Skip to main content
. 2013 Feb 7;14:44. doi: 10.1186/1471-2105-14-44

Table 3.

Prediction performance of different classifiers for vitamin B-interacting residues (VBIRs)

Feature     Classifier SN SP ACC MCC
 Binary
SVM (Threshold = −0.8)
73.22 ± 0.36
67.00 ± 0.49
67.57 ± 0.47
0.24 ± 0.00
SVM (Threshold = −0.6)
30.36 ± 0.62
96.69 ± 0.12
90.66 ± 0.11
0.33 ± 0.01
BayesNet
63.25 ± 0.56
66.23 ± 0.73
65.96 ± 0.62
0.18 ± 0.00
ComplementNaiveBayes
68.69 ± 0.52
68.51 ± 0.23
68.52 ± 0.18
0.23 ± 0.00
NaiveBayes
37.74 ± 0.90
90.45 ± 0.23
85.66 ± 0.14
0.25 ± 0.01
NaiveBayesMultinomial
44.22 ± 0.43
87.54 ± 0.24
83.60 ± 0.19
0.25 ± 0.00
IBk
30.81 ± 0.71
93.33 ± 0.17
87.65 ± 0.14
0.24 ± 0.01
 
RandomForest
39.33 ± 1.08
79.36 ± 0.37
75.72 ± 0.36
0.13 ± 0.01
 PSSM
SVM (Threshold = −0.8)
83.33 ± 0.36
80.51 ± 0.13
80.77 ± 0.14
0.42 ± 0.00
SVM (Threshold =0.1)
55.57 ± 0.63
98.04 ± 0.10
94.18 ± 0.09
0.61 ± 0.01
BayesNet
71.65 ± 1.13
66.14 ± 0.08
66.64 ± 0.10
0.23 ± 0.01
ComplementNaiveBayes
63.90 ± 1.26
81.73 ± 0.28
80.11 ± 0.22
0.32 ± 0.01
NaiveBayes
72.28 ± 1.22
66.44 ± 0.09
66.97 ± 0.12
0.23 ± 0.01
NaiveBayesMultinomial
21.22 ± 0.69
98.88 ± 0.03
91.82 ± 0.06
0.34 ± 0.01
IBk
56.74 ± 0.80
98.04 ± 0.07
94.28 ± 0.11
0.62 ± 0.01
  RandomForest 39.16 ± 0.56 97.74 ± 0.09 92.41 ± 0.10 0.46 ± 0.01

*Bold value indicates highest SVM performance with balanced sensitivity and specificity.

**Italic value indicates SVM/IBk performance with highest MCC.

The values of standard errors are also given with performances.