
Copyedited by: TRJ MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[15:37 10/4/2012 Bioinformatics-bts124.tex] Page: 1280 1280–1281

BIOINFORMATICS APPLICATIONS NOTE Vol. 28 no. 9 2012, pages 1280–1281
doi:10.1093/bioinformatics/bts124

Genetics and population analysis Advance Access publication March 25, 2012

CpGassoc: an R function for analysis of DNA methylation
microarray data
Richard T. Barfield1,∗, Varun Kilaru2, Alicia K. Smith2 and Karen N. Conneely1,3

1Department of Bioinformatics and Biostatistics, School of Public Health, 2Department of Psychiatry & Behavioral
Sciences and 3Department of Human Genetics, School of Medicine, Emory University at Atlanta, GA, USA 30322
Associate Editor: Jeffrey Barrett

ABSTRACT

Summary: With the increasing availability of high-density
methylation microarrays, there has been growing interest in
analysis of DNA methylation data. We have developed CpGassoc,
an R package that can efficiently perform the statistical analysis
needed for increasingly large methylation datasets. CpGassoc is
a modular, expandable package with functions to perform rapid
analyses of DNA methylation data via fixed or mixed effects models,
to perform basic quality control, to carry out permutation tests, and
to display results via an array of publication-quality plots.
Availability and implementation: CpGassoc is implemented in R
and is freely available at http://genetics.emory.edu/conneely; we are
in the process of submitting it to CRAN.
Contact: rtbarfi@emory.edu
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DNA methylation, the addition of a methyl group to a cytosine
base followed by a guanine (CpG), is the most widely studied
epigenetic modification. DNA methylation has a critical role in
gene regulation, as methylation of the promoter region correlates
with lower levels of gene expression (Bell et al., 2011), and recent
studies have associated methylation patterns with complex traits
(Breitling et al., 2011; Fackler et al., 2011; Javierre et al., 2010).
The availability of high-density commercial methylation arrays has
made it possible to perform genome-wide methylation analysis
with increasingly dense coverage. For example, the Infinium
HumanMethylation450 array includes >485 000 CpG sites, and this
number can be expected to increase further over the coming years,
allowing for larger and more expansive studies (Bibikova et al.,
2011; Illumina, 2011). However, despite technological advances
in generating this data, the development of analytical software
has lagged behind, particularly with respect to association analysis
between methylation and complex traits. The popular R package
methylumi performs quality control and data normalization, but
not association analysis (Davis, 2012). Other packages such as
Illumina’s GenomeStudio, the R package minfi (Hansen and Aryee,
2011), and SignificanceAnalysis of Microarrays (Tusher et al., 2001)
can perform tests of association, but do not allow for additional
covariates.

To provide a more flexible analysis tool, we created the R package
CpGassoc to perform efficient analyses of quantitative methylation
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data. CpGassoc has two main analysis functions: cpg.assoc and
cpg.perm. cpg.assoc uses fixed or mixed effects models to examine
the relationship between a phenotype of interest and methylation of
individual CpG sites across the genome. As input, cpg.assoc accepts
a matrix or data frame of β-values (analogous to the proportion
of DNA methylated). The program models the outcome as either
β-values or the logit transformation of the β-values log(β/(1 - β)),
which can help stabilize the variance (Du et al., 2010). As predictors,
users may specify a categorical or continuous phenotype of interest,
an unspecified number of continuous or categorical covariates, and
a fixed or random effect to control for batch or chip effects.

cpg.assoc outputs an R object of class ‘cpg’ that includes all
relevant model information and association statistics for every CpG
site tested, including effect sizes and standard errors, t or F-statistics,
and both unadjusted and multiple-testing-adjusted P-values. To
account for multiple testing, cpg.assoc can assess significance using
(i) the Holm method—a step-down Bonferroni procedure (Holm,
1979), (ii) a false discovery rate (FDR) procedure or (iii) permutation
testing using cpg.perm. Users can select from several FDR methods,
including Storey’s q-value method (Dabney et al, 2012; Storey,
2002) and all FDR methods available in the R function p.adjust;
the Benjamini–Hochberg method (Benjamini, 2001) is used by
default. cpg.perm can be used to obtain empirical P-values through
permutation testing. cpg.perm performs a user-specified number of
permutations in which the phenotype of interest is randomly re-
assigned, and the data re-analyzed via cpg.assoc. cpg.perm outputs
an R object of class ‘cpg.perm’ which is similar to the class ‘cpg’ but
also includes a matrix containing information on each permutation
and a vector containing three empirical P-values based on (i) the
minimum observed P-value, (ii) the number of Holm-significant
CpG sites and (iii) the number of FDR-significant sites.

CpGassoc is a modular and expandable package that currently
includes 13 different functions with detailed help pages. The quality
control function cpg.qc returns a matrix that can be read by
cpg.assoc or cpg.perm, and R objects returned from cpg.assoc
and cpg.perm can be passed to other functions within CpGassoc
to easily generate publication-quality Q–Q plots, scatterplots or
boxplots, and Manhattan plots (Fig. 1). In addition to standard
Q–Q plots, CpGassoc can also produce a specialized Q–Q plot
(Fig. 1A) where the expected quantiles of P-values or t-statistics
are based on the number of sites for which the null hypothesis is
maintained according to the Holm procedure. This produces a plot
with confidence intervals based on the estimated null distribution
of ordered P-values (or t-statistics); these confidence intervals will
correspond directly to Holm significance. If a permutation test was
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Fig. 1. Plots from CpGassoc: (A) Q–Q plot, (B) scatterplot, (C) boxplot and
(D) Manhattan plot.

Table 1. Timing for analyses performed with various data sizes

Data size Fixed effects Fixed effects Mixed effects
model with no model with 5.9% model with 5.9%
missing data missing data missing data

27 k, n = 200 2 10 971
27 k, n = 1000 14 73 1409

450 k, n = 200 37 153 15 744
450 k, n = 1000 658 1621 22 993

Times in seconds, based on Intel Xeon 2.8 GHz, with 12 GB RAM. Model includes
one covariate and either fixed or random chip effects.

performed, empirical confidence intervals will be used. These plots
allow visualization of the degree to which significant CpG sites
deviate from the expected null distribution; standard Q–Q plots are
also available for assessment of genomic inflation.

As noted above, cpg.assoc allows users to model chip or batch
effects via either fixed or random effects. cpg.assoc can perform
fixed effects analysis extremely quickly due to our algorithm for
partitioning the CpG sites based on the presence of missing data.
For CpG sites with no missing data, linear regression is performed
via a computationally efficient matrix multiplication that allows
multiple sites to be analyzed in one step. In contrast, sites with
missing data are analyzed site-by-site via a loop, and the results
of these partitioned analyses are then combined. To ensure that the
analysis fits within the bounds of available memory, large datasets
may be partitioned further; cpg.assoc determines the optimal number
of CpG sites to be included in each partition based on the size
of the data and the memory available in the environment. Mixed
effects analyses that include random effects will take longer because
they are computationally more intensive and must be performed

site-by-site; for these analyses, the R package nlme is used (Pinheiro
et al., 2012). Timings for several analyses can be seen in Table 1;
note that even for analyses of extremely large datasets fixed effects
analyses can be performed very quickly.

In conclusion, we have created an effective and flexible tool for
analysis of DNA methylation data. In addition to performing the
analysis very quickly, CpGassoc has a variety of additional functions
to assist researchers in their analyses. With the open-source nature of
R, users may edit and customize CpGassoc according to their needs.
The package is designed to be modular, with more functions easily
integrated so that CpGassoc can continue to grow with the advancing
field. Future modules we hope to incorporate include functions based
on our ongoing research on normalization methods and adjustment
for population stratification and heterogeneous cell types. CpGassoc
is freely available at http: //genetics.emory.edu/conneely and we are
in the process of submitting it to CRAN.
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