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Abstract

The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue,
auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on
auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be
presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an
auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to
users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball
experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a
support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from
EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG
signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further
analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the
brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we
confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses
and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-
performance and loudspeaker-less portable BCI system.
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Introduction

The Brain-Computer Interface (BCI) is an advanced technology

used for controlling external devices from the measured brain

activity of a user, without any muscular action [1]. It is thus

particularly attractive for people with a severe movement disorder

such as amyotrophic lateral sclerosis (ALS) or spinal cord injury.

The BCI is expected to not only replace lost functions but also

restore or improve natural actions.

In a non-invasive BCI, electroencephalography (EEG) has been

commonly used because of its high temporal resolution and

portability. BCI studies using EEG have exploited several types of

EEG signals: sensory motor rhythm, slow cortical potentials,

steady-state responses, and event-related potentials (ERPs). Among

them, an ERP called P300 is thought to be especially useful for a

BCI because it is robustly evoked by various types of stimuli

(including visual and auditory) with a latency of approximately

300 ms (250 to 500 ms) when a person pays attention to the

stimuli in the oddball paradigm [2,3,4]. One of the most successful

examples of the BCI is the P300 visual speller system [3,5], which

presents a visual stimulus, such as a flashing character, to the user,

and detects the P300 responses to identify which stimulus the user

is perceiving. It has also been shown that ALS patients can handle

this system [3,5].

However, the visual P300 BCI cannot be used for people whose

visual function is impaired. Recent studies have shown that the

performance of the visual P300-based BCI depends on the ability

to control eye movement or gaze [6,7,8]. Consequently, different

types of BCIs are suitable for those who cannot use a visual BCI.

For this purpose, gaze-independent (auditory, tactile, gaze-

independent visual) BCI systems have been explored [8]. In

particular, auditory-evoked P300 BCIs have been intensively

examined [9,10,11,12,13,14,15,16,17,18,19]. In an auditory BCI,

several characteristics of auditory stimuli, such as pitch, amplitude

of tone, and voices, can be applied as a cue [10,13,16]. The

direction of sound is also a unique characteristic of auditory

stimuli. Since we can easily recognize where sound comes from in

daily life, using the spatial information of sound seems to be a

promising approach for an auditory BCI. Using auditory stimuli

from different directions, previous studies succeeded in estimating

the direction/location of sound from either left, right, or both sides

[13,17,19]. Furthermore, it can be extensible to more than five

directions [11,12] by presenting auditory stimuli from several

directions using loudspeakers around the subject. In these studies,

Schreuder et al. first proposed a new auditory BCI paradigm

called ‘‘spatial hearing’’ or ‘‘Auditory Multi-class Spatial ERP

(AMUSE)’’ [11,12]. In this experimental paradigm, spatially
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distinct sound was presented from five or six loudspeakers, and the

user intuitively perceived the sound without any special training.

Using the spatial information of sound, it has shown the potential

to become a multi-class high-performance auditory BCI. Howev-

er, generating auditory stimuli from the loudspeakers will be

problematic for a portable BCI system because this requires a

large space, and equipment with many loudspeakers. Therefore, to

use precise spatial information of sound for a BCI, it is necessary to

synthesize auditory stimuli outside the head through earphones or

headphones.

One possible solution to this problem is the out-of-head sound

localization technique [20,21,22], in which auditory stimuli are

presented through earphones so that stimulation of the eardrum

becomes similar to the way in which actual sound is presented.

Using this technique, it is possible to present virtual auditory

stimuli from any direction, including from the rear, without

loudspeakers.

In this study we used out-of-head sound localization and

assessed its usefulness for an auditory BCI. In the experiment using

out-of-head sound localization, the user (subject) directed his or

her attention to one of the six sound sources. The sound was

presented binaurally through earphones. EEG signals were

recorded throughout the experiment and were used to estimate

whether the user attended the direction of the presented stimulus

using a support vector machine (SVM). To feasibility of the BCI

using out-of-head sound localization, we additionally conducted

an experiment using loudspeakers for stimulus presentation and

compared the results with those obtained from the out-of-head

sound localization experiment. Through this investigation, we

demonstrated that out-of-head sound localization can be incorpo-

rated in an auditory BCI system.

Materials and Methods

Out-of-head sound localization experiment
Subjects. Seven healthy people (6 males and 1 female, ages

22–24) participated in this study, which was approved by the ethics

committee of the Nagaoka University of Technology. All the

subjects were given information on the experiment and signed

consent forms. They had normal hearing and no history of hearing

problems.

EEG recording. We measured the EEG signals using a

digital electroencephalograph system (ActiveTwo, Biosemi, Am-

sterdam, The Netherlands) with 64 electrodes attached to the

subject’s scalp using a cap. The electrodes were placed in

accordance with the international 10–20 system. Reference

electrodes were attached to each earlobe. The electrode on the

right earlobe had an amplifier in it, i.e., active electrodes and

formed a feedback loop with a passive electrode on the left earlobe.

Using these two electrodes, reference voltage was calculated (for

details, see http://www.biosemi.com/). The sampling frequency

was 256 Hz.

Out-of-head sound localization. The principle of out-of-

head sound localization is to reproduce the sound waveforms of an

actual sound field at the listener’s eardrums using stereo earphones

or headphones. The procedure for out-of-sound localization

follows: 1) measure the impulse responses of the Spatial Sound

Transfer Functions (SSTFs) and Ear Canal Transfer Functions

(ECTFs), 2) obtain the Sound Localization Transfer Functions

(SLTFs), and 3) produce the out-of-head sound using the SLTFs.

To achieve this, it is necessary to obtain the transfer functions from

loudspeakers to the eardrums. Since the shapes of the head and

external auditory canal are different between subjects, the transfer

function fitted to each subject is not identical [21]. Using an

unfitted transfer function causes the problem that the spatial

location of sound is not localized at actual sound sources. Thus we

require the transfer function specific to each subject to accurately

present the out-of-head sound images. Therefore, we measured

the transfer function specific to each subject using the impulse

response measurement method before the experiment. Details of

the measurements for the transfer function are described in Text

S1 and Figure S1.

In the experiment, white noise (100 Hz–15 kHz) was adopted as

an auditory stimulus (cue). We produced the auditory stimulus for

each direction by convolving the white noise with the impulse

response of the out-of-head transfer function (see Text S1 for

details). The sound pressure level was adjusted to 65 dB using a

dummy-head (SAMRAI, KOKEN, Tokyo, Japan). The subject

wore intra-concha earphones (MDR-ED238, Sony, Tokyo,

Japan), and the auditory stimuli were amplified through a USB

audio interface (QUAD-CAPTURE UA-55, Roland, Hama-

matsu, Japan).

Experimental protocol. The protocol that assesses the

performance of our system is shown in Figure 1. Each trial

consisted of a 100 ms stimulus and a 1000 ms inter-stimulus

interval (rest period). The sound sources were allocated to six

directions: 30u, 90u, 150u, 2150u, 290u, and 230u. In each trial,

an auditory stimulus (cue) from one of the six directions was

presented. The presented auditory cues were in a random

sequence while the subject focused on one of the directions (target

direction). The stimulus from the target direction was presented

for about 20% of the stimuli. The target direction was fixed during

the session, and the subject was informed of the target direction

before the session. The subject performed a counting task during

the trial, i.e., counted the number of times this target cue was

presented. To avoid the effects of visual sensation and eye blink,

the subject was instructed to perform the counting task with closed

eyes during the trial. Each subject completed 12 sessions in total (in

2 days at 6 sessions per day). Each session consisted of 150 trials.

Localization test. To check whether the subject heard the

out-of-head sound image accurately, a localization test was

performed before and after the main experiment. In the test, an

auditory stimulus was presented from one of the six directions and

the subject reported from which direction he perceived the

auditory stimulus. This was repeated 10 times in each direction. In

total 120 responses were obtained.

Data analysis (preprocessing and calculating ERP). Raw

EEG data sampled at 256 Hz were filtered using a Butterworth

band-pass filter (third-order, 1 to 7 Hz). After the filtering, the

average for 2100 ms to 0 ms in each trial was set as the baseline,

and the baseline amplitude was subtracted from the data in each

trial. To remove artifacts unrelated to brain activity, we excluded

trials whose maximum absolute value of amplitude exceeded

60 mV, which may have included significant noises or artifacts.

Data that were filtered and excluded artifact trials were used in the

analysis.

To confirm evoked potentials when the subject attended the

direction of the presented stimuli, we calculated the averaged

event-related potentials (ERPs) for each electrode in each subject.

The onset of the EEG signals was set to the timing of the auditory

cue (0 ms). ERPs were evaluated for each of the target and non-

target trials and the positive peak latencies and their amplitudes for

the averaged ERP were investigated as characteristics of the ERP.

A Mann-Whitney U test was performed to check the differences

between target and non-target waveforms in each time interval

(p,0.01). To further investigate differences between the target

directions, we also calculated the averaged ERP signals for each

direction. This analysis was done by calculating the averaged ERP

Auditory BCI Using Out-of-Head Sound Localization
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for target and non-target trials within combined sessions for which

the target direction was the same because the target direction was

fixed in a session. Two-way repeated-measures analysis of variance

(ANOVA) was conducted for latencies and amplitudes (factors:

direction and trial type).

Classification of target/non-target direction. To predict

target or non-target trials, i.e., whether the subject attended the

direction from which the auditory cue was presented, a linear

support vector machine (SVM) [23,24] was used. Given a set of

EEG signals x and a corresponding label y, a classifier determined

the optimal boundary of each data class.

The EEG signals x were prepared as follows. First, we extracted

the data for 1100 ms from the beginning of the auditory cue

presentation for each trial (0–1100 ms). The first 280 samples for

each electrode were reduced to 28 samples by averaging every 10

samples. Thus, the dimension of the feature vector x became 1792

(28664). Next, we normalized the data so that the maximum

absolute value for each electrode became 1, which made for the

amplitude of each electrode constant. A label y is set to 1 for target-

trials and 21 for non-target trials.

Using weight parameters a and b, the objective function of the

SVM is described as follows:

max
a

XN

i~1
ai{

1

2

XN

i,j~1
aiajyiyjx

T
i x1j

subject to 0ƒaiƒC (i~1 � � �N)

and
XN

i~1
aiyi~0:

N is the number of samples (trials). Subscript i represent data for i-

th trial. This is a soft-margin SVM and requires the setting of a

penalty parameter C. To determine parameters a, b, and C, the

data were separated into three sets of samples: training set, C-

searching set, and test set. The SVM classifier was constructed

(determination of a and b) using the training set. Half the target

trials and the same number of non-target trials were used as the

training set. The remaining data were equally divided into the C-

searching and test set. The classification accuracy for the C-

searching set was evaluated for each candidate C, and the value of

C that obtained the highest accuracy was used as its optimal value.

C was searched between 2216 to 22 (2216#2m#22, m = 216:1:2).

Finally, the test accuracy was evaluated using the test set.

The target classification accuracy was defined as the number of

correctly classified target samples divided by the total number of

target samples, and the non-target classification accuracy was the

number of correctly classified non-target samples divided by the

total number of non-target trials. Hereafter, accuracy for all the

samples, i.e., the number of correctly classified samples divided by

the total number of samples, was referred as the ‘‘classification

accuracy’’ for simplicity. To suppress variability in the evaluation,

we repeated the analysis 10 times with randomly exchanged

training, C-searching, and test samples. The mean accuracy of

these 10 analyses was taken as the result for each subject.

Since classification accuracy seems to be improved with

increasing signal-to-noise ratio of the EEG signals by trial-

averaging as in the P300 speller [5], we calculated the trial-

averaged EEG signals for 2 to 10 samples. Using a bootstrap

approach, samples were randomly selected and averaged to create

averaged EEG signals. This bootstrap was repeated so that the

number of averaged samples became the same as for the single-

trial classification. Note that, for non-target trials, trials for

different auditory directions were averaged in the bootstrap

approach because of the small number of samples. The averaged

signals were used as inputs for classification, and accuracies were

evaluated for each averaging (iteration) procedure. Statistical

significance was tested by the two-way repeated-measures

ANOVA (factors: trial type i.e., target/non-target, and number

of averaging).

To examine whether estimating the intended specific target

direction is better than for the other target directions in terms of

classification accuracy, across-subjects accuracies were calculated

for each direction. A statistical test was performed using the two-

way repeated-measures ANOVA (factors: direction and number of

averaging). In addition, to reveal a relationship between classifi-

cation accuracy and behavioral data for each direction, correlation

coefficients between the classification accuracy and behavioral

data (localization accuracy and counting errors) were evaluated

across subjects and directions. This correlation analysis was

performed for data from each number of averaged-trials but only

the result for single- and 10-trial averaged trials are shown because

the same results were observed for any number of averaged-trials.

Spatial and temporal feature selection. When we used all

the EEG data in a trial (64 channels and 1100 ms duration), it was

unclear what type of information the classifier referred to for

prediction. If classification was achieved using the P300 responses

Figure 1. Experimental setting and protocol. (A) Six directions for
the virtual auditory stimuli. The subject looked forward (0u). (B) The trial
consisted of stimulus and inter-stimulus interval. An auditory stimulus
(cue) was presented during the 100 ms after stimulus onset. Inter-
stimulus interval was 1000 ms. 150 trials per session were performed.
doi:10.1371/journal.pone.0057174.g001
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as we expected, a part of the available EEG features should be

crucial to the classification. If so, the classification accuracy would

remain high even when we used only a few representative

channels. To examine this, we prepared different feature sets and

applied them to SVM classification. First, we calculated classifi-

cation accuracy when the channels for classification were reduced.

Based on a previous literature, datasets with a 6 channel-set and a

19 channel-set [25] were used (Figure 2). In the 6 channel-set, Fz,

Cz, Pz, PO7, PO8, and Oz were selected to cover the central and

posterior part of the electrodes (Figure 2C). The 19 channel-set

included the 6 channel-set and the additional 13 channels: FCz,

CPz, PO2, C3, C4, P3, P4, P7, P8, PO3, PO4, O1, and O2

(Figure 2B). When we used these selected channel-sets, all

temporal features from 0 to 1100 ms were used.

For temporal feature selection, we prepared six datasets, which

have 500 ms samples of the 64 channels: 0–500, 100–600, 200–

700, 300–800, 400–900, 500–1000, and 600–1100 ms datasets.

The number of temporal features (samples) for each dataset was

the same, but the 100–600 ms data set was expected to have a

high accuracy since P300 is generally observed during this period.

Loudspeaker experiment
Experimental setting. Six out of seven subjects (Sub1, 2, 3,

4, 6, and 7) in the main experiment participated in the loudspeaker

experiment. The Ethics Committee of the Nagaoka University of

Technology approved the experiment. All the subjects were given

information on the experiment and signed an informed consent, as

in the main experiment.

EEG recording, experimental protocol, and data analysis

(artifact rejection, calculating ERPs and classification accuracy)

were identical to those in the main experiment except for Sub3.

For Sub3, EEG data were sampled at 2048 Hz, and then down-

sampled at 256 Hz. The only difference for the experimental

paradigm was that the auditory stimulus was generated by

loudspeakers. The reverberation time in the test room was about

0.1 s. Twenty-four loudspeakers (MODEL SD-0.6, EMIC, Japan)

were placed at 15u intervals, and six of them (30u, 90u, 150u,
2150u, 290u, and 230u) were used. The distance from the center

of subject’s head to the face of the each loudspeaker was 1.5 m.

The subject sat on a seat and pseudo white noise was radiated

from the loudspeakers through an amplifier (SRP-P4005, Sony,

Tokyo, Japan). The sound pressure level was adjusted to 65 dB.

Results

Localization test
Before the experiment, a localization test was conducted to

confirm that the presented out-of-head sound image was correctly

localized. Table 1 (left) shows the results of the localization test.

The number of error trials in which the subject reported a wrong

direction ranged from 3 to 36, and correct perceptions were 85.0

to 98.8% (mean 6 SD across subjects: 92.466.4%). This suggests

that sound was correctly perceived from six directions. Figure 3A

shows localization accuracy across subjects for each presented

sound direction. The directions they reported wrongly were

located in neighboring directions. Some trials were perceived from

the direction of the same side with a 120u difference, known as

front-back confusion. When we checked the localization accura-

cies for each subject (Figure 3B), individual differences of sound

localization were observed.

Counting target trials
After each session of the experiment, the subjects reported on

how many trials the auditory stimulus was presented from the

target direction. The counting error for each target direction is

shown in Table 2 (upper). The error was the absolute value for the

difference in counting and presented numbers divided by the

presented number. On average, the error was 5.3% across all the

directions. Although individual differences were found, a statistical

test (one-way ANOVA) showed no difference between counting

directions across subjects (F = 0.47, p,0.80). One of the subjects

(Sub6) showed relatively large errors for all the directions.

Artifact rejection
Table 3 (left) shows the number of trials excluded after artifact

rejection. On average, across the subjects, 3.462.7% of the trials

were excluded. For Sub6, the rejection rate was relatively high.

We found that the rejected channels for Sub6 were mainly located

around frontal electrodes (Fpz, Fp1, Fp2, AF7, AF8). This may be

caused by unavoidable eye blinks or muscle contractions even the

subject closed their eyes.

Averaged ERPs
Figure 4 shows the trial-averaged EEG waveform for target and

non-target trials in all the subjects measured at electrode Pz. In the

target trial, prominent responses were observed. The peak

amplitude of the ERP for the target trial was larger than that

for the non-target trial (Table 4 upper). The latency of the peak

amplitude was also different between the target and non-target

trials, especially for 200 to 500 ms across subjects (Figure 4, gray

bar in each figure; p,0.01). Latencies in the target trial (mean:

384 ms) were longer than those in the non-target trial (217 ms) for

all the subjects. Although the observed positive responses in the

target trial had a slightly longer latency than about 300 ms, this

response was a typical waveform for the P300 [26]. These results

indicate that the evoked potential, which is likely to be the P300,

differed between the target and non-target trials even when we

used the out-of-sound localization technique to present auditory

stimuli.

Figure 2. EEG electrode locations. Spatial location of 64 channels
EEG (A), 19 channels (B), and 6 channels (C). Reference electrodes
attached to the ears.
doi:10.1371/journal.pone.0057174.g002
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Thus, it may be possible to predict the intended sound direction

of the subject when we extract and classify these EEG signals.

To examine whether differences between directions of sound

were found, we looked at the latencies and amplitudes of positive

peaks for each direction (Figure 5). The latencies across subjects

for each direction ranged from 373 to 424 ms in the target trials

(the bold line in Figure 5A) and 199 to 300 ms in non-target trials

(the bold line in Figure 5B). Directional differences were small

although large individual differences were observed (n.s., F = 0.9

and 1.3 for target and non-target trials). Results for the peak

amplitudes in target trials decreased in backward directions while

non-target amplitudes were similar (Figure 5C, D). A one-way

repeated-measures ANOVA showed statistical significance only in

the target peak amplitudes between directions (F = 4.4, p,0.01)

and the differences for two pairs (90u and 2150u, 2150u and

230u) were significant in the multiple comparison procedure

(Ryan’s method, p,0.05). For Sub6 at 2150u, the latency in the

non-target trials was high and its amplitude was small because of

flat waveforms, suggesting failure in detecting a normal ERP.

Classification of intended sound direction
To predict target or non-target directions, we performed

classification analysis using EEG signals from 64-channel elec-

trodes. Figure 6A shows classification accuracy for each subject

and averaged accuracy across subjects. In the single-trial

classification (i.e., the number of averaging trials is 1) the accuracy

was 70.063.4% (mean 6 SD). When we used trial-averaged EEG

signals as inputs to a classifier, the accuracy gradually increased

with the number used in averaging. In 6-trial averaging, the

accuracy was 84.764.6%, and in 10-trial averaging it reached

89.564.6%. This indicates that averaging EEG signals improved

accuracies (F = 197.1, p,0.001). The improvement in 10-trial

averaging was over 19.6% compared with when data from a

single-trial were used. Across-subject accuracies for target and

non-target trials are listed in Table 5 (left). The accuracies between

target and non-target trials seemed to be comparable (for target:

67.5%; non-target: 70.2%) but the target accuracy became slightly

higher than the non-target accuracy along with an increasing

number of averaging (for 10-trial averaged classification, target:

89.7%; non-target: 88.8%). Although the differences between

target and non-target accuracies and interaction between two

factors (target/non-target and number of averaging) were not

significant (F = 0.9 and F = 1.3, respectively), the results suggest a

Figure 3. Accuracy in localization test. (A) Localization accuracy
across subjects for each direction. Each circle represents the percentage
the subjects reported accurately as the perceived direction. The
horizontal axis represents the direction of presented auditory stimulus
and the vertical axis denotes the direction the subjects perceived. Two
diagonal gray lines at lower left and upper right indicate the direction
of front-back confusion. (B) Localization accuracy for each subject.
doi:10.1371/journal.pone.0057174.g003

Table 1. Behavioral result in localization test.

Out-of-head sound localization Loudspeaker

Subject Number of error trials Error rate [%] Correct rate [%] Number of error trials Error rate [%] Correct rate [%]

Sub1 5 2.1 97.9 0 0.0 100.0

Sub2 36 15.0 85.0 0 0.0 100.0

Sub3 3 1.3 98.8 1 0.4 99.6

Sub4 27 11.3 88.8 2 0.8 99.2

Sub5 20 8.3 91.7

Sub6 36 15.0 85.0 1 0.4 99.6

Sub7 1 0.4 99.6 1 0.4 99.6

Average 18.3 7.6 92.4 0.8 0.3 99.7

SD 14.6 6.4 6.4 0.8 0.3 0.3

doi:10.1371/journal.pone.0057174.t001
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possibility that averaging EEG signals is useful for detecting target

direction.

Classification accuracies for each direction in 10-trial averaged

classifications are shown in Figure 6B. Mean accuracies across the

subjects (black line) were almost the same, which showed more

than 85%, although individual directional preference was

observed. Similar results were confirmed when we used a different

number for averaging. We performed a two-way repeated-

measures ANOVA (factors: direction and number of averaging)

and no difference and interaction between directions were found

(F = 1.4 and F = 0.8, respectively) while the accuracy significantly

increased along with number of averaging (F = 197.8, p,0.001).

When we calculated the correlation coefficient between localiza-

tion and classification accuracy across subjects and directions, no

significance was observed (r = 0.26 for single-trial and 0.22 for 10-

trial averaged classification). In contrast, the classification accura-

cies for each direction showed significant negative correlation with

the counting error (p,0.05; r = 20.34 for single-trial and 20.32

for 10-trial averaging), suggesting a possibility that attentional

states, i.e., how much the subject paid attention, but not

localization accuracy are reflected by the counting and classifica-

tion accuracy.

When we used EEG data for 19 out of 64 channels, the mean

accuracy was similar to when we used 64 channels (Figure 7A).

The difference between 64 and 19 channels (accuracy for 64

channels – for 19 channels) was 21.6% for the single-trial

classification and 2.4% for 10-trial averaging (mean difference:

22.2%). Even when the EEG data for 6 channels were used, the

classification accuracy for 6 channels did not decrease (mean

difference: 22.4%). These results suggest that EEG signals in

central and posterior areas are important for SVM classification.

In the classification analysis above, EEG data during 0 to

1100 ms were used as inputs (features). To see how the temporal

information contributes to the classification, we examined the

classification accuracy when we used a part of the temporal

features in these EEG signals. In particular, based on the

reasonable hypothesis that classification was achieved by the

differences in the P300 responses, we used six different datasets,

each of which had 500 ms samples and different data onset from 0

to 600 ms. Figure 7B showed classification accuracies in 10-trial

averaging for each temporal feature band. Compared with a 0–

1100 ms dataset, classification accuracy over 300–800 ms and

400–900 ms slightly deteriorated and those over 500–1000 ms and

600–1100 ms dramatically decreased while classification for the

Table 3. Result of artifact rejection.

Out-of-head sound localization Loudspeaker

Subject Number of excluded trials Rejection rate [%] Number of excluded trials Rejection rate [%]

Sub1 67 3.7 20 1.1

Sub2 29 1.6 28 1.6

Sub3 6 0.3 48 2.7

Sub4 54 3.0 50 2.8

Sub5 70 3.9

Sub6 158 8.8 48 2.7

Sub7 40 2.2 80 4.4

Average 60.6 3.4 45.7 2.5

SD 48.4 2.7 20.9 1.2

doi:10.1371/journal.pone.0057174.t003

Figure 4. Averaged ERP at Pz for each subject. Each figure shows
the averaged ERP responses at electrode Pz for each subject (Sub1–
Sub7). The horizontal axis denotes time from auditory onset, and the
vertical axis shows the ERP amplitude. The red line shows the ERP for
target trials and the black line shows the ERP for non-target trials. The
gray bar at the bottom of each figure indicates the significant difference
between target and non-target waveforms (Mann-Whitney U test,
p,0.01).
doi:10.1371/journal.pone.0057174.g004

Auditory BCI Using Out-of-Head Sound Localization

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e57174



data from 0 to 200 ms remained the same as the accuracy using all

the features (Figure 7B). Especially, the accuracy for a 100–600 ms

dataset was almost same. This result suggests that temporal

features around 200 ms and 500 ms, which probably reflects P300

responses and negative deflections (N2), have useful information

for the classification.

Comparison with the loudspeaker experiment
To examine whether auditory stimulus presentation using out-

of-head sound localization is feasible, we also performed the same

experiment using loudspeakers and compared the results.

In the localization test, the subjects recognized sound from all

the directions accurately (Table 1 right). The correct rate was

99.7% and 7.3% higher than for the out-of-head sound

localization experiment. Counting in the loudspeaker experiment

also gave better results than out-of-head sound localization

(Table 2 bottom). The error rate across subjects was just 2.2%.

The number of rejected trials was very small (Table 3 right). On

average across the subjects 1.860.8% of the trials were excluded.

We calculated the ERPs in the experiment with loudspeakers and

compared them with those for the out-of-head sound localization.

The averaged EEG waveform for target and non-target trials

measured at electrode Pz was similar in both experiments (Figure

S2), and we identified the differences between target and non-

target trials. Latencies and amplitudes of the positive peak are

shown in Table 4 (bottom). An ANOVA showed that, in the

loudspeaker experiment, significantly larger amplitudes than for

the out-of-head sound localization experiment were found

(F = 23.8, p,0.005), while no difference in latency was observed

(F = 2.7, p = 0.2).

To examine how much the out-of-head sound localization

techniques can be used for BCI compared with the loudspeaker

experiment, we analyzed the same classification analysis for the

EEG signals in the loudspeaker experiment. The mean classifica-

tion accuracy across six subjects was almost the same as in the out-

of-head sound localization experiment (Figure 8A). The accuracy

in the out-of-head sound localization experiment was slightly

higher than in the loudspeaker experiment. When we carefully

looked at individual accuracies (Figure 8B), the performance in the

out-of-head sound localization experiment was somewhat low

(approximately 4%) for four subjects (Sub1, 2, 4, and 7) compared

with the loudspeaker experiment. In contrast, the accuracy was

slightly increased for two of the subjects (4.0% for Sub3 and 4.1%

for Sub6 compared with the loudspeaker experiment across all the

averaged-trials). A two-way ANOVA (stimulus presentation

methods and number of averaging) revealed no significant

difference between stimulus presentation methods (F = 0.2,

p = 0.6) and no interaction (F = 1.2, p = 0.3), while the accuracy

significantly increased with respect to the number of averaging

(F = 102.3, p,0.001).

Discussion

In the present study, we examined whether the attended

direction for the subject can be predicted from EEG signals when

auditory stimuli are presented using out-of-head sound localiza-

tion. We found that the classification accuracy was 70.0% in a

single-trial, and reached 89.5% when we used trial-averaged EEG

signals. The results indicate that sound localization can be applied

to a portable auditory BCI.

Table 4. ERP latency and amplitude.

Out-of-head sound localization

Target Non-target

Latency [ms] Peak amplitude [mV] Latency [ms] Peak amplitude [mV]

Sub1 375 7.8 270 4.6

Sub2 356 3.8 192 3.9

Sub3 364 5.0 282 2.5

Sub4 375 7.6 200 3.3

Sub5 383 4.0 177 3.9

Sub6 488 2.6 219 1.1

Sub7 344 5.4 181 3.8

Average 384 5.2 217 3.3

Loudspeaker

Target Non-target

Latency [ms] Peak amplitude [mV] Latency [ms] Peak amplitude [mV]

Sub1 325 8.0 184 7.8

Sub2 340 6.0 196 5.2

Sub3 348 5.2 301 3.6

Sub4 356 7.5 196 4.0

Sub6 383 3.4 196 3.0

Sub7 360 8.0 177 4.2

Average 352 6.3 208 4.6

doi:10.1371/journal.pone.0057174.t004
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Comparison with previous spatial auditory BCI
The experimental paradigm called spatial hearing was first

proposed by Schreuder and his colleagues [11]. Comparing their

study with ours, some similar results were obtained even when we

used out-of-head sound localization. In their study, the auditory

stimuli were presented from loudspeakers. Without EEG record-

ing, they conducted a localization test for 8 directions spaced at

45u and the localization error was 7.4% on average. The

localization errors in our study were 7.6% in the out-of-head

sound localization experiment and 0.3% in the loudspeaker

experiment across subjects and directions, suggesting that, similar

to the previous study, the subjects could perceive auditory stimuli

with greater than 90% accuracy. Because our experiment was

conducted with 6 directions spaced at 60u, discrimination of the

auditory stimuli was easier, resulting in higher localization with the

loudspeaker experiment. Also, in terms of classification accuracy,

our study obtained results similar to theirs, which showed

approximately 60% in the single-classification and reached to

90% or more (in the C1000 condition; note that this is based on a

rough comparison by visual inspection because they used a

selection score but not classification accuracy, and the score is not

shown). In their recent progress [12], they used spatial hearing

with auditory stimuli from six directions as in our experimental

setting, and examined the online performance of the BCI. They

Figure 5. ERP latency and peak amplitude for each direction.
(A) ERP latency of the positive peak for each direction in target trials.
Each line indicates each subject. Data were obtained from electrode Pz.
The horizontal axis denotes direction. The black line shows mean values
across subjects in each direction. (B) ERP latency of the positive peak for
each direction in non-target trials. (C) Peak amplitudes of ERP at Pz for
each direction. Data were calculated from target-trials. (D) Peak
amplitudes of ERP in non-target trials.
doi:10.1371/journal.pone.0057174.g005

Figure 6. Accuracy in predicting the perceived direction and its
directional biases. (A) Classification accuracy when the number of
averaged trials was different. Each colored line represents the accuracy
for an individual subject. The bold black line indicates the mean
accuracy across subjects. (B) Classification accuracies for each direction.
The data for 10-averaged trials is shown. Each line shows averaged
accuracy across subjects for each direction and average for all the
directions.
doi:10.1371/journal.pone.0057174.g006
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reported that the BCI performance for typing letters also reached

more than 86% for the subjects who succeeded in all the sentences.

Although there are many differences between their study and ours,

for example online evaluation and the classifier, the levels of

classification accuracy were similar.

Taken together with out-of-head sound localization and the

loudspeaker experiment in the present study, spatial hearing with

out-of-head sound localization is comparable to the loudspeaker

setting and online application is also expected. Toward online

application, the experimental paradigm should be sophisticated in

improving localization accuracies or adopting shorter inter-

stimulus-intervals, like a previous online study [12].

Out-of-head sound localization and individual transfer
function

To create a BCI using out-of-head sound localization requires

users to accurately distinguish auditory stimuli from several

different directions. It is generally known that spatial location of

sound deviates from the actual location and sound localization

becomes poor when the sound images are created using a

mismatched transfer function. Therefore, to present the out-of-

head sound image accurately, it is important to use a transfer

function specifically fitted to each subject. For this reason, in this

study, we measured the transfer function for each subject and used

it to generate the auditory stimuli. As a result, the subject correctly

reported the direction of sound in the localization test (Table 1),

verifying that the out-of-head sound images were spatially

localized. Compared with the results from the loudspeaker

experiment, we found that the localization accuracies remained

high in general although degradation in accuracy was observed.

Furthermore, even in the out-of-head sound localization experi-

ment, prominent P300 responses for the target trial were observed

at the EEG electrodes, which were similar to those observed in the

loudspeaker experiment. Therefore, these results demonstrated

that the out-of-head sound localization using the individual’s

transfer function can be useful for an auditory BCI.

However, it is not easy to acquire the appropriate individual

transfer function. One has to solve two issues to obtain it. First, the

measurement of transfer functions requires a special acoustic

environment. When we measured the individual transfer function,

microphones were put in the canal and many loudspeakers were

used to present auditory stimuli. In general, this environment and

apparatus are not available. Second, the individual transfer

function is not always fitted to the subject because of technical

difficulty in measuring the transfer function. For example,

sometimes earphones are not fitted to the subject, and this

technical problem reduces the localization accuracy of the out-of-

head sound images. In fact, one of the subjects (Sub6) in the

present experiment seemed to have this problem, and this

misalignment may have caused lower classification accuracy.

Although the result of the localization test was not significantly

poor for this subject, the accuracy was relatively low (85%,

Table 1), and the number of targets counted was smaller than the

number of targets actually presented (mean error across sessions:

18.9%, Table 2). The front-back confusion was also observed for

this subject, which sometimes happens in the sound localization

task using both virtual sound and loudspeakers (Figure 3B).

Consistent with the behavioral data, ERP response was small and

its latencies for some directions were large. Furthermore, the

classification accuracy for Sub6 was not high: 65.2% in the single-

trial classification and 82.9% in the 10-trial averaging. This was

approximately 10% lower compared with the other subjects whose

data achieved higher classification accuracy. From our results, we

cannot conclude that these relatively poor performances for

behavior and brain activity for Sub6 are attributed only to unfit

transfer function because the other subjects showed good behavior

performances but somewhat lower classification accuracy (Sub3)

or vice versa (Sub2), but fitted individual transfer function may

provide improvement of the BCI performances using out-of-head

sound localization for some subjects.

An alternative way to overcome these problems is to use a

standard library of transfer functions [27,28,29] and fit it to each

subject. The standard library of transfer functions is a database for

several subjects. If we use the standard library, we do not require a

special acoustic environment. Because there is no guarantee that

the standard library will fit a specific subject, we also need to

develop a way of automatically improving the transfer function so

that the out-of-head sound images can be localized accurately.

Recently, such algorithms for learning the transfer function have

been investigated [30] and may soon become available.

Thus, to accurately perceive virtual sound images, out-of-head

sound localization is a successful technique, although it is necessary

to measure it correctly, or find a way to fit a transfer function

automatically using some algorithm.

Table 5. Across-subjects accuracy for target and non-target trials.

Out-of-head sound localization Loudspeaker

Target Non-target Target Non-target

Number of averaging Mean [%] SD Mean [%] SD Mean [%] SD Mean [%] SD

1 67.5 6.2 70.2 3.7 63.2 18.1 75.4 2.6

2 72.9 6.5 74.3 4.1 69.9 12.0 75.9 7.8

3 77.6 5.7 76.7 5.8 79.7 12.7 78.8 7.7

4 83.0 6.7 80.8 4.6 78.7 16.7 82.2 8.1

5 84.0 5.0 82.0 4.8 84.3 13.0 83.3 8.6

6 87.1 5.9 84.0 4.8 85.0 10.3 84.7 8.5

7 87.3 6.4 85.1 4.6 88.4 12.7 86.2 8.5

8 88.1 5.1 86.4 6.2 88.6 13.3 87.4 8.3

9 90.0 7.5 87.9 3.8 87.7 12.7 88.8 6.7

10 89.7 6.0 88.8 4.5 89.3 11.6 88.7 8.2

doi:10.1371/journal.pone.0057174.t005
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Classification in the out-of-head sound localization
experiment

We examined whether EEG signals can predict the subject’s

attended direction for the presented out-of-head sound image, and

found that classification accuracies using the out-of-head sound

localization became high (Figure 6, Table 5). These performances

were very similar to the accuracies reported in previous auditory

BCI literature, which reported accuracies around 60 to 90% [8],

although the experimental paradigm and conditions were different

between the studies (e.g. the number of classes or iterations). To

further compare performances in the present study with those

obtained from previous literature, we evaluated the information

transfer rate (ITR; bits per minute) [31]. Note that the ITR

evaluated here is not completely the same because we used the

bootstrap method to prepare trial-averaged EEG signals. In the

single-trial classification, ITR became 9.261.1 (mean 6 SD across

subjects; 7.6 to 10.0 for each subject), and 1.760.2 for 10-trial

averaging (1.4 to 1,9 for each subject). These ITRs were

comparable to the high performance ITRs previously reported

(ranging from 3 to 11 bits per minute) [11,12,13,32]. Therefore,

out-of-head sound localization will be useful for constructing a

high-performance BCI system.

It is likely that these high performances can be achieved using

the differences in the prominent P300 responses. We found that

reducing channels from 64 to 19 or 6 did not greatly affect the

classification accuracy. A previous study for feature selection

reported that classification accuracy did not deteriorate even

though only 6 channels were used [25], indicating the importance

of the selected central and posterior channels for detecting P300

responses. Although the experimental paradigm and classification

algorithm differ between their study and ours, we found similar

results, i.e., classification performances from 6 and 19 channels

were almost the same. In addition, when we reduced feature

dimensions by choosing the time period of 100–600 ms for the

classification analysis, the performances remained high. Since the

signals during this period mostly reflected P300 responses during

200 to 500 ms, the result confirmed that EEG signals at the central

and posterior part of the electrodes showed that P300 responses

were evoked by the out-of-head sound images, especially for the

representative 6 channels, and classification may be achieved

mainly from these signals. The temporal feature band from 100–

600 also includes negative ERP responses (probably N2 compo-

nent). In agreement with previous auditory BCI [9,11,12,13,14],

we found differences of these responses between average ERP

responses for target and non-target trials (Figure 4). Therefore this

early negative component may also contribute to the classification

even when a stimulus was presented by out-of-head sound

localization.

If we extract information related to these P300 and early

negative component appropriately using some feature selection

methods, the classification accuracy could be further improved. In

the present study, a simple linear SVM was used for classification

and any systematic feature selections were not considered because

the feature selection was outside the scope of this study. Some

studies showed that feature selection or spatial filtering improved

classification accuracy [33,34,35,36,37]. We expect that applying

feature selection will also improve classification accuracy in the

out-of-head sound localization experiment.

Advantages of auditory BCI using out-of-head sound
localization

The auditory BCI using out-of-head sound localization has

several advantages compared with the BCI using other types of

characteristics. First, in agreement with previous studies using

spatial hearing [11,12], spatial information can be presented from

any direction including the direction in which the user is not

looking, i.e., it is also possible to perceive rearward directions. In

fact, auditory stimuli were generated from directions behind the

subject in our experiment, and the performances obtained were

good. Needless to say, estimated spatial direction can be used not

only for spelling devices but also for controlling a wheelchair. In

the latter case, presenting auditory stimuli using out-of-head sound

localization may be a valuable feature. Because this technique can

present auditory cues for any direction in the horizontal plane, the

user could control the wheelchair intuitively and easily by

Figure 7. Accuracy when inputs for a classifier were changed.
(A) Classification accuracy when the number of channels was reduced.
The bold black, red, and blue lines indicate mean accuracy across
subjects using 64 channels, 19 channels, and 6 channels, respectively.
(B) Classification accuracy when different temporal features were used
for classification. The data for 10-averaged trials is shown. Note that this
analysis was done with 64 channels. Each colored line represents
accuracy from an individual subject and the bold black line indicates
the mean accuracy across subjects.
doi:10.1371/journal.pone.0057174.g007
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perceiving the direction in which they intend to go. Furthermore,

3D spatial auditory cues can theoretically be presented using out-

of-head sound localization. Presenting 3D auditory stimuli is

apparently difficult using loudspeaker setting. Thus, using out-of-

head sound localization enables the BCI to increase the number of

classes. This may lead to improved resolution (ITRs) since ITRs

become higher in general with an increasing number of classes. In

addition to this, out-of-head sound localization allows the user to

use the BCI anywhere. It has been thought that an auditory BCI

using spatial hearing with loudspeakers is useful for end-users at

the bedside but not suitable for portable users because of the

equipment setting required [12]. However, if we incorporate out-

of-head sound localization into the spatial auditory BCI, it may be

possible to create a portable high-performance BCI, which inherits

the advantages of a loudspeaker setting. Therefore, out-of-head

sound localization may extend the spatial hearing paradigm and

provide a portable auditory BCI.

Figure 8. Comparison of accuracy between the out-of-head sound localization and loudspeaker experiments. (A) Mean classification
accuracy across subjects. The solid black line shows accuracy obtained from the out-of-head sound localization experiment and the dashed black line
indicates accuracy for the loudspeaker experiment. (B) Classification accuracy for each subject.
doi:10.1371/journal.pone.0057174.g008
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By combining the spatially presented out-of-head sound images

with other characteristics of auditory stimuli, the auditory BCI will

become more powerful. Previous auditory BCIs used pitch,

amplitude, or different types of voice, and some studies combined

spatial information with these characteristics as a cue. For

example, a recent pioneering BCI study generated auditory

stimuli with a different pitch from different directions (left or right),

and significantly increased the number of classes that could be

classified [13]. Although we presented white noise stimuli in this

study, it is possible to generate other types of tone or natural

stimuli. If we use them, it will promote fine control of external

devices and quicker and more accurate communication. Likewise,

auditory streaming is a useful approach for clinical and daily use

[9,10], which could be combined with out-of-head sound

localization. Thus, further investigation is needed for choosing

optimal stimulus selection and combination, or developing an

experimental design such as shortening the inter-stimulus interval

to improve accuracy. Online classification is also necessary for the

evaluation and development of a BCI using out-of-head sound

localization.

Conclusion

We investigated the possibility of an auditory BCI using the out-

of-head sound localization technique. Using EEG signals from 64

electrodes, we were able to classify whether the subject directed his

attention toward the direction of sound or not. In the single-trial

classification, mean accuracy across subjects became 70.0% and its

ITR was 9.2. When we used averaged signals as inputs to the

classifier, the mean accuracy across seven subjects reached 89.5%

(for 10-trial averaging). Further analysis revealed that P300 and

early negative responses measured at the central and posterior part

of the electrodes contributed to the classification. These classifi-

cation performances were comparable to those obtained from the

loudspeaker experiment. Thus, we demonstrated that a high-

performance and loudspeaker-less P300-BCI system can be

achieved using out-of-head sound localization. We expect that

the performance will be improved by developing the design of the

auditory stimuli and experimental setting. Because this study

performed only offline analysis, online classification is also

required in the development of future systems.

Supporting Information

Text S1 Measurement of transfer functions. Detailed

measurement environment and processing to obtain transfer

functions are described.

(DOC)

Figure S1 Principles of out-of-head sound localization
and an environment of transfer function measurement.
(A) Sound field with loudspeakers. (B) Simulation through

earphones. (C) Measurement environment in the test room.

(TIF)

Figure S2 Averaged ERPs at Pz in the loudspeaker
experiment. Each figure shows the averaged ERP responses at

electrode Pz for the loudspeaker experiment. The accuracy for

each subject is shown in each column (Sub1–Sub7 except for

Sub5). The red line shows the ERP for target trials and the black

line shows the ERP for non-target trials.

(TIF)
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