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Abstract
We propose efficient nonparametric statistics to compare medical imaging modalities in multi-
reader multi-test data and to compare markers in longitudinal ROC data. The proposed methods
are based on the weighted area under the ROC curve which includes the area under the curve and
the partial area under the curve as special cases. The methods maximize the local power for
detecting the difference between imaging modalities. The asymptotic results of the proposed
methods are developed under a complex correlation structure. Our simulation studies show that
the proposed statistics result in much better powers than existing statistics. We applied the
proposed statistics to an endometriosis diagnosis study.
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1. Introduction
In medical imaging studies, one is concerned about whether a newly developed imaging
modality is more accurate than traditional modalities to correctly discriminate a subject with
abnormal lesions from a subject without such lesions. Imaging modalities are considered as
an example of diagnostic markers, which are used to distinguish a subject with a particular
condition (“the diseased”) from a subject without the condition (“the non-diseased”). For
diagnostic markers that generate binary test results, their accuracy can be summarized in
terms of sensitivity (probability of identifying a diseased subject when the disease truly
exists) and specificity (probability of correctly ruling out a non-diseased subject when the
disease is truly absent). For diagnostic markers that generate discrete or continuous test
results, the receiver operating characteristic (ROC) curve is a standard statistical tool to
describe and compare the accuracy of markers [1]. The ROC curve combines all possible
pairs of sensitivities and 1–specificities from different decision thresholds and thus describes
the accuracy of markers apart from decision thresholds.
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For correlated results from two diagnostic markers, parametric and nonparametric methods
have been proposed to compare ROC summary measures. Parametric methods for the area
under the curve (AUC) assume distributions (e.g. negative exponential, normal, lognormal,
gamma) on marker measurements [2, 3]. These methods may not perform well if the
parametric assumptions are invalid. The semiparametric ROC estimation based on the
logistic regression is proposed by [4]. As an alternative, nonparametric methods do not
require distribution assumptions and are robust to model misidentification. Nonparametric
methods to estimate and compare two AUCs have been proposed by [5], [6], and others.
These methods are based on results for U-statistics because an empirical AUC statistic is
essentially a Wilcoxon rank sum statistic [7]. However, if two ROC curves intersect, their
AUCs may be equal and do not provide valid information for the comparison. Moreover,
summarizing the entire ROC curve may include irrelevant information about the marker’s
accuracy when one is only interested in some range of specificities. For example, acceptable
specificities are high for early cancer detection tests. The partial area under the curve
(pAUC), which summarizes part of the ROC curve in the range of desired specificities, may
be a better alternative. Nonparametric methods to compare pAUCs are proposed by [8].
Utilizing the pAUCs is particularly important in comparing markers which are developed to
screen a large population for certain diseases, for example, breast cancer [9]. A lower
specificity for a large population leads to many more falsely classified non-diseased subjects
who may have to undergo a more invasive test subsequently. It is thus desired to compare
screening markers at a higher range of specificities.

In this paper we propose efficient nonparametric ROC statistics to analyze multi-reader
multi-test ROC data and to nonparametrically summarize correlated longitudinal ROC data.
The proposed method not only includes many nonparametric ROC summary measures as
special cases, but also maximizes the local power for detecting the difference between
markers. The rest of the article is organized as follows. In Section 2 we introduce the new
statistics for multi-reader multi-test ROC data and longitudinal ROC data, and discuss the
equivalence between our statistics and the generalized Wilcoxon statistics under specific
assumptions. Section 3 gives the variance expressions for the proposed statistics. Section 4
reports simulation results to illustrate the small sample performance of the proposed ROC
statistics and their theoretical variances. Section 5 applies the proposed method to a real
example on the diagnosis of endometriosis. Section 6 gives some discusion.

2. Methods
2.1. Definition of nonparametric ROC summary statistics

We first define some notations. Suppose test result Xℓip of marker ℓ is from the pth abnormal
location in the diseased subject i, where ℓ = 1, …, L, p = 0, 1, …, mℓi, and i = 1, … M. Test
result Yℓjq of marker ℓ is from the qth normal location in the non-diseased subject j, where ℓ =
1, …, L, q = 0, 1, …, nℓj, and j = 1, … J. Here the total number of subjects is N = M + J. The
joint pairwise cumulative function of (Xℓ1ip1, Xℓ2ip2) is taken to be SD,ℓ1,ℓ2(x1, x2), p1, p2 = 1,
…, mℓi, with marginal survival functions Xℓip ~ SD,ℓ(x). Similarly we define (Yℓ1jq1, Yℓ2jq2) ~
SD̄,ℓ1,ℓ2(y1, y2), q1, q2 = 1, …, nℓi, with survival functions Yℓjq ~ SD̄,ℓ(y1, y2), q1, q2 = 1, …, nℓi
with marginal survival functions Yℓjq ~ SD̄,ℓ(y). The ROC curve for the ℓth marker is then

given by , where the false positive rate (FPR) u is in [0, 1]. The
resulting ℓth weighted area under the curve (wAUC) is

(1)

with a probability measure W(u) defined on u, for u ∈ [0, 1]. Included in this class of
accuracy measures are AUC, pAUC between FPRs u1 and u2, and the sensitivity at a given
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level of FPR u0. W(u) can also be defined as certain distribution functions, such as the beta
cdf, to assign varying weight to the specificity. The detailed discussion is in [10].

By substituting the functions SD,ℓ and SD̄,ℓ with their respective empirical function  and

, the nonparametric wAUC estimator is given by . The

empirical survival functions  and  are defined

(2)

Denote Ω = (Ω1, Ω2, …, ΩL). By substituting  and  in Equation (1), the nonparametric

estimator of Ω is given by .

We define W(u) = u for 0 < u < 1 to obtain the nonparametric AUC estimator for the ℓth
marker as follows

(3)

The AUC statistic in (3) takes the form of the Wilcoxon rank-sum statistic. It essentially
compares the measurements of abnormal locations with those of normal locations. To
calculate this statistic, we obtain every possible pair of measurements from an abnormal
location and a normal location. We assign 1 if the abnormal location’s measurement is larger

than the normal location in the pair, and 0 otherwise.  is then calculated by averaging the
1’s and 0’s over all possible pairs. Since the location within each subject is viewed as the
unit of sampling, the inference based on the regular Wilcoxon rank-sum statistic is not valid
here.

When W (u) = (u - u1)/(u2 - u1) for 0 < u1 ≤ u ≤ u2 < 1,  empirically estimates the partial
AUC (pAUC), and its explicit form is given by

(4)

The pAUC statistic in (4) uses all measurements from the abnormal locations. Since the
pAUC is specified to be in the range of (u1, u2), only measurements from the normal

locations which fall in ( ) are used in (4). That is, we sort all measurements
from the normal locations from the smallest to the largest, and obtain the order statistics

, and , where [x] denotes the smallest integer greater than or equal to
x. We then calculate the Wilcoxon rank-sum like statistic by comparing all X’s with Y’s

which are between  and . The pAUC statistic is useful in disease
screening when a high FPR would lead to a large number of falsely diagnosed subjects. It is
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desirable to evaluate and compare the marker accuracy at the low FPRs rather than the entire
range of FPRs. When we are interested in the sensitivity of the ℓth marker at a particular

threshold, say c, we can specify the probability measure to be a point mass at .

The estimator  then becomes

(5)

The estimator in (5) is obtained by comparing all X’s with .

In the following sections, we propose efficient nonparametric methods based on the
nonparametric estimator of Ω to evaluate and compare multiple markers in multi-reader
multi-test ROC Data and longitudinal ROC data.

2.2. Multi-reader multi-test ROC data
One type of complex marker data arise frequently in medical imaging studies when
radiological images of a patient are evaluated by several radiologists. [11] consider a mixed-
effect ANOVA model while allowing for correlation among AUC estimators. Their model
requires a specific covariance structure among the AUCs. [12] propose a pseudo-generalized
estimating equation method and derive large sample theory for the estimators. Their method
remains valid under the working-independence assumption.

In a multi-reader multi-test ROC study, suppose the radiologist r, r = 1, …, R, rates images
for M diseased subjects and J non-diseased subjects from ℓ imaging devices. A radiologist
can give one or more ratings to suspicious locations in each subject, that is, mℓi, nℓj ≥ 1. We
consider L = 2. Denote Ω1, …, ΩR as wAUCs from R readers for modality 1, ΩR+1, …, Ω2R
as wAUCs from R readers for modality 2. Common nonparametric approaches for
comparing imaging modalities take the difference Ωr - ΩR+r between two devices for reader
r, and then average these differences over all reader [13]. We can see that such methods are
a special case of the linear combination of the weighted AUC statistics for reader-modality
combinations. Rather than the simple average of all Ωr - ΩR+r’s, we propose to use the
following weighted linear combination to possibly achieve a higher power to compare
markers

(6)

with positive and bounded weights . The parameter Ωm can be empirically
estimated by

which compares two modalities with multiple readers.

Various choices of weights exist in the ROC literature. W̃ may not depend on the data. For
instance, if all readers are assumed to be homogeneous with regard to their accuracy of
rating images, an equal weight wr = 1/R can be assigned to reader r, r = 1, …, R. Then with
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mℓi = nℓj = 1 and W (u) = 1 at 0 < u < 1,  becomes the AUC statistic in [13]. When one has
to estimate W̃ from the data, the consistency of estimated weights Ŵ in probability is
required for the derivation. For instance, a set of optimal weights is introduced by [14] and
further developed by [15], who argues that when readers’ experience vary greatly, using
equal weights may yield a biased AUC estimate. Let the R × R covariance matrix of

estimated AUC differences, , be ΣA, and its consistent estimator

. They then choose  to obtain a consistent estimator for the AUC difference, where
1 is a R-dimensional vector of one’s. [14] and [15] show that this set of weights are optimal
since they maximize the local power to detect the AUC difference between imaging
modalities. It is clear that by combining these weights with mℓi = nℓj = 1 and W (u) = 1 at 0 <

u < 1,  becomes [15]’s statistic. To properly calculate the weights for the proposed

statistic, we need to obtain the covariance matrix Σ of . Since in practice Ω
is unknown, its consistent estimator  can be obtained using the explicit expression (A.1)
derived in the Appendix. Since Σ and ΣA is related via

where the rth column of the 2R × R matrix A has 1’s at rth and (R + r)th rows and 0 at other
rows, the estimated weights are given by

(7)

2.3. Longitudinal biomarker data
Another example of complex marker data comes from longitudinal studies when marker
measurements are taken at several times during the studies. Most methodology for
longitudinal ROC data rely on appropriate assumptions on the distributions of marker
measurements [16]. In longitudinal ROC data, suppose L markers are measured on M
diseased patients and J non-diseased patients at times t1, t2, …, tK.

Suppose each subject is repeatedly measured for every marker at each time. Let Xℓipk denote
the test result of marker ℓ in the pth repetition on the diseased subject i at time tk, where ℓ = 1,
…, L, p = 1, …, mℓik, i = 1, …, M, and k = 1, …, K. Let Yℓjqk denote test result of ℓth marker
on the pth repetition in the non-diseased subject j at time tk, where ℓ = 1, …, L, q = 1, …,
nℓjk, j = 1, … J, and k = 1, …, K. The nonparametric wAUC estimator for the ℓth marker is

then given by , where  and  are defined by

(8)

By defining W (u) accordingly in the wAUC estimator, we obtain the nonparametric AUC
estimator for the ℓth marker:
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the partial AUC estimator:

and the sensitivity estimator at the FPR of u0,

We define h to be a real-valued function of . Here the function h is defined on , and has
continuous partial derivatives of order 2. Let the ROC summary measure be Δh = h(Ω). Its
empirical estimator is given by

(9)

The statistic above can be used to compare two longitudinal markers when h is a linear

contrast.  also includes a broad range of ROC statistics. It is the weighted AUC statistic in
[17] and later in [10] for evaluating and comparing markers. When W (u) = 1 at 0 < u < 1

and h is a linear function,  is the generalized AUC statistic in [13]. When W (u) = 1 at 0 <

u < 1,  is the AUC statistic in [18], assuming no correlation between X and Y, which
allows for multiple observations per patient from each marker. When W (u) = (u - a)/(b - a)

for 0 < a < u < b < 1 and h(Ω1, Ω2) = Ω1 - Ω2,  is the pAUC statistic in [8] for comparing
two markers.

When there are two longitudinal markers in the study, the optimal combination for
comparing the two markers can be obtained using the similar steps in the aforementioned
multi-reader multi-test studies. Suppose ℓ = 2. Let Ωl,k be the wAUC of marker l, l = 1, 2, at

time tk and  be its nonparametric estimator given by ,

where  and  are defined by

(10)
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Note that the estimation of Ωl,k is based on every individual time point. One can take
difference of the wAUCs of two markers, and simply average these differences over all time
points. We may also use the following weighted linear combination to possibly achieve a
higher power to compare markers

(11)

with positive and bounded weights . The parameter Ωℓ can be
empirically estimated by

Similarly as in the previous section, the 2K × 2K covariance matrix Σ of 
can be estimated can be obtained using the explicit expression in (A.1). Thus the estimated
weights are given by the same expression as (7).

3. Asymptotic variance expressions of the proposed statistics
In this section we derive the asymptotic variances for the proposed statistics in the multi-
reader multi-test data and the longitudinal data. We first show the explicit variance

expressions for , and then show the variance expression for the more general statistic 
in (9) for the longitudinal data.

The numbers of abnormal locations within a diseased subject may differ, and so are the

numbers of normal locations within a non-diseased subject. Denote , and

. Assume that SD,ℓ and SD̄,ℓ have continuous and positive derivatives, , and

. In Appendix we show that the proposed statistic, , for the multi-reader multi-test

ROC data is asymptotically normal when sample sizes are large. The variance of  has the
following expression when sample sizes get large:

(12)

with

and
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where I(ℓ1, ℓ2) = 1, if |ℓ2 - ℓ1| < R, and 0, otherwise, and

The marginal and joint survivor functions can also be empirically estimated.

Denote , and . we show in Appendix that the proposed

statisatic,  in (9) for the longitudinal data is also asymptotically normal, and the variance

of  takes on the following form when sample sizes are large,

(13)

where

and

where

The empirical or other type of smoothed estimators for the marginal and joint survivor
functions SD,ℓ, SD̄,ℓ, SD,ℓ1,l2(x1, x2), and SD̄,ℓ1,l2(y1, y2) can be used to estimate vX and vY. In
the simulations and the example, we used the empirical estimators. That is, we estimate SD,ℓ
and SD̄,ℓ using the expressions in (8). And we estimate SD,ℓ1,l2(x1, x2), and SD̄,ℓ1,l2(y1, y2) as
follows:

Thus, when Δ’s are AUCs, vX is given by
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and vY is given by

4. Simulation studies
We report simulation studies to evaluate the finite sample property of the proposed statistics.
We simulated both multi-reader multi-test ROC data and longitudinal data. In multi-reader
multi-test data, we considered the finite sample performance of the variance expression.
More importantly, we compared the simulated powers of the equal weight and the optimal
weight introduced in Section 2.2. We expect that the optimal weight results in better power
than the equal weight. In longitudinal data we considered the general setting where each
subject is diagnosed repeatedly at each time point and the number of repeated measures
varies from subject to subject.

4.1. Multi-reader multi-test data
In the first simulation study we investigated the finite sample accuracy of the variance
expression for multireader multitest data. We let mℓi = nℓj = 1, R = 3, and ℓ = 2. We simulated
1000 datasets under multivariate normal and lognormal distributions:

1. X ~ N(μX, ΣX) and Y ~ N(μY, ΣY), where μX = (1, …, 1), μY = (0, …, 0) and ΣX =
ΣY is the variance-covariance matrix with diagonal elements (1, 1.5, 2, 1, 1.5, 2)
and correlation coefficient, ρ;

2. X ~ LogNormal(μX, ΣX) and Y ~ LogNormal(μY, ΣY).

From simulated data we used the proposed statistic in Section 2.2,  to
estimate the AUC by defining the weight function W (u) = 1, for 0 < u < 1), and the pAUC

by defining W (u) = 1, for 0 < u < 0.6; 0 otherwise. A 95% confidence interval for  was
obtained using the variance expression derived in (13). Table 1 shows biases, square root of
mean squared errors (RMSE), and simulated coverage of confidence intervals. It is clear
from the table that coverage levels are close to the nominal level, and biases for comparing
AUCs or pAUCs are close to zero. This shows good performance of our estimator and
associated asymptotic results.

In the second simulation study we compared the performance of the proposed method with
the parametric method by [3] and the semiparametric logistic regression method by [4] with
regard to estimating the AUC. We used the same setting as the first simulation study except
changing μX to (1, 1, 1, 1.5, 2, 2.5). The biases and RMSEs from the three methods are
shown in Table 2. The results indicate that the proposed method and the semiparametric
method perform much better than the parametric method when the distribution assumptions
are violated. They also indicate that the semiparametric method performs as well as the
proposed method. This is not surprising as can be seen from the description of the
semiparametric method in Section 2 of [4]. The logistic regression fits the regression
parameters based on the following equation:
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where D is the disease status (with 1 being the diseased, and 0 being the non-diseased), β0
and β1 are regression parameters, and Z is the test result. After the regression parameter

estimators,  and , are obtained, the empirical ROC curve is estimated based on the new

score, . Since the ROC curve is invariant to monotonic transformation, the
empirical ROC curve based on the new score remains the same as the empirical ROC curve
from the original test results.

In the third simulation study we compared the simulated powers using the optimal weight
versus the equal weight. We again let mℓi = nℓj = 1, R = 3, and ℓ = 2. We simulated 1000
datasets under multivariate normal distributions: X ~ N(μX, ΣX) and Y ~ N(μY, ΣY), where
μX = (2, 1, …, 1), μY = (0, …, 0) and ΣX = ΣY is the variance-covariance matrix with
diagonal elements (1, 1.5, 2, 2, 3, 2) and correlation coefficient, ρ. We selected m = n in
(50,100), and ρ in (−0.1, 0.2, 0.5). For each simulated data, we estimated the weighted
differences in (2.2):

with both equal weights (wr = 1/3) and the optimal weights given in (7). The AUC was
estimated by defining the weight function W (u) = 1, for 0 < u < 1), and the pAUC was
estimated by defining W (u) = 1, for 0 < u < 0.6; 0 otherwise. The simulated power was then
calculated as the number of rejections out of 1000 simulated datasets. Table 3 shows the
simulated powers for the comparison of AUCs and pAUCs. It is clear that the optimal
weights always result in much larger powers than the equal weights.

4.2. Longitudinal biomarker data
In this simulation study we generated multivariate log-normal correlated biomarker data. We
generated data by taking exponential of multivariate normal data Xi ~ N(μX,i, ΣX,i) and Yj ~
N( 0, ΣY,j), where μX,i = (2, …, 2, 1, …, 1), and ΣX,i and ΣY,j are variance-covariance
matrices. We let L = 2, K = 3, M = J = (50, 200). To allow various cluster sizes, we let mℓik
= 2 for the first half of diseased subjects, and mℓik = 4 for the other half. For non-diseased
subjects, let nℓjk = 5 for the first half, and nℓjk = 3 for the other half. We chose ΣX,i = (1 - ρ)M
+ ρ 1i1i′, where Mi is the LKmℓik × LKmℓik identity matrix and 1i is the LKmℓik × 1 matrix
with all elements 1. Similar setting was applied to define ΣY,j. Here ρ gives within-subject
correlation. We let ρ = 0.4 for the diseased and ρ = 0.3 for the non-diseased. We simulated
1000 datasets for each sample size, and obtained the estimate of AUC difference between

two biomarkers, , and its variance. Table 4 shows biases, square root of mean squared
errors (RMSE), and simulated coverage of confidence intervals. This again shows good
performance of our estimator for correlated biomarker data.

5. An example in the diagnosis of endometriosis
The proposed nonparametric ROC summary statistics are applied in this section to data from
a study on endometriosis diagnosis. Endometriosis is a gynecological medical condition in
which endometrial-like cells appear and flourish in areas outside the uterine cavity and is
typically seen in women at their reproductive ages. It has been estimated that endometriosis
occurs in roughly 5%–10% of women. Despite its relatively high prevalence, substantive

Tang et al. Page 10

Stat Med. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and methodological challenges exist, including diagnostic proficiency. The Physician
Reliability Study, an add-on to the Endometriosis: Natural History, Diagnosis and Outcome
(ENDO) Study [19], addressed this issue by investigating whether sequentially added
clinical information of a subject can aid in more accurately diagnosing the disease of
endometriosis. Detailed study designs of ENDO and PRS can be found in the
aforementioned references. For demonstration purpose in this paper, we used review results
of 4 physicians (reviewers) in PRS on 150 participants. All 150 participants had recorded
operative digital images of their pelvic organs and descriptive drawings and notes, both from
surgeons who conducted the laparoscopies on these women in ENDO study. The reviewers
conducted their reviewing and diagnosis under two modalities. Modality one corresponds to
the setting where the reviewers are presented with participants’ digital video/images while
modality two corresponds to the setting where both digital video/images and surgeon’s
reports (drawings and notes) are presented. For each participant under each modality, the
reviewer answered a series questions on what they observe from the clinical information.
These answered were later used to derive the rASRM scores [20] which we used as the
diagnostic outcomes in this paper. The visualized diagnosis from the original ENDO study
of these participants were used as the gold standard.

For the first modality, the estimated AUCs are (0.71, 0.75, 0.63, 0.76) for the four reviewers;
the corresponding numbers are (0.83, 0.85, 0.75, 0.87) for the second modality. With equal

weights wr = 1/4, r = 1, …, 4, the Δ-statistic is , and its variance estimate is
0.0007475. We used (7) to obtain the optimal weights (w1, w2, w3, w4)=(298.08, 401.16,

176.88, 560.48). Using these weights, the Δ-statistic is given by , and its
variance estimate is 0.0006961. This indicates that the Δ-statistic is more precisely
estimated by using the optimal weights. The two-sided p-value using the optimal weights is
2.36 × 10−5, which is slightly smaller than the p-value 2.82 × 10−5 using equal weights. The
two-sided p-values based on both sets of weights are both close to zero, which indicates that
these physicians are able to give more precise diagnosis on endometriosis by reviewing both
digital images and surgeons’ descriptive reports.

6. Discussion
The proposed methods in the paper are nonparametric and can be applied to evaluate and
compare diagnostic markers in the multireader multitest data and the longitudinal data. As
illustrated in the simulation studies and the example, the proposed weighted method in the
multireader multitest data tends to have a larger power than the existing methods. We also
conducted simulation studies to investigate the finite sample performance of the proposed
method in the longitudinal data setting. More complex correlated data in which both normal
and abnormal locations may occur in the same subject have been considered in [21] and
[22]. How to extend the proposed statistics to such a data setting is a future research topic.

As pointed out by a reviewer, the proposed method is based on the empirical distribution
estimators, and may not allow more complicated dependencies of observations in
longitudinal data. For example, in the case of autoregressive dependencies, empirical
estimators could not converge to target probabilities, especially when autoregression
coefficients are greater than one. More research is merited to extend the proposed method in
this direction.
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Appendix: Derivation of variance expression of Δh

Assume that SD,ℓ and SD̄,ℓ have continuous and positive derivatives, , and . Suppose

that M/mℓ → αℓ, M/nℓ → βℓ, M/J → λ, , and ,

as M, J → ∞. Assume that αℓ, βℓ,  and  are finite numbers. In addition, assume that
the function h has continuous partial derivatives of order 2 at each point of an open set (Ω −
ε, Ω + ε), for ε > 0.

where  and  are the first derivatives of SD,ℓ and SD̄,ℓ, respectively.

The asymptotic normality of  is derived using results from [18], which gives that for
markers 1, … L,

where  and  are limiting Gaussian processes. Therefore, after some calculation, it
follows that

(A.1)

where the {ℓ1, ℓ2} element in Σ1 is given by

(A.

2)

and the {ℓ1, ℓ2} element in Σ2 is

(A.3)

The Taylor expansion of  at Ω gives

(A.4)
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where Δh(Ω) is the gradient of h evaluated at Ω. Since the asymptotic variance of the right
hand side in (A.4) is given by

It follows that

(A.5)

Using the covariance structures in (A.2) and (A.3) in (A.5), we can then obtain the

asymptotic normality of  by combining (A.1) with the Cramer-Wold device [23].
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Table 3

Simulated powers for comparing tests

AUC

Equal Weight Optimal Weight

ρ M=J=50 100 50 100

−0.1 0.507 0.741 0.723 0.932

0.2 0.335 0.541 0.659 0.909

0.5 0.327 0.538 0.703 0.936

pAUC

Equal Weight Optimal Weight

M=J=50 100 50 100

−0.1 0.156 0.290 0.316 0.599

0.2 0.141 0.212 0.280 0.584

0.5 0.133 0.187 0.266 0.643
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