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SUMMARY

The receiver operating characteristic (ROC) curve is often used to evaluate the performance of a biomarker
measured on continuous scale to predict the disease status or a clinical condition. Motivated by the need for
novel study designs with better estimation efficiency and reduced study cost, we consider a biased sampling
scheme that consists of a SRC and a supplemental TDC. Using this approach, investigators can oversample
or undersample subjects falling into certain regions of the biomarker measure, yielding improved precision
for the estimation of the ROC curve with a fixed sample size. Test-result-dependent sampling will introduce
bias in estimating the predictive accuracy of the biomarker if standard ROC estimation methods are used.
In this article, we discuss three approaches for analyzing data of a test-result-dependent structure with
a special focus on the empirical likelihood method. We establish asymptotic properties of the empirical
likelihood estimators for covariate-specific ROC curves and covariate-independent ROC curves and give
their corresponding variance estimators. Simulation studies show that the empirical likelihood method
yields good properties and is more efficient than alternative methods. Recommendations on number of
regions, cutoff points, and subject allocation is made based on the simulation results. The proposed methods
are illustrated with a data example based on an ongoing lung cancer clinical trial.

Keywords: Binormal model; Covariate-independent ROC curve; Covariate-specific ROC curve; Empirical likelihood
method; Test-result-dependent sampling.

1. INTRODUCTION

Biomarkers have an important role in distinguishing diseased versus non-diseased subjects and in pre-
dicting patients with worse versus better prognosis or patients who are resistent versus sensitive to a
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treatment. Before a biomarker is able to be adopted for clinical use, validation studies are needed to assess
how well it distinguishes disease conditions in a target population. The receiver operating characteristic
(ROC) curve is an important tool for characterizing the performance of a diagnostic test or a biomarker in
predicting disease conditions (Zhou, McClish, and others, 2002; Pepe, 2003). Let Y denote the test result
of the biomarker measured on continuous scale. Let D denote the true disease condition with D = 1 for an
unfavorable condition (e.g. diseased, short survival, resistent to treatment) and D = 0 for a favorable con-
dition (e.g. non-diseased, long survival, sensitive to treatment). The true positive rate, TPR(c), and false
positive rate, FPR(c), at threshold c are defined as Pr(Y � c|D = 1)≡ S1(c) and Pr(Y � c|D = 0)≡ S0(c),
respectively. The ROC curve is a plot of the entire set of {(FPR(c),TPR(c)), c ∈ (−∞,∞)}, and it can
be written as ROC(t)= S1(S

−1
0 (t)), a function of t = S0(c) where t ∈ (0, 1). In this article, we focus on

the ROC curve for continuous biomarkers, though the proposed methods are applicable to test results or
biomarkers measured on ordinal scale.

Rigorous evaluation of the accuracy of a biomarker predicting clinical conditions commonly requires a
prospective study with enrollment of hundreds or thousands of subjects. With limited resources, there is a
need for novel designs and statistical methods that allow investigators to conduct studies that require fewer
patients, cost less and require less time to complete. Since the total study cost is often dominated by the cost
spent on identifying the true disease conditions, an appealing idea is to limit the number of subjects whose
true disease conditions will be identified. To achieve better efficiency, methods for sampling a cohort of
subjects of a fixed number becomes crucial. Rather than selecting a simple random sample (SRS) from
the target population, one can improve the efficiency of ROC estimation by oversampling patients from
subpopulations that contain more information while undersampling patients with less information about
the biomarker performance. When the prevalence rate of disease positivity in the target population is low,
we may oversample those patients with high test results and undersample those with low or moderate
test results. When we are particularly interested in the biomarker performance in certain regions of the
test result, subjects with test results in the region of interest may be oversampled. When the biomarker
performance in the entire range of the test result is of interest, subjects in low, middle, and high range of
test results may be sampled with balanced allocation to maximize the estimation efficiency of the entire
ROC curve. In this article, we consider a test-result-dependent sampling (TDS) design, which consists
of two sampling components: a simple random component (SRC) and a test-result-dependent component
(TDC). The SRC is a sample of subjects randomly selected from the target population while the TDC
consists of multiple samples of subjects selected from strata defined by the ranges of the test result or the
biomarker measure.

We use an ongoing phase III cancer clinical trial to illustrate the idea. COX2 expression is measured
from lung cancer specimens with a range from 0 to 10 and higher COX2 score indicative of worse survival
(Edelman and others, 2007). CALGB 30801 is a randomized clinical trial in COX2 positive non-small
cell lung cancer patients. The study was designed to evaluate the survival benefit of celecoxib (a COX2
inhibitor) combined with standard chemotherapy over standard chemotherapy alone. A total of 216 COX2
positive patients will be randomized in a balanced 1:1 allocation to the two treatments. Patients with
negative (COX2< 2) and moderate (2 � COX2< 4) expression will not receive celecoxib + standard
chemotherapy since the agent is believed to have a detrimental effect on these patients. The prevalence
rates of COX2 negatives, moderates and positives are expected to be approximately 60%, 13%, and 27%,
respectively, in the target population. Therefore, approximately 800 patients are to be screened to accrue the
216 COX2 positives. As a secondary objective, the investigators are interested in validating the prognos-
tic value of COX2 for survival among those patients who receive standard chemotherapy alone. Because
the predictive performance of COX2 in the region from moderate to high scores is of primary interest, to
avoid the costly option of treating the large number of COX2 negatives with standard chemotherapy and
following them for long term survival, the investigators decided to select the first 200 patients treated on
standard chemotherapy alone into the COX2 validation cohort. Based on the anticipated prevalence rates,
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we expect 120 COX2 negatives, 26 COX2 moderates, and 54 COX2 positives from the 200 patients and
these patients constitute the SRC of the TDS design. To further improve the efficiency of estimating the
part of ROC curve in the range from moderate to high COX2 scores, the rest of 78 COX2 moderates and
54 COX2 positives treated by standard chemotherapy alone at the study closure forms the TDC.

Whenever the ascertained data consist of a sampling component other than an SRS, standard ROC
methods assuming an SRS will yield biased estimates. Our goal is to investigate the utility of a TDS
design in biomarker validation and develop appropriate ROC estimation methods for the data arising from
such a design. For data arising from an SRS design, non-parametric and parametric procedures have been
proposed for ROC curve estimation (Dorfman and Alf, 1969; Metz, 1978). To understand the influence of
covariates on the accuracy of a diagnostic test, investigators are increasingly interested in the covariate-
specific ROC curve, such as the ROC curve for patient subgroups with specified covariate profiles (e.g.
female and age >65 ). Two regression approaches for covariate-specific ROC curve have been proposed
in the literature. The first approach specifies a model for the test result as a function of disease condi-
tions and covariates. Covariate effects on the ROC curve can then be calculated by deriving the induced
form of ROC curve (Tosteson and Begg, 1988; Toledano and Gatsonis, 1995). A second approach, pro-
posed by Pepe (1997), directly models the ROC curve itself using the model φ(ROCX (t))=ψ(t)+ βX ,
where φ(·) and ψ(·) denote monotonic increasing functions on (0, 1). For data arising from a TDS design,
we propose a modified inverse probability weighting (IPW) method, a non-parametric method and an
empirical likelihood method. The empirical likelihood method will be emphasized because of its potential
for increased efficiency. We adopt the binormal model formulated by Pepe (2003), which works nicely
with the empirical likelihood method. The binormal model characterizes the relationship between the test
result Y and the disease status D as well as the effects of covariates X and their interactions with D.
The covariate-specific ROC curve is induced by evaluating at the estimates of model parameters. By use
of empirical probability estimates for covariates, we can average over the effects of covariates to obtain
covariate-independent ROC curve. In the context of biased sampling, similar approaches were studied
by Zhou, Weaver, and others (2002) and Wang and Zhou (2006). Qin and others (2009) studied a unified
empirical likelihood approach to the problem of missing data and their method achieves semiparametric
efficiency if missingness mechanism is correctly specified. Their method can be extended to analyze data
arising from the TDS design if the sampling probability of subjects is identifiable.

Verification bias is a well-known research area in the literature of diagnostic medicine (see
Zhou, Weaver, and others, 2002; Pepe, 2003). The TDS design is related to the verification bias sampling
in that both sampling schemes introduce bias when standard ROC methods are used in the analysis. How-
ever, there are important differences between them, which make the existing ROC methods for verification
bias not directly applicable to TDS data. Verification bias occurs primarily in population-based screening
studies, in which a screening test is applied to all N subjects in the cohort, yielding a test result Y for
all study units. As only a subset of patients is selected to observe (verify) true disease status D, unse-
lected patients in the cohort are missing D. When D is missing at random (Little and Rubin, 1987), the
selection probability of observing D is estimable. Statistical methods were proposed by weighing each
verified subject inversely with the selection probability to correct the bias (e.g. Begg and Greenes, 1983;
Gray and others, 1984; Alonzo and Pepe, 2005). In the TDS design, patients are selected to observe D
depending on the test result Y , but the size of the parent cohort from which the patients are accrued and
the test results of unscreened patients are unknown to the investigators. We assume that the test results
of the patients who are screened but unselected for observing true disease condition are not available to
the investigators. In many hospital-based studies and randomized clinical trials, the test results for pre-
registered but unselected patients will not be captured and stored electronically. For all the subjects in the
selected cohort, the data available for analysis are observed, both Y and D. As there are no missing vari-
ables, the IPW method is not applicable to the TDS data analysis. In some cases such as the COX2 study,
however, the investigators may know the test results of all patients screened for the trial. Using the screened
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patients as the parent cohort, we are able to apply the existing methods for verification bias to such TDS
data. Since the size of unselected patients is often small compared with the size of the target population,
the extent of efficiency gain by utilizing the extra information on test results with the verification bias
methods remains unknown. We will investigate this issue via simulation. Nevertheless, the estimation of
a covariate-specific ROC curve has not been a focus of existing methods for verification bias, and our
proposed TDS methods are useful since it requires no information on unselected patients and estimates
both covariate-specific and covariate-independent ROC curves.

The rest of the paper is organized as follows. Section 2 reviews the covariate-specific ROC curve and the
covariate-independent ROC curve under a binormal model. In Section 3, we specify the data structure and
the likelihood function for the TDS design. In Section 4, we propose an empirical likelihood-based method
for the covariate-specific ROC curve and the covariate-independent ROC curve, and establish the asymp-
totic properties of the proposed estimators. Section 5 presents two alternative methods for data arising from
the TDS design: the weighted likelihood method and a non-parametric method. Section 6 evaluates finite
sample properties of the proposed methods for ROC curves, compares the relative efficiency of these meth-
ods under the TDS design, and compares the efficiency of the TDS design relative to the SRS design. We
illustrate in Section 7 the proposed TDS methods using data from the COX2 study described above. Dis-
cussion is given in Section 8. Proofs of the asymptotic results in Section 4 are given in the supplementary
material (available at Biostatistics online). Additional simulation results on the comparison of three TDS
methods, the impact of choices of number of regions, cutoff points and subject allocation as well as the
robustness of binormal model are also left to the supplementary material (available at Biostatistics online).

2. INDUCED COVARIATE-SPECIFIC AND COVARIATE-INDEPENDENT ROC CURVES

To evaluate covariate-specific ROC curve, we adopt the approach of Tosteson and Begg (1988) and
Toledano and Gatsonis (1995) to induce the ROC curve from the estimates of an underlying paramet-
ric regression model. Recall that Y is the continuous test result, D is the true disease condition, and X is
the vector of covariates that affects the test accuracy. We adopt a binormal ROC model (see Pepe, 2003)
to characterize the relationship between Y and (D, X):

Y = β0 + βD D + βX
T X + βDX

T DX D + σ(D)ε, (2.1)

where ε ∼ N (0, 1) and σ(D)= σ1 I [D = 1] + σ0 I [D = 0]. DX D is the interaction term between D and
X , where X D could be X or a subset of X . This formulation allows the effects of X on Y and the variance
of Y to differ for diseased and non-diseased subjects. The binormal ROC model is invariant to monotonic
increasing transformation on test result Y .

Let S1X (c)= Pr(Y � c|X, D = 1) and S0X (c)= Pr(Y � c|X, D = 0). For any given vector of covariates
X , we can write the covariate-specific ROC curve as ROCX (t)= S1X (S

−1
0X (t)). Under model (2.1), we have

S1X (c)=�(σ−1
1 (β0 + βD + βT

X X + βT
DX X D − c)) and S0X (c)=�(σ−1

0 (β0 + βT
X X)− c). The induced

covariate-specific ROC curve is given by

ROCX (t)= S1X (S
−1
0X (t))=�

(
βD + βT

DX X D + σ0�
−1(t)

σ1

)
(2.2)

corresponding to a binormal ROC curve with an intercept a = (βD + βT
DX X D)/σ1 and a slope b = σ0/σ1.

Only those covariates included in X D have effect on the shape of the ROC curve. Furthermore, we
can obtain a covariate-independent ROC curve by averaging S1X (c) and S0X (c) over the distribution
of X . For any c = S−1

0 (t), the covariate-independent ROC curve ROC(t)= S1(S
−1
0 (t)) where S1(c)=∫

S1X (c) dG(X |D = 1), S0(c)=
∫

S0X (c) dG(X |D = 0) and G(X |D) is the conditional cumulative dis-
tribution of X on D.
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3. DATA STRUCTURE AND LIKELIHOOD

Suppose the test result Y falls into one of K mutually exclusive regions, denoted by Ck = (ak−1, ak),
k = 1, 2, . . . , K with ak−1 < ak , a0 = −∞ and aK = ∞. Under the TDS design, there are two sampling
components: an SRC and a TDC. In the SRC, the observed data are denoted by {Y0i , D0i , X0i } with i =
1, 2, . . . , n0. In the TDC, one observes X and D conditional on the stratum Ck that Y falls into so that
the data can be denoted by {Yki , Dki , Xki |Y ∈ Ck} for i = 1, 2, . . . , nk . The total sample size with the two
sampling components combined is n =∑K

s=0 ns .
Denote by f (Y, D, X) the joint density function of (Y, D, X) and by fk(Y, D, X |Y ∈ Ck) the joint

density function of (Y, D, X) given {Y ∈ Ck}. The likelihood function of the observed data is L =
[
∏n0

i=1 f (Y0i , D0i , X0i )][
∏K

k=1

∏nk
i=1 fk(Yki , Dki , Xki |Yki ∈ Ck)]. The part in the first bracket is the data

contributed by the SRC and the second bracket is that of the TDC. The observed likelihood is rewritten as

L(β)=
[

n0∏
i=1

hβ(Y0i |D0i , X0i )g(D0i , X0i )

][
K∏

k=1

nk∏
i=1

fk(Yki , Dki , Xki |Yki ∈ Ck)

]
, (3.1)

where g(D, X) is the joint density function of (D, X), hβ(Y |D, X) is the conditional density function
of Y on {D, X}, and β = (β0, βD, β

T
X , β

T
DX , σ0, σ1)

T is the vector of regression coefficients and
scale parameters in model (2.1). By Bayes theorem, we have fk(Yki , Dki , Xki |Yki ∈ Ck)= I [Yki ∈
Ck]hβ(Yki |Dki , Xki )g(Dki , Xki )Pr−1(Yki ∈ Ck), where Pr(Yki ∈ Ck)=

∫
[
∫

Ck
hβ(y|d, x)dy]dG(d, x), and

G(D, X) is the joint distribution function of (D, X). Let θk = Pr(Y ∈ Ck) and η= (βT, θ1, . . . , θK−1)
T.

Writing (3.1) as a function of η and G(D, X), we have

L(η,G)=
[

K∏
s=0

ns∏
i=1

hβ(Ysi |Dsi , Xsi )

][
K∏

s=0

ns∏
i=1

g(Dsi , Xsi )

]
K∏

k=1

θ
−nk
k , (3.2)

where θK = 1 −∑K−1
k=1 θk . In practice, G(D, X) is difficult to be estimated using parametric modeling due

to the potential high-dimensional nature of (D, X) and mis-specification of the distribution could lead to
biased estimation on η. Statistical approach that does not rely on a parametric modeling on G is preferred.

4. ROC CURVE ESTIMATION UNDER TDS DESIGN

4.1 Estimation of ROC model parameters

In the context of biased sampling, Zhou, Weaver, and others (2002) and Wang and Zhou (2006) developed
a profiled empirical likelihood approach that estimates model parameters by maximizing L(η,G(·))with-
out parametric modeling on G(·). We adopt this approach to estimate parameters in model (2.1) under
the TDS design. The idea is that for fixed β we can estimate G(·) non-parametrically by solving a set of
estimation equations with constraints. By plugging in the estimate of G(·), we can rewrite L(η,G(·)) as a
form of profile likelihood on which the maximization with respect to the model parameters can be carried
out. Let psi = g(dsi , xsi ) and rewrite the log of (3.2) as

l(η, {psi })=
K∑

s=0

ns∑
i=1

log psi −
K∑

k=1

(nk log θk)+
K∑

s=0

ns∑
i=1

log hβ(ysi |dsi , xsi ), (4.1)

where hβ(ysi |dsi , xsi ) is a normal density function under the binormal assumption. Based on the empirical
likelihood theory (e.g., Qin and Lawless, 1994; Owen, 2001), to estimate psi , it is sufficient to search the
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discrete probability space defined by the observed values of {D, X} under the following constraints

{
K∑

s=0

ns∑
i=1

psi = 1,
K∑

s=0

ns∑
i=1

psi (θk − Pr(ysi ∈ Ck |dsi , xsi ))= 0, k = 1, . . . , K − 1

}
,

where Pr(ysi ∈ Ck |dsi , xsi )=
∫

Ck
hβ(y|dsi , xsi ) dy. Using a Lagrange multiplier argument, we can derive

the p̃si over which l(η, {psi }) attains the maximum:

p̃si = 1

n0 +∑K
k=1(nk/θk)Pr(ysi ∈ Ck |dsi , xsi )

. (4.2)

Now we plug p̃si into (4.1) and obtain a profile likelihood function

l p(η)= −
K∑

s=0

ns∑
i=1

log

(
n0 +

K∑
k=1

nk

θk
Pr(ysi ∈ Ck |dsi , xsi )

)

−
K∑

k=1

(nk log θk)+
K∑

s=0

ns∑
i=1

log hβ(ysi |dsi , xsi ). (4.3)

The estimate η̂= (β̂T, θ̂T)T is obtained by solving the score equation ∂l p(η)/∂η= 0 using an iterative
algorithm. Using the general theory of empirical likelihood, we can show under regularity conditions
n1/2(η̂ − η) converges to a mean zero normal distribution in a neighborhood of η, and n1/2(Ĝ(D, X)−
G(D, X)) converges to a mean zero Gaussian process on D × X .

4.2 Estimation of covariate-specific ROC curve

We can induce the covariate-specific ROCX (t) curve using the empirical likelihood estimate β̂. For any
given threshold c and any given vector of covariates X , we estimate S1X (c) and S0X (c) by Ŝ1X (c)=
�((μ̂1X − c)/σ̂1) and Ŝ0X (c)=�((μ̂0X − c)/σ̂0), where μ̂1X = β̂0 + β̂D + β̂T

X X + β̂T
DX X D and μ̂0X =

β̂0 + β̂T
X X . The ROCX (t) is estimated by ˆROCX (t)= Ŝ1X (Ŝ

−1
0X (t)) and the curve itself is generated by

plotting Ŝ1X (c) against Ŝ0X (c) for all c at the given values of X .
Let nD

0 be the number of diseased subjects of the SRC and nD
k the number of diseased subjects

in the kth stratum of Y , k = 1, . . . , K of the TDC. The first derivative of the profile likelihood func-
tion l p(η) with respect to β has a form of summation, denoted as ∂l p(η)/∂β =∑K

s=0

∑ns
i=1 grad′

si . Let
�
(k)
si = grad′

si I (dsi = k), k = 0, 1, and Hβ = limn→∞(1/n)(∂2l p(η)/∂β∂β
T). Denote by (∂Sk X (c)/∂β) and

∂Sk X (vt )/∂vt , k = 0, 1 the derivatives of Sk X (vt ) with respect to β and vt , respectively. We have the fol-
lowing asymptotic property for the estimator ˆROCX (t).

THEOREM 1 Assume nD
s /ns → ρD

s , s = 0, 1, . . . , K with 0<ρD
0 < 1 and 0 � ρD

1 , . . . , ρ
D
K < 1 as n →

∞. Under the conditions specified in Lemma 1, we have n1/2( ˆROCX (t)− ROCX (t)) converges
to a mean zero Gaussian process on (0, 1) with variance 
1 +
0 for any given t , where 
1 =
[∂S1X (c)/∂βT]H−1

β

∑K
s=0 ρsρ

D
s var(� (1)

si )H
−1
β [∂S1X (c)/∂β], and


0 =
[(

∂S0X (vt )

∂vt

)−1
∂S1X (vt )

∂vt

]2 [
∂S0X (c)

∂βT

]
H−1
β

K∑
s=0

ρs(1 − ρD
s )var(� (0)

si )H
−1
β

[
∂S0X (c)

∂β

]
.
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4.3 Estimation of covariate-independent ROC curve

Notice that Ĝ(d, x)= 1/n
∑K

s=0

∑ns
i=1 p̂si I (xsi � x, dsi = d), d = {0, 1}, where p̂si is the estimate of p̃si

by substituting η̂ for η. We are able to estimate the covariate-independent ROC curve by averaging Ŝ1X (c)
and Ŝ0X (c) over the empirical distribution Ĝ(d, x). The estimators Ŝ1(c) and Ŝ0(c) are given by

Ŝ1(c)=
∫

Ŝ1X (c) dĜ(D = 1, x)∫
dĜ(D = 1, x)

=
∑K

s=0

∑ns
i=1 p̂si I (dsi = 1)Ŝ1Xsi (c)∑K

s=0

∑ns
i=1 p̂si I (dsi = 1)

, (4.4)

Ŝ0(c)=
∫

Ŝ0X (c) dĜ(D = 0, x)∫
dĜ(D = 0, x)

=
∑K

s=0

∑ns
i=1 p̂si I (dsi = 0)Ŝ0Xsi (c)∑K

s=0

∑ns
i=1 p̂si I (dsi = 0)

. (4.5)

The estimator of the covariate-independent ROC is given by ˆROC(t)= Ŝ1(Ŝ
−1
0 (t)).

For convenience, let G1 = G(D = 1, X), g̃1 = (1/(ρ0 +∑K
k=1(ρk/θk)Pr(Y ∈ Ck |d, x)))I (d = 1),

Psi = (Pr(ysi ∈ C1|dsi , xsi )− θ1, . . . ,Pr(ysi ∈ CK−1|dsi , xsi )− θK−1)
T, S = limn→∞ 1/n

∑K
s=0

∑ns
i=1 Psi

PT
si , B = limn→∞ 1/n

∑K
s=0

∑ns
i=1 Psi , ∂l p(η)/∂η=∑K

s=0

∑ns
i=1 gradsi , Hη = limn→∞(1/n)(∂2l p(η)/

∂η∂ηT), and ζsi = 1 − G(dsi , xsi )− (S−1 B)T Psi . Define

ω
(1)
si =

(∫
dG1

)−1 [∫
∂S1X (c)

∂η
dG1 +

∫
S1X (c)(∂ g̃1/∂η) dx

]
(−γ−1 Hη)

−1 gradsi I (dsi = 1)

+
(∫

dG1

)−1

[S1Xsi (c)− S1(c)]ζsi I (dsi = 1), (4.6)

where γ =∑K
s=0 ρsρ

D
s , ω

(0)
si is defined similar to ω(1)si for D = 0. Asymptotic property for ˆROC(t) is sum-

marized in Theorem 2.

THEOREM 2 Under the condition of Theorem 1, we have n1/2( ˆROC(t)− ROC(t)) converges to a mean
zero Gaussian process on (0, 1) with variance �1 + �2 for any given t, where �1 =∑K

s=0 ρsρ
D
s var(ω(1)si )

and �2 = [(∂S0(vt )/∂vt )
−1(∂S1(vt )/∂vt )]2

∑K
s=0 ρs(1 − ρD

s ) var(ω(0)si ).

5. ALTERNATIVE METHODS FOR ROC CURVE ESTIMATION UNDER TDS

Two alternative methods, a weighted likelihood method and a non-parametric method, for the TDS design
are also investigated. The weighted likelihood method can be considered as a modified IPW method.
Under the TDS design, we partition the SRC into K strata using the same cutoff points (a0, . . . , aK )

for the TDC. We can write the pooled data as {Yki , Dki , Xki , k = 1, . . . , K , i = 1, . . . , n0,k + nk}, where
n0,k is the size of the kth stratum in the SRC with

∑K
k=1 n0,k = n0. We estimate the weight for the

i th subject in the kth stratum as π̃ki = (n0,k/n0(n0,k + nk))I (Yki ∈ Ck). This is indeed the same esti-
mator proposed by Morgenthaler and Vardi (1986) for general biased sampling problem. The condi-
tional likelihood function with weights π̃ki under model (2.1) for the TDS data has the form LW L(β)=∑K

k=1

∑n0,k+nk

i=1 {π̃ki log f (Yki |Dki , Xki )}. The estimate β̂W L is obtained by maximizing LW L(β). Follow-
ing the same approach for the empirical likelihood method and replacing p̂si with π̃ki , we can obtain the
estimates for ROCX (t) and ROC(t). Since the weight π̃ki is estimated by proportions of patients in each
stratum and does not depend on the ROC model, the weighted likelihood method is not a fully likelihood-
based method and we expect that it is less efficient than the empirical likelihood method discussed in
Section 4.
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The non-parametric method makes no parametric assumption on the relationship between test result
and disease status. Denote by f (Y, D) the joint density of (Y, D), and fk(Y, D|Y ∈ Ck) is the joint den-
sity given {Y ∈ Ck}. We have the following likelihood function L N P(·)∝ [

∏n0
i=1 f (Y0i , D0i )][

∏K
k=1

∏nk
i=1

fk(Yki , Dki | Yki ∈ Ck)]. By maximizing L N P(·) under similar constraints to those for (4.1), we can estimate
f (Ysi , Dsi ). The covariate-independent ROC curve is obtained empirically by averaging the corresponding
observations with the estimates of f (Ysi , Dsi ). Wang and others (2012) studied a similar non-parametric
estimation method for the area under ROC curve (AUC) and partial AUC. However, this approach is not
applicable to estimate the covariate-specific ROC curve. Because no information from covariates X is
utilized, we expect the non-parametric method will be less efficient than the other two TDS methods.

6. SIMULATION

We investigated the finite sample properties of the proposed methods for ROC curve estimation under the
TDS design and their relative efficiencies via a series of simulation studies. We also studied the possible
efficiency gain of the TDS design over the SRS design. The findings are summarized in this section. Other
issues, such as the comparison of three TDS methods, the impact of choice of number of regions, cutoff
points and subject allocation on the precision of ROC estimation, and the robustness of the binormal ROC
model, were also investigated. The details of these simulation results can be found in the supplementary
material (available at Biostatistics online).

In all simulation studies, we generated data according to the model Y = β0 + βD D + βX X +
βDX DX + σ(D)ε, where ε ∼ N (0, σ 2

D), and σ 2
D = I (D = 1)σ 2

1 + I (D = 0)σ 2
0 , D ∼ Bernoulli(0.3),

X ∼ N (0, 1.22). We fixed β0 = 0.5, βD = 1.0, βX = 0.5, βDX = 0.5, σ1 = 1.2, and σ0 = 1.0 unless speci-
fied otherwise. In each independent run, we first generated a random sample of size n0 and then generated
the TDC of size nTDC. Unless stated otherwise, the TDC subjects are from three regions—the lower region,
the middle and the upper region of Y —with sizes of n1, n2, n3, respectively. The following specification
on subject allocation (n0, n1, n2, n3)= (150, 50, 50, 50) and cutoff points (a1, a2)= (μY − σY , μY + σY )

were used. All simulation studies were based on 5000 independent runs.

6.1 Performance of empirical likelihood method SLTDS

As noted in the Section 1, using the standard methods developed for SRS to estimate ROC curve on data
arising from the TDS design will lead to biased results. To illustrate this, we applied the standard likelihood-
based ROC estimation method P ESRS to the TDS data. Figure S1 in the supplementary material (available
at Biostatistics online) demonstrates the bias in ROC curve estimates from P ESRS on a single simulated
TDS dataset. In this specific case, P ESRS underestimates the covariate-specific ROC curve ROCX (t) but
overestimates the covariate-independent ROC curve ROC(t). We further investigated the finite sample
performance of the SLTDS under the TDS design. At false positive rates t = (0.1, 0.3, 0.5, 0.7, 0.9), Table 1
lists the mean of ROCX (t) and ROC(t) (Estimate), the percent bias relative to true values (Bias%), the
simulated standard error (SE) and the estimated standard error (ŜE), and the coverage probability of 95%
confidence interval (95% CP). We used the variance estimators given in Section 4 to compute the ŜE
and the 95% CP. The relative biases associated with the proposed estimators are small for both covariate-
specific ROCX (t) and covariate-independent ROC(t); the estimated standard error at each t is close to
its simulated standard error; and the coverage probability of the 95% confidence interval is close to its
nominal level except for ˆROCX (t) as t is close to 1.

6.2 Efficiency comparison of TDS and SRS designs

The TDS design is expected to gain efficiency over the SRS design by oversampling subjects in “tailed”
regions of the test result. We would like to confirm this via simulation. In each run of simulation, a TDS



168 X. WANG AND OTHERS

Table 1. ROC curve estimated by SLTDS under TDS

True Estimate Bias% SE ŜE 95% CP

ˆROCX (t)
X = 0 t = 0.1 0.407 0.412 1.23 0.0468 0.0479 0.954

t = 0.3 0.654 0.658 0.61 0.0425 0.0465 0.967
t = 0.5 0.798 0.800 0.25 0.0347 0.0378 0.957
t = 0.7 0.898 0.899 0.11 0.0248 0.0261 0.946
t = 0.9 0.971 0.971 0.00 0.0114 0.0113 0.918

X = 1.2 t = 0.1 0.605 0.607 0.33 0.0620 0.0666 0.961
t = 0.3 0.815 0.815 0.00 0.0443 0.0502 0.966
t = 0.5 0.909 0.907 −0.22 0.0293 0.0333 0.957
t = 0.7 0.962 0.960 −0.21 0.0166 0.0186 0.945
t = 0.9 0.992 0.991 −0.10 0.0055 0.0059 0.916

ˆROC(t)
t = 0.1 0.385 0.388 1.04 0.0429 0.0436 0.938
t = 0.3 0.588 0.593 0.85 0.0416 0.0420 0.930
t = 0.5 0.724 0.724 0.00 0.0373 0.0381 0.940
t = 0.7 0.829 0.830 0.12 0.0309 0.0327 0.941
t = 0.9 0.930 0.929 −0.11 0.0198 0.0228 0.949

dataset with total size of n = n0 + n1 + n2 + n3 = 300 was generated and an SRS dataset of the same size
300 was independently drawn. The empirical likelihood method SLTDS was applied to the TDS dataset,
while the standard method P E∗

SRS was applied to the SRS dataset. These two methods are chosen because
they are both likelihood-based method and are the most efficient for the corresponding design. Here we
use P E∗

SRS to denote the case that the standard ROC method is applied to an independently generated SRS
sample, different from P ESRS in Figure S1, where the standard ROC method was applied to the same TDS
dataset that SLTDS was applied to. Table 2 lists the ratio of MSE(SLTDS) under the TDS design to that
of MSE(P E∗

SRS) under the SRS design, where the sizes of the two designs are both n = 300. It can be
seen that SLTDS yields smaller MSEs than P E∗

SRS under different specifications of subject allocations and
cutoff points. We conclude that the TDS design is more efficient than the SRS design of the same size.

6.3 Comparison with verification bias design and method

In some TDS studies, the test results of screened but unselected patients are also known to investigators.
The methods for verification bias are applicable when the screened patients are considered as the parent
cohort. We conducted simulation to compare the empirical likelihood method SLTDS and the weighted
likelihood method W LTDS with verification bias methods. Since none of the existing methods of verifica-
tion bias is focused on covariate-specific ROC curve estimation, we propose an IPW method IPWV B with
the selection probability πk = (n0k + nk)/Nk , where n0k , nk , and Nk are the sizes of the kth stratum for
the SRC, the TDC, and the entire cohort, respectively. We started to generate a parent cohort of N = 1000
subjects with test result Y from model (2.1), then drew a TDS dataset of size n = 300 with an SRC compo-
nent (n0 = 150) and a TDC component (n1 = n2 = n3 = 50) without replacement from the parent cohort.
For IPWV B , all variables (Y, X, D) of the patients in the TDS sample as well as Y of all N patients in the
parent cohort are used for analysis. For SLTDS and W LTDS, only the variables (Y, X, D) of these patients
in the TDS sample (n = 300) of the same dataset are used for analysis. The results can be found in Table S1
of the supplementary material available at Biostatistics online. The IPWV B does not gain much efficiency
relative to either SLTDS or W LTDS. In the case of covariate-specific ROCX (t), SLTDS is slightly more
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Table 2. Ratio of MSE(SLTDS) under TDS to MSE(P E∗
SRS) under SRS

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

(a1, a2)= (μY − σY , μY + σY ), (n0, n1, n2, n3)= (150, 50, 50, 50)
ˆROCX=0(t) 0.65 0.72 0.35 0.18 0.06
ˆROCX=1.2(t) 0.78 0.43 0.24 0.13 0.04
ˆROC(t) 0.79 0.82 0.78 0.83 0.80

(a1, a2)= (μY − σY , μY + σY ), (n0, n1, n2, n3)= (150, 75, 0, 75)

ˆROCX=0(t) 0.59 0.64 0.32 0.15 0.06
ˆROCX=1.2(t) 0.69 0.39 0.21 0.13 0.04
ˆROC(t) 0.63 0.64 0.65 0.67 0.60

(a1, a2)= (μY − 1.5σY , μY + 1.5σY ), (n0, n1, n2, n3)= (150, 75, 0, 75)
ˆROCX=0(t) 0.56 0.60 0.29 0.15 0.06
ˆROCX=1.2(t) 0.67 0.37 0.21 0.09 0.04
ˆROC(t) 0.67 0.68 0.60 0.54 0.46

efficient than IPWV B , likely because SLTDS makes more efficient use of available information. The same
conclusion is true when the size of the parent cohort is increased from N = 1000 to 5000.

7. EXAMPLE

As described in Section 1, the investigators of CALGB 30801 are interested in validating the prognostic
value of COX2 using data from the patients treated by standard chemotherapy alone. Because the perfor-
mance of COX2 in the range of moderate and high scores is of primary interest, in order to reduce the
number of COX2 negatives and the cost of following them for long-term survival in the validation cohort,
the investigators decided to assign standard chemotherapy alone to about one-fourth of all screened COX2
negatives. This design feature makes the percentages of the COX2 negatives, moderates, and positives in
the validation cohort disproportional to those of these subgroups in the target population. The investiga-
tors plan to continuously enroll negatives to standard chemotherapy until 54 positives (1/4) of the total
216 positives have been randomized. The number of negatives receiving standard chemotherapy alone is
estimated approximately 120 and these patients will be followed for long-term survival while the rest of
360 negatives will be off study. The following three types of patients form the SRC: all negatives when
one-fourth of the positives are enrolled, all moderates when the one-fourth of the positives are enrolled, and
the first 54 positives treated by standard chemotherapy alone. The expected sizes of the three SRC strata
are n0,1 = 120, n0,2 = 26, and n0,3 = 54, respectively. The rest of patients receiving standard chemother-
apy alone, including n1 = 0 negatives, n2 = 78 moderates, and n3 = 54 positives patients, forms the TDC
of the TDS design. It should to be noted that the sizes {n0,1, n0,2, n0,3, n1, n2, n3} are the expected values
and the actual numbers may vary from trial to trial.

The CALGB trial is ongoing and the data are not yet available for analysis. To illustrate the proposed
TDS methods, we simulated the trial data with 800 patients pre-registered for COX2 scoring. The parame-
ters for covariates distribution and predictors associated with survival time were estimated from the data of
a preliminary COX2 study (Edelman and others, 2007). We generated COX2 from Beta distribution with
α= 2.75 and β = 1.0 and scaled its range from [0, 1] to [0, 10]. We generated Age from normal distribu-
tion N (65, 52), and Male from Bernoulli(0.65). The survival time T was generated from an exponential
survival model with regression coefficients for Age, Male, Age × COX2 and Male × COX2 of log(1.3),
log(1.5), log(1.2), and log(2), and Age and COX2 were both subtracted by their means.
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Table 3. ROC curve estimates and 95% confidence intervals

Method t = 0.1 t = 0.3 t = 0.5 t = 0.7

(Male, Age) ˆROCX (t)
(1, 70) SLTDS 0.759 [0.680, 0.824] 0.916 [0.876, 0.944] 0.968 [0.949, 0.98] 0.990 [0.983, 0.994]

W LTDS 0.773 [0.627, 0.874] 0.913 [0.802, 0.965] 0.963 [0.872, 0.990] 0.986 [0.902, 0.998]
IPWV B 0.804 [0.659, 0.897] 0.933 [0.834, 0.975] 0.974 [0.902, 0.993] 0.991 [0.935, 0.999]

(1, 65) SLTDS 0.554 [0.426, 0.676] 0.792 [0.682, 0.872] 0.900 [0.826, 0.945] 0.960 [0.922, 0.980]
W LTDS 0.566 [0.435, 0.735] 0.782 [0.674 , 0.898] 0.885 [0.799, 0.960] 0.948 [0.880, 0.988]

(0, 65) SLTDS 0.336 [0.197, 0.510] 0.600 [0.417, 0.758] 0.765 [0.596, 0.877] 0.883 [0.761, 0.947]
W LTDS 0.323 [0.190, 0.493] 0.561 [0.399, 0.711] 0.718 [0.554, 0.840] 0.842 [0.684, 0.929]

ˆROC(t)
SLTDS 0.403 [0.315, 0.498] 0.714 [0.611, 0.798] 0.872 [0.787, 0.926] 0.957 [0.904, 0.981]
W LTDS 0.426 [0.305, 0.547] 0.699 [0.590, 0.808] 0.845 [0.758, 0.932] 0.935 [0.875, 0.994]
N PTDS 0.418 [0.269, 0.567] 0.713 [0.556, 0.870] 0.877 [0.756, 0.998] 0.891 [0.774, 1.00]

In analyzing the hypothetical dataset, we formulated the binormal ROC model as in (2.1) of the main
article by letting Y = COX2, D = I (T < 6) an indicator for death within 6 years, X1 = Age and X2 = 1
for male, 0 for female. All patients will be followed for survival for more than 6 years and we expect
that few patients will be censored before 6 years. We also allowed a pairwise interaction between D and
(X1, X2). To examine the appropriateness of the ROC binormal model, we plotted the residual distribution
and found that it followed approximately a normal distribution conditional on D using Y 2/3 rather than Y .
Table 3 shows the estimates and the 95% confidence intervals of ROC curve by the empirical likelihood
method SLTDS, the weighted likelihood method W LTDS and the non-parametric method N PTDS, where
the confidence intervals for W LTDS and N PTDS were obtained by the bootstrap method. Treating the SRC
subjects and the TDC subjects of each COX2 region as separate stratum, we sampled with replacement of
sizes n0, n1, n2, n3, respectively, from these strata of the original sample. Standard errors of the sampling
distributions of the bootstrap estimates from 1000 repetitions are used to calculate confidence intervals.
Assuming that the test results for all screened patients are known, we applied the IWP method IPWV B and
its estimates and confidence intervals are similar to those from W LTDS (not shown). Figure 1 illustrates
in the left column that the SLTDS estimates of covariate-specific ROC curve at different combinations of
Male (1,0) and Age (65, 70), and in the right column shows the covariate-independent ROC curve with its
95% confidence interval. The curves indicate that the COX2 expressions from Male and Older (70 years
old) patients have higher accuracy across all thresholds in predicting whether a patient will remain alive
beyond 6 years relative to Female and Younger (65 years old) patients.

8. DISCUSSION

The intent of this article is to propose consistent and efficient estimators for covariate-specific ROC curve
and covariate-independent ROC curve when the data arise from a TDS design. The proposed empirical
likelihood method avoids a parametric formulation of the nuisance covariate distribution and allows fully
efficient inference for the parameters of a binormal ROC model. The proposed empirical likelihood esti-
mators for the covariate-specific ROC curve and the covariate-independent ROC curve have good asymp-
totic properties. Simulation studies demonstrate acceptable finite sample properties for these estimators as
well as better efficiency than the weighted likelihood method and the non-parametric method. As seen in
the supplementary material available at Biostatistics online, the proposed empirical likelihood estimators
perform reasonably well when the binormal assumption is mildly violated. If there is clear evidence of
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Fig. 1. ROC curve estimated by SLTDS for the COX2 example. Left: ˆROCX (t) with ˆAUCX = 0.916, 0.83, 0.705 for
(1, 70), (1, 65), (0, 65). Right: ˆROC(t) with ˆAUC = 0.744.

non-normal error, a monotonic increasing transformation can be used to alleviate the problem as the ROC
curve is invariant to such transformations.

The TDS design is motivated by the need for improved efficiency for biomarker validation studies with
limited resources. The simulation confirms that the TDS design provides more precise estimation of the
ROC curve. If the entire ROC curve is of interest, one can gain efficiency by oversampling subjects from
the two tails of the distribution of the test result. When the ROC curve at small t = FPR is of interest, one
may oversample subjects in the right tail of the distribution, corresponding to large values of the test result.
When the entire ROC curve is of interest, a balanced allocation of subjects to all strata of test results is
generally recommended. If the test results for all screened patients are available for analysis, statistical
methods for verification bias are applicable. Our simulation shows that the efficiency gain using the IPW
method is minimal compared with the proposed TDS methods.

9. SOFTWARE

The R software implementing the proposed methods can be downloaded at http://code.google.com/
p/odsroc.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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