HIV infection
is a rare event, we can interpret the parameter estimates
on the relative-risk scale. Specifically, the value of the pa-
rameter of interest, β2, suggests that among participants
who would have a detectable level of drug were they

assigned to the drug arm, the relative risk of the treatment
effect is 0.097 (95% confidence interval (CI): 0.027, 0.352),
a 90.3% reduction in infection risk. This effect estimate is
slightly attenuated compared with the odds ratio estimate in
a correlation analysis (odds ratio = 0.093) if we simply
compare the drug-detected participants (3/34) with the drug-
undetected participants in the drug arm (22/43), though our
estimate has a causal-effect interpretation. Our results for β1
suggest that the baseline risk of infection for persons who
would have a detectable drug level if assigned to the drug
arm is not very different from the baseline risk of infection
for those who would not have a detectable drug level if as-
signed to the drug arm (odds ratio = 0.955, 95% CI: 0.327,
2.784). In other words, persons who comply with the pill-
taking regimen are not very different in terms of HIV infec-
tion risk from those who do not comply. Together with the
plausible exclusion restriction, this explains why the naive
estimate and the causal estimate are similar.
In the CAPRISA 004 trial, our analysis shows that the pre-

vention effect on HIV infection among women with a teno-
fovir concentration of 1,000 ng/mL or more has the odds
ratio 0.104 (95% CI: 0.024, 0.447; P = 0.002), corresponding
to a risk reduction of 89.6%, whereas the analysis by Karim
et al. (5), which compares this group with placebo recipients,
yielded a 74% reduction in HIV incidence. Our results also
suggest that there is some evidence of an increased baseline
HIV risk among compliers compared with noncompliers,
consistent with findings from applicator-based adherence data
(2). The reason might be that women with fewer sex acts
may not adhere well to the coitus-related dosing strategy.
Figure 1 shows treatment effect estimates among drug

compliers for the two studies under a range of values for the
sensitivity parameter δ with a magnitude up to log(0.75), a
value representing approximately 25% efficacy in the drug
noncomplier subgroup. With an increasing amount of resi-
dual protection in noncompliers, the point estimate of the
efficacy among drug compliers decreases, though not sub-
stantially. This is understandable, since if there is residual
protection in noncompliers, fewer HIV infections in the con-
trol arm will be attributable to the nonadherer group and cor-
respondingly more HIV infections in the control arm will be
attributable to the adherer group, which leads to a decrease
in efficacy among compliers. Notably, the estimates in the
iPrEx trial suggest strong efficacy even when δ = log(0.75),

Table 1. Parameter Estimates for Regression Coefficients When δ = 0 for the iPrEx Trial and the CAPRISA 004

Triala

iPrEx Trial CAPRISA 004 Trial

OR 95% CI P Value OR 95% CI P Value

exp(β0) 0.055 0.035, 0.849 <0.001 0.115 0.081, 0.145 <0.001

exp(β1) 0.955 0.327, 2.784 0.933 2.606 0.801, 8.482 0.112

exp(β2) 0.097 0.027, 0.352 0.0004 0.104 0.024, 0.447 0.002

Abbreviations: AIDS, acquired immunodeficiency syndrome; CAPRISA, Centre for the AIDS Programme of

Research in South Africa; CI, confidence interval; iPrEx, Preexposure Prophylaxis Initiative; OR, odds ratio.
a Data were obtained from the iPrEx Study Team (1) and Karim et al. (2, 5) for the iPrEx Trial and the CAPRISA

004 Trial, respectively.
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while the confidence intervals in the CAPRISA 004 trial
include 1 once δ approximates log(0.75). The wider confi-
dence interval with a larger magnitude of δ, as seen in both
trials, is due to the fact that fewer HIV infections are attribut-
able to adherent placebo recipients, which leads to less
stable treatment effect estimates among adherers.

DISCUSSION

We have defined and estimated PrEP efficacy among
drug compliers using drug concentrations as a marker of
adherence. Our estimation method applies regardless of
whether compliance is equal across trial arms, since we

Figure 1. Sensitivity analysis for assessing the impact of deviating from the exclusion restriction on an estimate of efficacy among drug
compliers, exp(β2). Delta (δ) is the sensitivity parameter that indexes the degree of the deviation, with δ = 0 indicating the exclusion restriction.
The upper panel shows the estimated treatment odds ratio among participants who have a detectable level of drug concentration in the
Preexposure Prophylaxis Initiative (iPrEx) trial (1), and the lower panel shows the estimated treatment odds ratio among women who have a
high drug concentration in the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 trial (2, 5). Bars, 95% confidence
interval. AIDS, acquired immunodeficiency syndrome.
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merely assume that drug noncompliers receive no protec-
tion from the treatment. Our analyses estimated a preven-
tion efficacy of approximately 90% among drug compliers
in the iPrEx trial and the CAPRISA 004 trial. These esti-
mates are much greater than the primary ITT estimates for
both trials; and the estimate for the iPrEx trial is fairly
robust to deviation from the exclusion restriction in our sen-
sitivity analysis, while the estimate in the CAPRISA 004
trial is less so. These results shed light on the importance
of improving adherence in PrEP trials and in real-world ap-
plications once these products are licensed.
Our estimand was based on a binary classification of par-

ticipants as drug compliers and drug noncompliers, which
is probably an overly simplistic summary of a longitudinal
and continuous spectrum of adherence. The estimand is es-
sentially a subgroup effect, which limits its generalizability.
With further strong and nonidentifiable assumptions, the
population average treatment effect could be pursued to
address the question, What is the average treatment effect if
all participants are compliant? Examples of such assump-
tions include the average treatment effect among the treated
being the same across the 2 trial arms and, within each
arm, the average treatment effect for the treated being the
same as that for the untreated, assuming hypothetically that
all participants can be persuaded to adhere (28, 29).
Our analyses ignored the time-to-infection endpoint in

both trials, merely modeling HIV infection as a binary indi-
cator through logistic regression. The HIV hazard ratio in a
proportional hazards model, rather than the odds ratio or risk
ratio, is perhaps more appropriate for the risk-set sampling
that actually took place in the iPrEx trial. For a rare event
such as HIV infection, however, assuming that the baseline
hazard of HIV infection is constant may be reasonable, so
the regression estimates from a logistic model approximate
the log hazard ratios in a proportional hazards model (30).
Further work is under way to extend the estimation to failure-
time outcomes in a nested case-control sampling scheme.
Other than invoking a sensitivity model, an alternative

method of identifying the causal estimand is to build a model
of D(1) and some baseline characteristics in drug recipients
and then predict D(1) in the placebo recipients, similar to the
methods of Follmann (11, 19). If blinding is truly well pre-
served, we can also use pill counts or gel applicator counts
taken in the placebo recipients to predict their potential drug
level if they were assigned to receive the active drug. A finer
grid of compliance than simple dichotomization can be
studied using this approach. These methods can provide esti-
mates of the causal biological effects of PrEP drugs that will
help to advance HIV prevention research.
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