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Abstract

When planning re-sequencing studies for complex diseases, previous association and linkage 

studies can constrain the range of plausible genetic models for a given locus. Here, we explore the 

combinations of causal risk allele frequency RAFC and genotype relative risk GRRC consistent 

with no or limited evidence for affected sibling pair (ASP) linkage and strong evidence for case-

control association. We find that significant evidence for case-control association combined with 

no or moderate evidence for ASP linkage can define a lower bound for the plausible RAFC. Using 

data from large type 2 diabetes (T2D) linkage and genome-wide association study meta-analyses, 

we find that under reasonable model assumptions, 23 of 36 autosomal T2D risk loci are unlikely to 

be due to causal variants with combined RAFC < .005, and four of the 23 are unlikely to be due to 

causal variants with combined RAFC < .05.
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Introduction

Genome-wide association studies (GWAS) allow investigators to test for disease or trait 

(henceforward disease) association with common single nucleotide polymorphisms (SNPs) 

throughout the human genome. Today’s commercial GWAS platforms, when combined with 

genotype imputation [e.g. Marchini et al., 2007; Li et al., 2010], typically cover 80–90% of 

known common genetic variants (minor allele frequency (MAF) > .05). In recent years, 

GWAS have been conducted for many diseases [see http://www.genome.gov/gwastudies/]. 

The combined effects of associated variants often explain only a small proportion of the 
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disease genetic variation [Manolio et al., 2009]. Results to date suggest that most common 

variants associated with complex diseases have modest effect on disease risk. Less common 

(.005 < MAF < .05) and rare (MAF < .005) variants have not yet been studied extensively 

and may (or may not) have larger effect sizes. With the recent advances in sequencing 

technology, it has become feasible to identify and genotype these variants. While multiple 

theoretical and data-driven approaches have examined genetic architecture of complex 

human diseases and traits [Risch and Merikangus, 2001; Reich and Lander, 2001; Pritchard 

and Cox, 2002; Purcell et al., 2009; Dickson et al., 2010; Anderson et al., 2011; Wray et al., 

2011; Lee et al., 2011], our knowledge of their underlying architecture remains limited. 

Current and planned large-scale sequencing studies seek to address this issue.

Previous complex disease linkage studies generally reported limited evidence for linkage, 

and even in studies with strong linkage signals, most of the genome provides no evidence 

for linkage. These negative linkage results should limit the range of plausible effect sizes for 

disease risk variants and/or the cumulative frequency of risk variants. Similarly, evidence 

(or lack of evidence) for association in a region of interest should also limit the range of 

plausible models for these risk variant(s).

Existing association and/or linkage results together with simulations have been used by 

multiple groups to explore the likely genetic architectures underlying complex diseases. 

Purcell et al. [2009] showed that rare or less common causal variants are unlikely to be the 

sole explanation of schizophrenia genetic variation based on simulations to identify models 

that are consistent with GWAS results and heritability estimates. Similarly, the work of 

Wray et al. [2011] suggests that rare variants are unlikely to underlie a large proportion of 

GWAS associations as they would explain >100% of the heritability. Dickson et al. [2010] 

argued that many common variants identified in GWAS could reflect multiple less common 

(.005 < MAFC < .02) causal variants in high linkage disequilibrium (LD); using the same 

models, Anderson et al. [2010] concluded that rare variants were unlikely to underlie most 

GWAS associated variants. Both studies provided graphical representations of the power of 

affected sib pair (ASP) linkage (with Anderson et al. assuming a much larger linkage 

sample) and SNP-disease association under limited number of models. However, they did 

not provide a quantitative way to define plausible models (minimum RAFC, maximum 

GRRC) for specified disease loci given the results of existing linkage and association 

studies.

In this paper, we seek to identify the plausible range of genetic models, in terms of genotype 

relative risk (GRRC) and risk allele frequency (RAFC), consistent with rare or less common 

causal variant(s) underlying a given disease association. We consider scenarios in which no 

or modest evidence for ASP linkage is reported, and/or significant evidence for association 

is reported. To do so, we calculate the power to detect ASP linkage and/or case-control 

association and summarize the range of genetic models that appears plausible given results 

from available linkage and/or association studies. Our results show that for each risk allele 

frequency RAFC, the effect sizes GRRC of causal variants are constrained byASP linkage or 

association results. When significant evidence for association is combined with no or modest 

ASP linkage evidence in the same chromosomal region, causal variants with small RAFC 

can also be identified as implausible. In our calculations, we assume that a single causal 
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variant underlies a common variant association, but our results can be extended to include 

multiple rare or less frequent tightly linked causal variants. Combining available T2D SNP-

association[Zeggini et al., 2008; Voight et al., 2010; Dupuis et al., 2010; Qi et al., 2010] and 

linkage [Guan et al., 2008; unpublished results] results suggest that at least 23 of 36 

autosomal T2D loci are unlikely due to single or cumulatively rare disease variants.

Methods

To understand the genetic architecture underlying a complex disease, we seek to identify a 

set of models that are plausible given prior results from ASP linkage and/or case-control 

association studies. We parameterize these models by the genotype relative risk (GRRC) and 

risk allele frequency (RAFC) of a causal variant C. We assume that the causal allele is the 

minor allele and is dominant, that the effects of the disease loci combine multiplicatively to 

determine disease risk, and that we have genotyped a sufficiently dense set of linkage 

markers that the identity by descent (IBD) relationship for the ASP can be observed. We 

assume a disease prevalence of 10%, and a standardized LD coefficient D′ = .6, .8, or 1 

between the causal variant C and a nearby genotyped variant M. We discuss the impact of 

these assumptions in the Discussion.

Power to detect linkage in an ASP study

Let Ni be the number of ASPs sharing i = 0, 1, or 2 alleles IBD at the causal locus. Although 

the specified penetrance model at the causal locus is dominant, we calculate the usual 

additive model based maximum LOD score (MLS) [Risch, 1990]

Given our assumption of a multiplicative relationship between causal loci, power to detect 

linkage using ASPs depends only on the locus-specific relative risks [Risch, 1990].

We calculate power to detect linkage for studies of N = 500, 1,000, and 5,000 ASPs and 

causalb variant RAFC from. 001 to .05. We report results for MLS threshold values of 0 and 

1, representing no or modest evidence for linkage, respectively. For a given RAFC, we 

determine the value of GRRC that results in 95% power to obtain MLS > 0 or 1, using the 

false position method [Press et al., 1992], an algorithm for root finding.

Power to detect association in a case-control study

We assume a GWAS with n cases and n controls. Let C be a causal variant in LD with a 

genotyped marker M. Let RAFM be the risk allele frequency at M and gC and gM be the 

genotypes at C and M, coded as the number of risk alleles (0, 1, or 2). Given RAFC, RAFM, 

and D′, we calculate the conditional genotype probability P(gC | gM). For a specified genetic 

model and disease prevalence, we can then compute the penetrance of gM:
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which will determine the power of association test at a given locus. Under the dominant 

model, P(Y=1 | gC=2) = P(Y=1 | gC=1) = GRRC × P(Y=1 | gC=0). We exclude models with 

large GRRC for which P(Y | gC) > 1 for any genotype gC. Here we assume a single causal 

variant C, but our results can easily be extended to multiple causal variants in the same 

region (see Discussion).

Although the specified penetrance model, P(Y | gC), is dominant, we test for disease 

association at M using the additive-model version of the Cochran-Armitage trend test, as is 

typical in analysis of GWAS data. We calculate the power of the trend test by estimating the 

variance of the test statistic under the alternative hypothesis [Freidlin et al., 2002].

We calculate power to detect association assuming n = 1,000, 10,000, and 50,000 cases and 

the same number of controls and causal variant C and genotyped variant M frequencies .001 

≤ RAFC ≤ .05 and .05 ≤ RAFM ≤ .95. Given RAFC and RAFM, we calculate the GRRC 

value that results in 5% power to detect disease association at M at genome-wide 

significance level α = 5×10−8 using the false position method.

LD in 1000 Genomes Project data

To assess the plausibility of our assumption that there exists a GWAS marker M in strong 

LD with the causal variant C, we evaluate the range of LD values between less common (.

005 < MAF < .05) and common (MAF > .05) chromosome 1 variants identified in 283 

European samples in the 1000 Genomes Project August 2010 release (http://www.

1000genomes.org/). We first examine the distribution of maximum r2 values for each less 

common variant among the less common variant-common variant pairs, and then examine 

the D′ values between the less common variant and common variant with the maximum r2. 

We limit our attention to common variants within a 1000-SNP (~250kb) window of each 

less common variant.

Application to type 2 diabetes (T2D)

We illustrate how existing ASP linkage and case-control GWAS results provide information 

on plausible models for variants underlying complex diseases using results for type 2 

diabetes. We carried out a joint analysis of data from 23 linkage studies as part of the 

International Type 2 Diabetes Linkage Analysis Consortium [Guan et al., 2008; unpublished 

results]. Here, we restrict our attention to an ASP linkage analysis of 6,552 individuals in 

2,315 families of European ancestry, equivalent to ~4,200 ASPs, using the approximation 

that m affected siblings correspond approximately to m-1 independent ASPs [Hodge 1984]. 

In this study, the largest MLS was ~2.2, and for ~54% of the genome, MLS = 0. For T2D 

linkage results, we calculate power as above based on 4,200 ASPs, using the observed MLS 

from the linkage study at that location as the MLS threshold for power calculations 

[unpublished results].
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Published European ancestry association studies of T2D have identified 36 autosomal T2D 

loci using standard case-control analysis (Table 1), most from GWAS. To place the T2D 

linkage and association results on the same map, we linearly interpolate positions for the 36 

T2D-associated variants onto a genetic map of 2,164 microsatellite markers from our 

linkage analysis based on their physical positions in NCBI build 36.1. We identify the 

plausible genetic models at these 36 loci given the observed linkage and association results. 

At each locus we calculate power to detect linkage and association as above. To minimize 

possible overestimation of genetic effect owing to the “winner’s curse” (for example Zöllner 

and Pritchard, 2007), we use results from the largest available follow-up cohort when 

possible (28 variants), or alternatively from the largest available GWAS (8 variants where 

discovery samples are ~40% of the total sample). For T2D association results, we calculate 

power as described above, using the sum of the effective numbers of genotyped cases and 

controls in each study as sample size, the observed RAFM in controls as the population 

allele frequency, and the observed association p-value as the significance threshold.

Results

Here we address the range of plausible model parameters (RAFC and GRRC) for rare or less 

common causal variants (RAFC < .05), assuming a dominant genetic model for a genomic 

region given results from prior linkage and/or (common variant) association studies. To do 

so, we compute the power to detect linkage and/or association as a function of genetic 

model.

Range of plausible models given no or modest evidence for linkage

Complex disease linkage studies generally reveal no (MLS = 0) or modest (MLS ≤ 1) 

evidence for linkage for most of the genome. We explore the range of genetic model 

parameters consistent with these observations. Figure 1 displays values for GRRC that result 

in 95% power to observe MLS > 0 or MLS > 1 given analysis of N = 500 to 5,000 ASPs as a 

function of risk allele frequency RAFC.

Assuming a causal variant exists, models (RAFC, GRRC) above the power curves in Figure 

1A have ≥ 95% probability of showing at least some evidence for linkage (MLS > 0), and 

therefore such variants are unlikely to be present in a region with no evidence of linkage 

(MLS = 0). For example, given N = 5,000 ASPs, a causal variant with RAFC = .01 and 

GRRC > 2.9 or with RAFC =.05 and GRRC > 1.9 has ≥ 95% power to achieve MLS > 0, 

suggesting these models are unlikely at a locus with no evidence for linkage. Similarly, 

given N = 5,000 ASPs and MLS = 1, a causal variant with RAFC = .01 is unlikely to have 

GRRC > 3.9 (Figure 1B). As expected, all else being equal, the larger the linkage study 

sample, the more restricted the set of plausible models.

Range of plausible models given significant evidence for association

Genome-wide significant associations with common SNPs have been reported for many 

common diseases (http://www.genome.gov/gwastudies/). We explore the range of models 

(RAFC, GRRC) for which a disease association could be explained by a rare or less common 

causal variant(s). Figure 2 shows values of GRRC that lead to 5% power to detect 
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association (p < 5×10−8) at SNP M with RAFM = .05–.95, assuming a study of n cases and n 

controls (n = 1,000 to 50,000) and D′= 1 between the genotyped variant M and causal 

variant C. Models below the power curves have < 5% probability of achieving such 

evidence for association for a genotyped variant M in high LD (D′ = 1) with the causal 

variant C. We have chosen 5% power so that a causal variant C with a small chance of 

underlying a common variant M association (based on GRRC and RAFC) will be considered 

as plausible, given the current 10s to 100s of associated loci for common diseases.

For example, given n = 10,000 cases and 10,000 controls, a causal variant with RAFC = .01 

and GRRC < 3.4 has < 5% power to achieve genome-wide significance (p < 5×10−8) at a 

genotyped variant M (D′ = 1) with RAFM = .3, suggesting these models are unlikely to 

explain the corresponding association at M. Holding the significance level and sample size 

constant, a marker with larger GRRM will yield a more limited set of plausible genetic 

models (Figure 2). We also estimate the plausible range of models assuming D′ = .8 or .6 

between the causal variant C and genotyped variant M (Supplemental Figure 1). For a given 

significance level and RAFC, a causal variant with D′ < 1 requires larger GRRC to reach the 

same power as a causal variant with D′ = 1, resulting in a more limited set of plausible 

models.

Range of plausible models given results from association and linkage studies

For complex diseases for which both linkage and association scans have been carried out, 

we observe no evidence for linkage (MLS = 0) in most regions of the genome, and some of 

these regions may contain genome-wide significant association results (p < 5×10−8). Figure 

3 A shows values of GRRC that result in 5% power to detect association (p < 5×10−8) at 

genotyped variant M given n = 10,000 cases and n = 10,000 controls, and 95% power to 

detect at least some evidence for linkage (MLS > 0) given 1,000 ASPs, as a function of 

RAFC, assuming D′ = 1 between the causal and common GWAS variant. The models above 

the 5% power curve for association but below the 95% power curve for linkage (shaded area 

in Figure 3) are consistent with strong evidence for association (p < 5×10−8) and no 

evidence for linkage (MLS = 0) at the corresponding position. Here, significant evidence for 

association (p = 5×10−8) and no evidence for linkage (MLS = 0) suggest RAFC > .014.

Figure 3B and 3C shows values of GRRC for D′ = .8 or D′ = .6 as a function of RAFC that 

result in 5% power to detect association (p < 5×10−8) at genotyped variant M given n = 

10,000 cases and n = 10,000 controls, and 95% power to detect some evidence for linkage 

(MLS > 0) given 1,000 ASPs. Again the shaded areas in the figures are consistent with 

strong evidence for association (p < 5×10−8) and no evidence for linkage (MLS = 0) at the 

corresponding position. In these scenarios, the range of plausible RAFC values is more 

extensive than those for D′ = 1. For example, significant evidence for association (p = 

5×10−8) and no evidence for linkage (MLS = 0) suggest RAFC > .043 for D′ = .6 and RAFC 

> .022 for D′ = .8 compared to RAFC > .014 for D′ = 1.

Observed D′ and r2 in 1000 Genomes data

In practice, the LD between an unidentified causal variant C and a common associated 

variant M is unknown. To explore the LD between common and less common and variants, 
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we examine sequence data on 283 European subjects from the 1000 Genomes Project (http://

www.1000genomes.org/). We calculate D′ and r2 between 268,287 less common SNPs (.005 

< MAF < .05) and 423,648 common SNPs (MAF > .05) on chromosome 1, limiting our 

attention to pairs of SNPs within ~250 kb of each other.

Given a causal variant in the region, the most strongly associated GWAS variant is expected 

to be the common GWAS variant in highest r2 with the causal variant. For every less 

common 1000 Genomes Project SNP we identify the common 1000 Genomes SNP in 

highest r2. We find that the best common pairing SNPs usually have RAFM < .3 (Figure 4). 

We also find that 49% of the maximum r2 SNP pairs have D′ = 1, 67% have D′ ≥ .8, and 

88% have D′ ≥ .6, which suggests that an assumption of D′ = 1 between the common 

associated variant and the causal SNP would cause the bounds on RAFC to be too wide 

about half the time.

Example: type 2 diabetes (T2D)

Many linkage and association studies have been carried out for T2D. Perhaps the largest 

single linkage study was one based on the equivalent of 4,200 ASPs with European ancestry 

carried out by the International Type 2 Diabetes Linkage Analysis Consortium [Guan et al. 

2008; unpublished results]. This study found no genome-wide significant evidence for 

linkage, and a maximum MLS genome-wide of ~2.2. In contrast, published GWAS and 

candidate gene association studies in European ancestry samples (through October 2011) 

have reported genome-wide significant association (p < 5×10−8) at 36 autosomal loci using 

the standard case-control test (Table 1, Figure 5). For these 36 T2D loci, we observe that 

higher MLS are modestly correlated with lower RAFM (r = −.31, p= .06), suggesting that at 

least some of the linkage peaks may be detecting rare or less common underlying causal 

variants (Supplementary Figure 2). Likewise, 29 of the 36 T2D-associated SNPs are at 

positions with MLS > 0 (p-value = .0002 compared to an expectation of 50%, or p-value =.

0009 compared to the observed proportion of 54%).

Using the observed T2D linkage and association results, we estimate the range of plausible 

RAFC (Table 1) assuming D′ = 1 between the causal variant and a common GWAS variant. 

Thirteen association signals could plausibly be explained by a very wide range of risk allele 

frequencies RAFC including RAFC < .005. Four of the five loci with the smallest plausible 

combined RAFC (< .001) have modest evidence for linkage (0.82 < MLS < 1.22) and 

association RAFM < .30. For the 23 other association signals, the associations are unlikely to 

be explained by one or more causal variants with combined RAFC < .005, and for four of 

these (TCF7L2, ADCY5, CENTD2, CDKN2A/B), combined RAFC < .05 is unlikely. In 

these regions, a GWAS study with a dense marker set with good coverage for variants with 

MAF > .01 might well result in the causal variant being genotyped or tagged by genotyped 

markers.

Discussion

We have sought to determine the range of disease models consistent with existing linkage 

and/or association results. Specifically, we have focused on determining the minimum 

plausible risk allele frequency RAFC and corresponding genotype relative risk GRRC for 
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variants at a given locus assuming a single causal variant underlies an association signal. 

Our results show that a linkage study alone or an association study alone can restrict the 

plausible magnitude of GRRC, while all RAFC in the range we consider remain possible. 

Joint consideration of linkage and association results can further reduce the set of plausible 

models. In particular, at loci with significant evidence for association and no evidence for 

linkage, one or more causal variant(s) with a low summed risk allele frequency may be 

implausible.

To calculate the power for linkage and association tests, we have made several assumptions. 

First, we assume that only a single causal variant C exists in the region of interest in our 

power calculation. If multiple causal variants are present within the region, the linkage 

signal will reflect the combined effects of all causal variants. Using linkage results alone, 

our estimates of the causal allele frequency would approximately correspond to the sum of 

the risk allele frequencies; individual causal variants could be much rarer. In contrast, the 

impact of multiple variants on a given common association signal is more complex as the 

observed signal will only reflect the causal variants in LD with the tested common allele. 

Wang et al. [2010] and Dickson et al. [2010] have described scenarios where multiple rare 

causal variants could contribute to an apparent common variant association, a phenomenon 

they termed “synthetic association” (Wang et al. [2010]). If all causal alleles occur on 

haplotypes with the associated common allele, the synthetic causal marker will have a D′ = 1 

with the common associated marker. In contrast, if the causal alleles occur on haplotypes 

with and without the associated allele, the synthetic causal marker will have a D′ < 1 with 

the common associated marker. These two scenarios described above are analogous to the 

ones shown in Figure 3A and B. If p-value = 5 × 10−8 is observed for a common marker and 

the underlying synthetic causal marker has a D′ = .8 with the common marker, analysis 

assuming a D′ = 1 (Figure 3A) will yield a lower estimate of the minimum plausible 

cumulative RAFC than analysis under the true model of D′ = .8 (Figure 3B) (RAFC of .014 

vs .022 in this scenario). Thus, as in the case of a single causal marker, we will 

underestimate the lower bound of RAFC assuming D′ = 1. Estimates of minimum plausible 

cumulative RAFC for multiple causal variants under different assumptions of D′ can be used 

to construct more realistic simulations of multiple rare variants RAFC and GRRC. This will 

aid in the estimation of the power of burden tests (e.g. Li and Leal, 2008) for given regions.

Second, we assume a dominant model at each disease locus. Since we focus on models with 

uncommon or rare risk variants, risk allele homozygotes are rare, and so dominant, additive, 

and multiplicative models are essentially equivalent. A recessive model would result in very 

rare homozygotes and is not considered. Third, we assume the minor allele of variant C is 

causal. If instead the minor allele is protective, associations detected with high frequency 

RAFM might be inconsistent with rare risk causal variants but consistent with rare protective 

variants. Fourth, for linkage, we assume fully informative markers. If the markers are not 

fully informative, our estimation results would give a smaller range of plausible models 

(higher RAFC and lower GRRC). All our assumptions, except for the assumptions of known 

IBD in linkage studies and no winner’s curse for the association results (see below), are 

conservative in the sense that they should result in less strict bounds on our model 

parameters: the minimum plausible RAFC would be higher and/or the maximum plausible 

GRRC would be lower if the assumptions are violated.
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We explore plausible models for 36 T2D variants identified by large-scale association 

studies in European ancestry populations in combination with results from a T2D linkage 

study based on the equivalent of ~4,200 ASPs. Our results suggest that 23 of the 36 

association signals are unlikely to have been caused by causal variants with combined RAFC 

< .005, and four of these are unlikely to have been caused by causal variants with combined 

RAFC < .05. Multiple assumptions underlie these results. We assume that D′ = 1 between 

the causal variant and the associated variant. This assumption will yield the widest range of 

plausible models, as it assumes that all of the causal alleles are on the same haplotype as the 

common risk allele. In the 1000 Genomes Project data, 51% of the maximum r2 variant pairs 

have D′ < 1 so our estimates for the plausible range of models may be too wide for these 

loci. For example, for the CDC123/CAMK1D locus the minimum plausible MAFC is .001 

with D′ =1 and .004 for D′= .6. The majority of the significance thresholds used in our 

calculations are based on results from follow-up samples. However, for eight variants the 

discovery samples make up ~40% of the effective association sample size and our results 

could be impacted by the “winner’s curse”. This could cause overestimation of the strength 

of the association, and thus our estimate of the minimum plausible RAFC maybe too high. 

This concern is balanced by our use of a fairly conservative 5% power to detect the observed 

association which may have caused us to underestimate the MAFC and overestimate GRRC 

for some loci. To explore the sensitivity of the minimum MAFC and maximum GRRC 

estimates to the set power thresholds, we repeated our analysis using 50% power for 

association (i.e. assuming the observed OR is the true effect size rather an overestimate of 

the true effect size) and 80% power for linkage (Supplementary Table 1). As expected, we 

found a greater number of loci that were inconsistent with the cumulatively rare causal 

variants. Specifically, we found that 30 (compared to 23) of the 36 association signals are 

unlikely to have been caused by causal variants with combined RAFC < .005, and 14 

(compared to 4) of these are unlikely to have been caused by causal variants with combined 

RAFC < .05. For one association signal (CDKN2A/B) no plausible model could be found 

under this assumption, due to the large value of RAFM and strong evidence for association 

but no evidence for linkage. Under either set of power assumptions, our results suggest that 

the causal variant(s) for many T2D loci may already have been detected by the 1000 

Genomes and other sequencing projects. However, even for these loci, re-sequencing may 

be useful to identify other independent disease variants. For the other loci for which the 

summed frequency of causal variants may be < .005, sequencing studies may be particularly 

important for variant detection, since such uncommon variants may not have been identified 

in existing catalogues.

In summary, we estimate ranges of plausible genetic models based on results from 

association and/or linkage studies for complex diseases. Given no or modest evidence for 

linkage in a region of interest, we can estimate an upper bound on the GRRC of potential 

rare or less common variants. Similarly, in the presence of association with a common 

genotyped variant, we can estimate a lower bound on the GRR for the causal variant. Taken 

together, significant evidence for association and no or modest evidence for linkage allow a 

joint estimate of a lower bound for MAFC and upper bound for GRRC. Our approach 

provides a useful starting point for modeling genetic architecture of complex diseases and 

has allowed us to identify T2D loci more likely to be caused by common variants. The 
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knowledge of plausible genetic models for a given region will aid in estimating the power of 

burden tests(for example Li and Leal, 2008) for a given sample size and sequencing depth, 

and will allow more efficient design and interpretation of sequencing studies. Software to 

carry out this sort of analysis is available (in Stata code) at http://www.biostat.umn.edu/

~wguan/software/.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect some 

evidence for linkage at MLS > 0 and MLS > 1.
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Figure 2. 
Genotype relative risks at causal variant C (GRRC) that result in 5% power to detect 

association (p < 5×10−8) at genotyped variant M using n cases and n controls. We assume 

disease prevalence 10% and D′ = 1 between M and C.
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Figure 3. 
Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect some 

evidence for linkage (MLS > 0) using 1,000 ASPs and 5% power to detect association (p < 

5×10−8) at genotyped variant M with RAFM = .5 using n = 10,000 cases and n = 10,000 

controls. The shaded area is the estimated range of plausible models. We assume disease 

prevalence 10% and D′ = 1, 0.8, and 0.6 between M and C.
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Figure 4. 
Frequency distribution of best pairing alleles for less common (.005 < MAF < .05) variants 

in 1000 Genome Project sequence data (August 2010 release). We define the best pairing 

alleles as having the highest r2 but lowest minor allele frequency.
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Figure 5. 
T2D linkage maximum lod scores (MLS) from the International Type 2 Diabetes Linkage 

Analysis Consortium (families of European origin) (solid line) and significant T2D 

associations from various sources (Table 1) (diamonds).
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