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Abstract
Intermediate filaments are assembled from a diverse group of evolutionary conserved proteins and
are specified in a tissue-, cell type-, and context-dependent fashion in the body. Genetically-
determined mutations in intermediate filament proteins account for a large number of diseases,
ranging from skin fragility conditions to cardiomyopathies and premature aging. Keratins, the
epithelial-specific intermediate filaments, are now recognized as multi-faceted effectors in their
native context. In this review, we emphasize the recent progress made in defining the role of
keratins towards the regulation of cytoarchitecture, cell growth and proliferation, apoptosis, and
cell motility during embryonic development, in normal adult tissues, and in select diseases such as
cancer.

Keratins are the epithelial-specific members of the superfamily of intermediate filament (IF)
genes and proteins. As many as 28 type I and 26 type II keratin genes are tightly regulated in
a pairwise fashion, reflecting the heteromeric nature of the 10 nm filaments they form, as
well as in a tissue-specific and differentiation-dependent manner in body epithelia [1–3]
(Box1). Rapid pace progress in recent years has set forth the notion that keratin IFs fulfill
two fundamental roles in epithelial cells: 1) structural support, without which incident
physical trauma exposes an inherent fragility and leads to loss of integrity, and 2) regulation
of metabolic processes and of pathways governing their growth, proliferation, migration and
apoptosis. These two roles involve regulated interactions with a diverse group of cellular
proteins [4, 5].

Substantive progress has been achieved in spatially mapping, in living epithelial cells, the
initiation of keratin assembly, and the growth, maturation and turnover of the keratin IF
network. These advances (Figure 1) have been covered in recent reviews [6, 7]. Likewise,
the mechanisms responsible for attachment of keratin filaments at sites of cell-cell and cell-
matrix adhesion, and at the nuclear surface, are better understood and have been recently
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reviewed (Figure 1; see [8–10]). The role of keratin mutation as causative agents in inherited
epithelial disorders continues to receive much attention, and have been commented upon as
well [11–14]. For this review, we chose to focus on recent progress made in characterizing
the role of keratin proteins in regulating cytoarchitecture, protein synthesis and growth,
apoptosis, and epithelial cell motility in a myriad of contexts including embryonic
development, normal adult tissues, and in select diseases such as cancer.

BUILDING UPON THE ALREADY KNOWN: STRUCTURAL SUPPORT,
RESPONSE TO STRESS, AND CYTOARCHITECTURE

Body surfaces and several internal organs are lined by polarized epithelial sheets. Among
their multiple roles, these tissues protect us from environmental stresses that encompass
many forms, including mechanical, cytotoxic, oxidative, and metabolic insults. Interference
with these protective roles underlies many diseases [11, 15, 16]. Accordingly, significant
efforts continue to be devoted to determining when, where and how the protective roles of
keratin are manifested.

Structural support
The structural support function of keratins is brought to the fore in skin fragility disorders
involving mutations in epidermal keratins [11, 15, 16]. Epidermolysis bullosa simplex
(EBS) and epidermolytic hyperkeratosis (EHK) are examples of genetic conditions caused
by mutations in K5/K14 and K1/K10, the keratin pairs expressed in the basal and suprabasal
layers of epidermis, respectively, and are characterized by cytolysis of keratinocytes and
loss of structural integrity in the relevant epidermal layers [11, 13, 14]. Several key aspects
of the human EBS phenotype are manifested in transgenic mice expressing dominantly-
acting deletion mutants in K14 [17–19] and in mice null for K14 20] or K5 21]. Likewise,
transgenic mice expressing a truncated, dominant negative K10 mutant protein [22] or the
K10 R154C mutant [23] exhibit lesions that resemble EHK. By contrast, inactivating K10
triggers hyperproliferation as is seen in EHK but no obvious cell fragility in the epidermis
[24, 25]. This difference is likely related, at least in part, to the upregulation of K5 and K14
proteins, and their co-polymerization with K1, in differentiating suprabasal keratinocytes of
K10 null mouse epidermis [24]. A recent study supports that notion, as it reports that mice
doubly null for K10 and K1 exhibit a lethal neonatal phenotype along with extensive skin
lesions and cytolysis of suprabasal epidermal keratinocytes [26]. The K1/K10 double-null
mouse phenotype also hints at the involvement of keratins in regulating the integrity of the
nucleus as well as desmosome-based adhesion, as further discussed below.

Keratin mutation-based fragility phenotypes closely correlate with alteration in the
micromechanical properties of the cytoskeleton [11, 12, 27, 28]. A role for keratin filaments
in providing structural support [28–32] is promoted by their unique intrinsic properties – for
instance, their ability to self-organize into crosslinked networks [33, 34] – as well as by their
linkages at cell-cell (desmosomal) and cell-matrix (hemidesmosomal) junctions, and to F-
actin and microtubules [8–10] (Figure 1). While the ultrastructural features associated with
various keratin deficiencies in situ clearly point to their importance for cell and tissue
mechanics, understanding this role at a deeper level is a challenging proposition given
limitations inherent to the ex vivo cellular models and assays being used [30, 31, 35–38].
Disruption of keratin IF anchorage at adhesive junctions via inherited mutations can also
single-handedly result in disorders accompanied by keratinocyte and tissue fragility [39–41].
In addition to fostering mechanical integration at a cellular and supracellular levels,
attachment of keratin IFs can also impacts the formation, size and molecular composition of
desmosomes [42, 43].
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Response to stresses
Keratin IFs afford crucial protection to internal organs, even though these are unlikely to
experience mechanical stress to the extent that skin and other surface epithelia do. The liver,
for instance, is a metabolism-intensive organ that functions in part to detoxify foreign
substances. Previous efforts have clearly established that, in part through site-specific
phosphorylation in cis, K8 and K18 are instrumental in the ability of liver hepatocytes to
cope with a broad variety of metabolic, oxidative, and chemical stresses [44–46]. A recent
study revealed that, in addition to phosphorylation, covalent O-linked N-acetylglucosamine
(O-GlcNAc) modification (at serine residues 30/31/49) on K18 enhances the stress-buffering
function of liver keratins [47]. Indeed, relative to controls mice that overexpress the human
K18 S30/31/49A mutant (which cannot undergo O-GlcNAc modification) show multi-organ
failure and increased lethality when treated with streptozotocin, PUGNAc (1, 5-
hydroximolactone), or antibodies to Fas. The authors, Ku et al. [47], propose that under
normal conditions the site-specific O-glycosylation of K18 serves to positively regulate the
activity of the pro-survival Akt and PKC kinases, thereby protecting cells against apoptosis
and promoting their adaptation to stresses (Figure 2A).

A role for keratins in regulating the nucleus?
In addition to their roles at cell junctions, the keratin IF network may be important for
regulating the size and shape of the nucleus. Plectin, a well-known IF-binding protein [9, 48]
was recently found to bind the outer nuclear envelope protein nesprin-3 [49] (Figure 1),
providing the long-awaited rationale for the attachment of cytoplasmic IFs to the nucleus
[50]. Consistent with this, targeted deletion of nesprin-3 in Zebrafish impairs the perinuclear
concentration of keratin filaments [51].

Lee et al. [52] succeeded in crystallizing and solving the first atomic resolution structure of a
keratin heterotypic complex consisting of the heptad repeat-containing 2B subdomains of
K5 and K14. The interface of the coiled-coil heterodimer features several asymmetric (i.e.,
unidirectional) bonds that likely guide the intrinsic process of type I-type II heterodimer
formation. Surprisingly, however, a symmetry-related contact in the crystal lattice has
coiled-coil heterodimers forming a rather astonishing X-shaped object, owing to a trans-
dimer homotypic disulfide bond involving cysteine 367 in K14. This disulfide bond is
enriched in the perinuclear region of basal keratinocytes of epidermis, where it is poised to
stabilize a cage of keratin IFs that may impact the size and shape of the nucleus at an early
stage of differentiation [52]. This cysteine residue is conserved in K14 and related type I
keratins including K10. Given this, it is intringuing that the K1/K10 double-null mice show
premature loss of nuclei in the suprabasal layers of their epidermis, along with reduced
levels of emerin, lamin A/C, and Sun-1, despite a relatively normal differentiation program
[26]. While caution is warranted at this time, such findings suggest that as is the case for
nuclear lamins [53], the perinuclear cytoplasmic network of keratin IFs might also
contribute to define nuclear morphology and participate in nuclear physiology.

KERATINS MODULATE CELLULAR GROWTH, APOPTOSIS AND MOTILITY:
IMPLICATIONS FOR EMBRYONIC, ADULT, AND DISEASE SETTINGS
Embryonic development

The role of keratins in embryonic development has been difficult to define because of
complicating factors including functional redundancy and genetic background effects [54].
Early mouse models with K8 or combined K18/K19 deficiency nevertheless have clearly
pointed to a role for keratins in influencing embryonic development by impacting
trophoblast giant cells and placental functions [55–57] (Figure 2B). To get around functional
redundancy, Magin and colleagues boldly deleted the entire type II keratin gene cluster on
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mouse chromosome 15, thereby generating the KtyII−/− model [58]. This deletion proves
lethal at E9.5 in mouse embryos (i.e., mid-way through gestation), but their epithelial tissues
appear largely intact, with no sign of cell lysis or tissue fragility. Instead, death correlates
with other factors including mislocalization of the GLUT-1 and GLUT-3 transporters,
increased AMP kinase activity, depressed mTORC1 activity and reduced protein synthesis
in the yolk sac [58]. Additionally, KtyII−/− embryos exhibit defective adhesion between the
endoderm and mesoderm layers, possibly accounting for severe defects in vasculogenesis
and hematopoiesis, along with a placental defect (Figure 2B) related to the altered
distribution of secondary trophoblast giant cells. The latter could result in hyperoxia in the
decidual tissue owing to impaired vasculogenesis and insufficient gas exchange between
maternal and embryonic blood [59].

Cells are called upon to migrate during embryogenesis, often as cohesive assemblies, in
order to form new structures and tissues. A recent study examining the mechanically-
induced collective migration of Xenopus cells sheds new light on the regulation of
embryonic migration events by keratins [60]. Weber et. al. observed that polarized
protrusion and migration of single mesendoderm cells occurs in the direction opposite from
where a pulling force is applied to surface-exposed C-cadherins. Remarkably, this
manipulation triggers a reorganization of keratin IFs including their recruitment to cadherin
sites, and requires xCK1 (hK8) expression. Silencing the junctional protein plakoglobin
(PG) produces similar protrusive defects and affects keratin network reorganization after
pulling. Likewise, deleting either xCK1 or xPG randomizes the protrusive activity of
mesendodermal cells in actual embryos, presenting compelling evidence for participation of
keratins and PG in collective cell migration in vivo (Figure 2C). Whether these findings
relate to the involvement of K6, PG and other keratin associated proteins in the regulation of
keratinocyte motility during adult setting (see next Section) is worth pursuing.

Adult tissue homeostasis: Enacting the proper balance between competing processes
Much has been learned about keratin’s role in cellular growth through studies showing the
ability of select keratins to positively regulate cell cycle progression, entry into mitosis, and
protein synthesis [45, 61] via interaction with key effectors such as 14-3-3 proteins (Figure
2D). Docking sites enabling 14-3-3 binding are generated via site-specific phosphorylation
of keratins by growth-promoting kinases [45, 62, 63]. Depending on cell type and context,
such keratin-14-3- 3 complexes can subsequently impact cell cycle-associated regulators
like Cdc25, as in the case of Xenopus eggs [64], and mTOR (Target Of Rapamycin), as in
epidermal keratinocytes [65]. The kinase Akt represents another powerful effector that is
strongly (and differentially) impacted by various keratins. Akt activity is increased when
K8/K18 are genetically depleted in liver hepatocytes [66] but is decreased in K17 null
mouse keratinocytes [65] or when K14 is silenced in the HaCaT (human) keratinocyte cell
line or in an oral squamous carcinoma cell line [67]. Further, K10 has been reported to bind
to and negatively impact Akt activity and cellular proliferation [68] though this has been
disputed [69] (Figure 2D). The keratin-Akt relationship, whether in physical or functional
terms [25, 69, 70], is worth a thorough re-examination given its ramifications.

Regulation of apoptosis represents an additional mechanism through which keratin IFs are
able to coordinate cell and tissue growth [5]. Keratins can accomplish this by “sequestering”
death-promoting effector molecules such as tumor necrosis factor receptor 2 (TNFR2) [71]
and TNF receptor-associated death domain-containing protein (TRADD) [72–74], by
influencing the targeting and density of relevant cell surface death receptors [75, 76], or by
acting as “sponges” to absorb excessive stress and pro-apoptotic signals [77, 78] (Figure
2A). A recent study revealed that, in contrast to the evidence accumulated to date [44], K8
can be pro-apoptotic in the colonic epithelia, a phenomenon that depends upon the
microflora. Transcriptional profiling in FVB/N K8−/− colons, which show hyperplasia and
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colitis, revealed an unexpected upregulation of various pro-survival factors (e.g. survivin)
and pathways [79] (Figure 2A). Such findings point (yet again) to the context-dependence of
keratin function, and to the impact of partners and processes susceptible to genetic
background effects.

The response to injury elicits changes in homeostasis and triggers significant alterations in
IF gene expression and/or IF protein regulation in surviving wound-proximal cells in a broad
array of tissues and organs, ranging from the central nervous system to skin [80]. The
importance of these changes is conveyed by the altered outcomes observed whenever the “IF
response to injury” is genetically manipulated. Somewhat paradoxically, genetic ablation of
the two K6 isoforms (K6a and K6b), which are normally induced in wound proximal
keratinocytes soon after injury to the skin [81], results in enhanced migration of
keratinocytes so long as they are not subjected to a mechanically challenging setting, which
exposes their inherent fragility [82]. This enhanced migration, it turns out, involves a robust
stimulation of Src activity in K6a/K6b null keratinocytes [83]. In addition to binding to and
regulating Src directly[83], K6a/K6b and associated proteins (e.g., plectin) may partner to
sequester signaling molecules such as RACK1 and negatively impact upstream effectors,
like protein kinase C (PKC) and integrin and focal adhesion kinase (FAK), to regulate cell
migration [84, 85] (Figure 2C). Like K6a/K6b null cells, Plakophilin1-null, Plectin-null,
Plakoglobin-null, as well as Epiplakin-null keratinocytes also migrate faster than their wild-
type counterparts, with Plectin- and Plakoglobin-null keratinocytes exhibiting enhanced Src
activity [86–89]. The possibility arises, therefore, that a larger complex comprised of
keratins and associated proteins is able to interact with and regulate Src activity [83] (Figure
2C). Whether the relevant molecular events take place in detergent-resistant membrane
(lipid rafts), as proposed [83], and how they are regulated in actively migrating cells, awaits
further investigation.

Like the K6 paralogs, K16 and K17 exhibit a dual mode of transcriptional regulation, with
constitutive expression in specific cellular compartments within epithelial appendages (e.g.,
hair follicle, nail, various glands, oral papillae, etc.) and inducible expression after tissue
injury and in diseases such as psoriasis and cancer [90]. K6a/K6b and K17 null mice have
been available for more than a decade, and a fair amount has been learned from their study
[91–93]. By contrast the consequences of K16 ablation, a long-awaited development, were
only recently brought to light [94]. As previously seen in K6a/K6b null animals, K16 null
mice exhibit oral lesions early after birth, reflecting cell fragility in the filiform papillae of
dorsal tongue epithelium [94]. These lesions are considerably less severe, however, likely
due to the presence of K17), and a third of the K16 null mice survive to adulthood. At that
stage, the mice develop a severe palmoplantar keratoderma phenotype that exceeds and
overshadows the limited amount of cytolysis occurring in footpad epidermis [94]. The K16
null mice thus provide an opportunity to acquire insight into the genesis of the palmoplantar
keratoderma lesions that arise in individuals with pachyonychia congenita, a group of
disorders caused by mutations in K6a, K6b K16 or K17 95].

Keratins and cancer: More than mere biomarkers…
Carcinogenesis involves a departure from normal cell differentiation pathways, and is
typically accompanied by alterations in the regulation of keratin genes and proteins. Keratin
profiling provides biomarkers that are useful for the diagnosis and, increasingly, the
prognosis or associated risk for many types of epithelial-based tumors [96, 97]. The issue
arises, therefore, as to whether such alterations in keratin expression or sequence impact any
aspect of tumor biology.

Basal cell carcinoma is the most frequent tumor in the human population [98] and invariably
features an induction of K17 in the context of what is, otherwise, a relatively simple keratin
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profile [99, 100]. DePianto et al. [101] reported a delay in the inception of Gli2-induced
basal cell carcinoma-like tumors in the absence of K17, correlating with marked reductions
in keratinocyte proliferation and skin inflammation. In such Gli2-induced mouse ear tumors,
remarkably, the genetic loss of K17 polarizes the immune response and production of
cytokines from a Th1/Th17- to a Th2-dominated profile. In particular, the K17 status was
shown to impact the expression of chemokines shown by others [102] to participate in the
pathogenesis of basal cell carcinoma in humans, e.g., CxCl5, CxCl9, CxCl10, and CxCl11,
in a keratinocyteautonomous fashion [101]. Interestingly, K5 deficiency is associated with
the misregulation of a distinct group of chemokines, in particular Ccl2, Ccl19, Ccl20,
correlating with an increased density of Langerhans (dendritic) cells in epidermis [103]. The
emerging notion of an immune modulatory role for keratins is certainly worth paying
attention to, going forward. In addition to these findings, a recent genome-wide association
study identified SNPs (single nucleotide polymorphisms) in the human K5 locus that confer
an increased lifetime risk of developing basal cell carcinoma [104]. Of note, K5 is the main
type II partner for K17 in this tumor [101].

Cancer and metastasis provide yet another very important setting involving altered cell
motility and migration. As shown a decade ago by Beil et al. [30], treating human pancreatic
cancer cells with SPC (sphingosylphosphorylcholine, a bioactive lipid found in high levels
in ovarian cancer patients) induces a perinuclear collapse of keratin filaments coinciding
with phosphorylation of K18 at Ser52 and K8 at Ser431, a softening of the cytoplasm, and
enhanced cell migration. Transglutaminase-2 and mitogen-activated protein kinase family
members (JNK and ERK) have been recently shown to stimulate K8-Ser431
phosphorylation, promote the perinuclear reorganization of keratin IFs, and enhance tumor
cell migration [105, 106] (Figure 2C). In the distinct settings of cell culture and oral
squamous cell carcinoma, however, overexpression of shRNA-resistant K8 phospho-
mutants of S73 or S431 in K8-knockdown cells is associated with increases in cell motility
and in tumorigenicity [107]. This apparent incongruity may arise from differences in cell
types utilized and methods used to induce cell migration, highlighting yet again the
importance of context when studying keratin regulation and function.

Conclusion
Who would have thought, a decade ago, that keratins and associated proteins would be
found to regulate protein synthesis, act as immune modulators, and regulate individual as
well as collective cell migration in settings ranging from embryonic development to cancer?
Because of their diversity, abundance, mode of polymerization, and various other properties,
keratin proteins are poised to function in ways that extend beyond a conventional role as
intracellular cytoskeletal proteins. Areas of greatest need in this field include an
understanding of IF structure with atomic resolution; a better appreciation of the
mechanisms regulating the assembly, dynamics and turnover of keratin IFs in various
epithelial settings; gaining a sense for the significance and role(s) of the soluble pool of IF
subunits within cells; and understanding how keratin IF function may be partitioned to
specific subcellular domains, and is otherwise manifested in a context-dependent fashion.
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Box 1 Introduction to keratin intermediate filament genes and proteins
(Refs. [1–3])

• There are ~70 genes that code for intermediate filament (IF)-forming proteins in
the human genome, with an astounding 54 of them coding for keratin proteins
that are expressed in epithelia.

• IF proteins represent a very heterogeneous group, with sizes ranging from 40
kDa (keratin 19) to 240 kDa (nestin). This said, they all share a common
tripartite domain structure, consisting of a central α-helical rod domain
featuring long range, coiled-coil forming heptad repeats and variable end
domains located at their N- and C-termini.

• IF genes can be partitioned into six major subtypes based on either gene
substructure or sequence homology over the defining rod domain existing in all
IF proteins. Keratins comprise the type I (28 members) and type II (26
members) IF genes.

• All 28 type I keratin genes but one are organized as a cluster on the long arm of
human chromosome 17 (mouse chromosome 11), whereas all 26 type II keratin
genes along with the type I K18 gene are clustered on the long arm of human
chromosome 12 (mouse chromosome 15)

• Mature, 10-nm keratin filaments are obligatory heteropolymers, with type I and
type II proteins occurring in a 1:1 molar ratio. This requirement explains the
coordinated transcription of a least one of each of the two subtype of keratin
genes in epithelial cells. Remarkably, many type I genes are co-regulated with
specific type II “partner” genes, leading to the notion of pairwise expression of
keratin genes.

• The transcriptional regulation of keratin genes and the primary structure of their
protein products are highly conserved across mammals, from mice to man,
pointing to an intimate relationship between the complement of keratin proteins
and the epithelial phenotype.
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Figure 1.
Assembly, organization, and regulation of keratin intermediate filaments (KIFs). Live
imaging studies in epithelial cells in culture show that keratin filament assembly is initiated
at the periphery of the cell, near focal adhesions, and that newly formed filaments and their
maturation into an organized network takes place in the context of a continuous centripetal
flow with disassembly and turnover steps taking place near the nuclear envelope. The
resulting “keratin cycle” is highly dependent on interactions with F-actin, with additional
proteins, and on several types of post-translational modifications including phosphorylation,
ubiquitination, sumoylation and (though not shown here) O-glycosylation. Most likely, the
biological context dictates the rate of flow through this cycle. The figure also conveys that
KIFs are attached at the surface of the nucleus (via a plectin/Nesprin-3 complex), at
desmosome cell-cell adhesion sites, (via desmoplakin (DP), among other proteins), and at
hemidemosome cell-matrix adhesions (via plectin and BPAG1e). Not shown here are the
interactions with F-actin and microtubules. The structural support role of KIFs depends upon
their organization as a crosslinked network that is fully integrated with other structural
elements within and between epithelial cells. NE: nuclear envelope; PM: plasma membrane;
ECM: extracellular matrix; DP: desmoplakin; PKP: plakophilin; KFP: keratin filament
precursor; KIF: keratin intermediate filament.
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Figure 2.
Examples of cellular and physiological processes regulated by keratin proteins. A) Cell
survival and cell death. B) Embryonic development (top; blue lettering) and tissue
homeostasis and disease (bottom; brown lettering). C) Cell motility and related processes.
D) Cell growth. In all cases, lines connecting keratins and the molecule(s) of interest convey
a physical interaction. Abbreviations: Akt, Protein kinase B; AMPK, AMP-activated protein
kinase; eEF1γ, Eukaryotic translation elongation factor 1 gamma; ERK, Extracellular
signal-regulated kinase; FAK, Focaladhesion kinase-1; FasR, Fas-ligand receptor; Glut1, 3,
glucose transporters 1, 3; K, mammalian keratins; KtyII, Type II mammalian keratins;
mTOR, Mammalian target of rapamycin; PKC, protein kinase C; RACK1, Receptor for
activated protein kinase C; SAPK, stress activated protein kinases; Src, Src kinase; TNFR2,
Tumor necrosis factor receptor 2; TRADD, Tumor necrosis factor receptor type I-associated
Death domain protein; TSC1/2, Tuberous Sclerosis Complex (Hamartin/Tuberin); xCK,
Xenopus cytokeratin (ortholog to mammalian K18).
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