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SUMMARY
Recent genome wide association studies have identified CLU, CR1, ABCA7 BIN1, PICALM and
MS4A6A/MS4A6E in addition to the long established APOE, as loci for Alzheimer’s disease. We
have systematically examined each of these loci to assess whether common coding variability
contributes to the risk of disease. We have also assessed the regional expression of all the genes in
the brain and whether there is evidence of an eQTL explaining the risk. In agreement with other
studies we find that coding variability may explain the ABCA7 association, but common coding
variability does not explain any of the other loci. We were not able to show that any of the loci had
eQTLs within the power of this study. Furthermore the regional expression of each of the loci did
not match the pattern of brain regional distribution in Alzheimer pathology.

Although these results are mainly negative, they allow us to start defining more realistic
alternative approaches to determine the role of all the genetic loci involved in Alzheimer’s disease.
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INTRODUCTION
The recent application of genome wide association studies (GWAS) to the dissection of the
risk for late onset Alzheimer’s disease (AD) has proved an outstanding success and has led
to the identification of many new loci (CLU, PICALM, CR1, BIN1, MS4A6A/MS4A4E,
CD33, CD2AP, ABCA7 and EPHA1) in addition to the long established apolipoprotein E
locus (Harold et al., 2009, Lambert et al., 2009, Hollingworth et al., 2011, Naj et al., 2011).
When such loci are identified, they simply appear as single nucleotide polymorphisms
(SNPs), which have significantly different frequencies between cases and controls. It is not
initially clear whether these risk SNPs are in linkage disequilibrium (LD) with coding
changes or have an impact on gene expression. For all traits studied by GWAS only ~12%
of the associated SNPs are located in, or occur in high LD with, protein coding regions of
genes. The vast majority (~80%) of trait associated SNPs are located in intergenic regions or
noncoding introns (Manolio, 2010). Alzheimer’s disease is no different: taking into account
the 21 SNPs reported in the nine new loci by genome wide association studies assessing
over 1500 cases and 1500 controls (see Supplementary Table 1 for details on the SNPs), 10
are located in intergenic regions; eight in intronic regions; one SNP is located in the 3’UTR
of MS4A6A; and two SNPs are located in exons (one SNP is a non-synonymous variant in
ABCA7 - Gly1527Ala and one synonymous variant was found as significant in PICALM).
These findings clearly indicate that follow up studies should not only examine coding
variability, but should also pay close attention to the potential roles of these intronic and
intergenic regions in the regulation of gene expression (Hardy and Singleton, 2009,
Manolio, 2010, Myers et al., 2007). In fact, for any disease associated SNP the true variant
underlying the phenotype studied may be: 1) the GWAS hit itself; 2) a known common SNP
in LD with the identified GWAS hit; 3) an unknown common SNP or rare single nucleotide
variant tagged by a haplotype on which the hit occurs; or, 4) a linked copy number variant

Holton et al. Page 2

Ann Hum Genet. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Hindorff et al., 2009). In general, GWAS follow up studies rely on fine mapping of the
associated locus or loci, deep resequencing of the associated region(s) in samples of interest
(which allows the identification of all possible functional variants) and a variety of
bioinformatic approaches to prioritize variants to be further studied (Stranger et al., 2011).

Confirmed functional variants underlying validated GWAS hits are still sparse in the
literature, when considering all the diseases and traits studied, but each of these is extremely
valuable to the respective research and clinical environments. For example, the IRF5 locus
includes variants that disrupt intron splicing, decrease mRNA transcript stability, and delete
part of the interferon regulating factor protein (Graham et al., 2007), explaining the
independent associations of this locus with three different phenotypes: systemic lupus
erythmatosis (Graham et al., 2006, Sigurdsson et al., 2005), inflammatory bowel disease
(Dideberg et al., 2007), and rheumatoid arthritis (Stahl et al., 2010). Similarly, allele-specific
chromatin remodelling affecting the expression of several genes in the ORMDL3 locus
region (Verlaan et al., 2009) explains its association with asthma (Moffatt et al., 2007),
Crohn’s disease (Barrett et al., 2008), and type 1 diabetes (Barrett et al., 2009). With this in
mind we have undertaken an analysis of the recently identified AD risk loci with three
components: (1) we have assessed by sequencing whether there is coding variability in
linkage disequilibrium with the associated SNPs (2) we have assessed in a database of
control human cerebral cortex samples whether the SNPs are associated with genetic
variability in expression (3) we have assessed the regional distribution of expression and
splicing of the genes at the risk loci to see whether this distribution is in any way consistent
with the distribution of pathology in the disease.

MATERIALS and METHODS
GENOTYPING ANALYSIS

Samples—The 96 DNA samples selected for genotyping were previously used in a GWAS
in AD (Corneveaux et al., 2010). These 96 Alzheimer disease samples were diagnosed
according to the NINDS-ADRDA diagnostic criteria for Alzheimer disease, consisting of 67
females and 29 males with a mean age of 81 years (range 66–95) and mean age at onset of
71.9 years (ranging from 65 to 85 years).

SNPs studied—The GWAS SNPs studied were those found to be significantly associated
with late onset Alzheimer’s disease (LOAD) by two recent studies: (Hollingworth et al.,
2011, Corneveaux et al., 2010). For a complete list of SNPs analysed in the present study
please refer to Table 1.

Coding SNPs were chosen based upon their reported minor allele frequency (MAF) or
heterozygosity in dbSNP. For this, publicly available data in dbSNP was used and SNPs
were chosen based upon the fact that they induced a coding change in the resultant protein
and that they had a MAF or heterozygosity greater than 0.05 in the general population. For
CR1, SNPs were excluded if they were located in highly homologous exons in order to
avoid genotyping errors.

Most of the SNPs studied conformed to these specifications, however there were some that
did not and were included in the study because no better proxies were available (such as
rs17259045, rs76037557, rs74727972, rs79741566, rs72973581).

DNA sequencing and data analysis—The genotypes of the coding SNPs used to
establish the linkage disequilibrium structure were determined by Sanger sequencing. The
exon in which the SNP is located was targeted for amplification, or, in the case of intronic
GWAS SNPs, the sequence 150 bases upstream and 150 bases downstream was amplified.
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For the PCR reactions, AmpliTaq Gold ® 360 MasterMix (Applied Biosystems, Foster City,
CA, USA) was used together with specific primers designed using ExonPrimer (http://
ihg.gsf.de/ihg/ExonPrimer.html). For the SNPs rs3752239, rs4147934 and rs4147935,
DMSO was included in the PCR protocol. Each purified PCR product was sequenced using
Applied Biosystems BigDye terminator v3.1 sequencing chemistry and ran on an
ABI3730xl (Applied Biosystems, CA) genetic analyzer as per manufacturer's instructions.
The sequences were analyzed with Sequencher software, version 4.2 (Gene Codes
Corporation, Ann Arbor, MI, USA).

DNA methylation and mRNA expression in the human brain
Tissue samples—Frozen samples from the frontal cerebral cortex and cerebellum were
obtained from 387 Caucasian subjects without neurological disease in lifetime (Gibbs et al.,
2010, Hernandez et al., 2011). Genomic DNA was extracted using phenol-chloroform and
quantified on a Nanodrop1000 spectrophotometer before genotyping or bisulfite conversion
for DNA methylation analysis.

CpG Methylation—Bisulfite conversion of genomic DNA was performed using Zymo
EZ-96 DNA Methylation kits according to the manufacturers protocol, using 1 µg of DNA
input. The CpG methylation status of DNA at >27,000 sites was determined using Illumina
Infinium HumanMethylation27 BeadChips (Illumina Inc., San Diego, CA, USA). Samples
were included in the analysis if the threshold call rate for inclusion of was >95% in the
tissue. As a second quality control, we compared reported genders with methylation levels
of CpG sites on the X chromosome. After these steps, 292 samples with data at 27,465 CpG
sites in the frontal cortex tissue samples, and 27,419 sites in the cerebellum tissue samples
were used for further analysis.

mRNA Expression—Messenger RNA (mRNA) expression was analyzed using Illumina
HumanHT-12 v3 Expression Beadchips. Individual probes were excluded from analyses if
the p-value for detection was > 0.01 and samples were excluded if <95% of probes were
detected. Intensity values for each probe were normalized using cubic spline and
transformed using log2 prior to statistical analyses. Probes were annotated using ReMOAT
tool15 to exclude individual probes that are known to have problems in design or with
ambiguous mapping. We also removed all probes that included any known SNP. After these
quality control steps, data was available for 399 samples at 9814 probes from the frontal
cortex, and 9587 probes in cerebellum.

Genotyping and Imputation of Control Brains in Epigenetic Analyses—The
same tissue samples were genotyped using Illumina HumanHap550 v3, Human610-Quad v1
and Human660W-Quad v1 Infinium Beadchips and shared SNPs were extracted for each
sample. We excluded samples where the reported sex did not match X chromosome
heterogeneity from genotype data or if the per sample genome-wide call rate was less than
95%. Individual SNPs were excluded if there was a < 95% genotyping success rate per SNP,
if minor allele frequency (MAF) < 0.01 or if Hardy-Weinberg equilibrium (HWE) p<
1×10−7. Multi-dimensional scaling was used to cluster samples after merging SNPs common
to CEU, JPT, CHB and YRI samples from Phase II of HapMap. Outliers > 3 standard
deviations from the mean component vector estimates for C1 or C2 for CEU samples were
then removed, as were samples sharing greater than a proportion of 0.15 alleles. Genotypes
for all European ancestry participants were imputed using MACHv1.0.16 with haplotypes
derived from sequencing of 112 European ancestry samples present in the August 2009
release of phased data from the 1000 Genomes Project (available at http://
www.sph.umich.edu/csg/abecasis/MACH/download/1000G-Sanger-0908.html). Data was
imputed by first generating error and crossover maps as parameter estimates for the
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imputation on a randomly selected set of 200 samples over 100 iterations of the initial
statistical model. These parameter estimates were then used to generate maximum likelihood
allele dosages per SNP based on reference haplotypes for the entire study cohorts. We
excluded SNPs with R2 quality estimates < 0.30, resulting in ~5.1 million SNPs available for
analysis.

methQTL and eQTL mapping—SNPs with a fixed-effects p-value < 1×10−5 from the
AD meta-analysis (Stage 1 + 2) were considered candidate quantitative trait loci (QTL) (Naj
et al., 2011). For each SNP, CpG sites and expression probes within +/− 1MB were used for
linear regression modelling using MACH2QTLv1.08. We estimated the association between
the allelic dosage of each SNP against gene expression or methylation levels using linear
regression models adjusted for covariates of gender and age at death, the first two
component vectors from multi-dimensional scaling, post mortem interval (PMI), brain bank
and batch in which preparation or hybridization were performed. SNPs with less than three
minor homozygotes detected were excluded from analyses. We tested probes within 1 MB
of each of 224 candidate probes in the expression datasets and 220 in the methylation
datasets, resulting in 2542 associations for expression-QTLs and 11,522 associations for
methylation-QTLs in the frontal cortex samples, and 2395 expression-QTLs and 11510
methylation-QTLs in the cerebellum. The resulting p-values were corrected for multiple
testing using the Bonferroni method after removing SNPs having r2 > 0.5 with SNPs in
adjacent sliding windows of 50 SNPs that moved two SNPs per iteration. After these filters,
the analyses used 152 mRNA probes and 603 CpG sites

REGIONAL BRAIN EXPRESSION AND SPLICING ANALYSIS
Human post-mortem brain tissue collection and mRNA extraction—A detailed
description of the samples used in the study, tissue processing and dissection is provided in
Trabzuni et al. (2011). In brief, brain and CNS tissue originating from 137 control
individuals was collected by the Medical Research Council (MRC) Sudden Death Brain and
Tissue Bank, Edinburgh, UK (Millar et al., 2007), and the Sun Health Research Institute
(SHRI) an affiliate of Sun Health Corporation, USA (Beach et al., 2008). All samples had
fully informed consent for retrieval and were authorized for ethically approved scientific
investigation (Research Ethics Committee number 10/H0716/3).

Total RNA was isolated from human post-mortem brain tissues using the miRNeasy 96 kit
(Qiagen), processed with the Ambion® WT Expression Kit and Affymetrix GeneChip
Whole Transcript Sense Target Labelling Assay, and hybridized to the Affymetrix Exon 1.0
ST Arrays following the manufacturers’ protocols. Hybridized arrays were scanned on an
Affymetrix GeneChip® Scanner 3000 7G and visually inspected for hybridization artifacts.

Exon Array data analysis—All arrays were pre-processed using Robust Multi-array
Averaging (RMA) (Irizarry et al., 2003) with quantile normalization and GC background
correction in Partek’s Genomics Suite v6.6 (Partek Incorporated, St. Louis, MO, USA). In
order to filter out low expression signals, detection above background (DABG) p-values of
exon probe sets were calculated using Affymetrix Power Tools v1.14.3 (APT, http://
www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx). After
re-mapping the Affymetrix probe sets onto human genome build 19 (GRCh37) as
documented in the Netaffx annotation file (HuEx-1_0-st-v2 Probeset Annotations, Release
31), we restricted analysis to 174,328 probe sets that had gene annotation, contained at least
three probes with unique hybridization and had DABG p <0.001 in 50% of male or female
individuals. We defined an expressed gene as any gene containing ≥1 exon with a median
DABG p <0.001 in at least 50% of male or female individuals in at least one brain region.
The gene-level expression was calculated for 19,597 genes by calculating the Winsorised
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mean value (winsorizing the data below 10% and above 90%) of all probe set signals
annotated to a single gene. Region-specific expression and splicing was investigated using
Partek’s mixed-model ANOVA and alternative splice ANOVA (Partek Genomics Suite
v6.6). In all types of analysis, the date of array hybridization, brain bank and gender were
included as co-factors. All p values were corrected for multiple comparisons using
Bonferroni correction.

RESULTS AND DISCUSSION
GWAS are able to identify associations between phenotypes and genetic loci. Since only
tagging SNPs and not all genetic variants are assessed in these studies it is not possible,
solely from GWAS results, to accurately pinpoint the associated variant(s) or even gene(s).
In this study we have chosen to study, for each associated region, the gene considered as the
most likely to be associated by either having been reported as such in the original GWAS or
because it was considered as the most interesting gene in the region from a functional
perspective in regards to AD pathobiology.

ALZHEIMER’S DISEASE LOCI
CR1 - Complement component (3b/4b) receptor 1; chromosome 1q32—GWAS
have consistently identified intronic SNPs in CR1 (rs6701713, rs1408077, rs3818361 and
rs6656401) to be associated with an increased risk of AD onset (Fig. 1). The linkage
disequilibrium between these intronic SNPs and common coding variants in the same gene
was investigated.

The genotyping of eight common coding SNPs in CR1 in 96 pathologically confirmed late-
onset AD cases revealed that the GWAS associated SNP rs6656401 was in LD with two
coding SNPs: rs4844600 (p.Glu60Asp, NP_000642.3) and rs2296160 (p.Thr2419Ala,
NP_000642.3), located in exons 2 and 44 respectively. The GWAS associated SNP
rs3818361 was not in LD with any of the common coding SNPs studied here (Fig. 1).

The structure of the human CR1 gene is complex. The gene is composed of tandem long
homologous repeating segments that encode binding sites for C3b or C4b. Four CR1 alleles
differing in the total numbers of repeating segments are known and thought to have arisen
through an homologous recombination with unequal crossover mechanism. The encoded
protein is made up of four structurally significant domains. These are the signal peptide,
extracellular, transmembrane and cytoplasmic domains (Wong, 1990). Three of these
domains are homologous in each of the four allotypes but they differ in the lengths of the
extracellular domain. This region is made up of short consensus repeats (SCRs) that are also
known as complement-control-protein repeats (CCPs) (Klickstein et al., 1988). These
repeats are highly conserved and are characterized by the presence of three cysteine residues
and one tryptophan. In addition, there is a high degree of homology between every eighth
SCR, thus grouping the SCRs into sevens. Each group of seven SCRs is termed a long
homologous repeat (LHR) (Klickstein et al., 1988). The smallest allotype is rare and is
termed either CR1-C or CR1-F’, it has three LHR (long homologous repeat) regions. The
most common allotype is called CR1-A or CR1-F and has four LHR regions. The CR1-B or
CR1-S allotype contains five LHR regions and the very rare CR1-D allotype contains six
LHR regions (Holers et al., 1987).

The extracellular LHR regions contain the binding sites for the protein, including the
binding sites for the complement fragments C3b and C4b, thus individuals with different
CR1 alleles have different numbers of binding sites for these complement fragments and it is
likely that this results in a different ability in the clearance of these fragments. There still
remains some uncertainty about this process, mainly because it is currently poorly
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understood as to whether a decreased ability to clear complement fragments is beneficial or
harmful in terms of AD aetiology. It had previously been thought that an increased ability to
clear the complement fragments would be beneficial as it would decrease the activation of
the complement system, generally thought of as pathogenic. However, it has been shown
that individuals presenting CR1-B or CR1-S genotypes (the largest common allotype)
actually have a raised risk of AD (Brouwers et al., 2011), indicating that an increased ability
to clear the complement fragments C3b and C4b may be pathogenic in the situation of AD.
Additionally, common variation at the CR1 locus, more specifically rs6656401 has been
shown to have a broad impact on cognition. This effect was shown to be largely mediated by
an individual's amyloid plaque burden (Chibnik et al., 2011).

Using microarrays, the only brain regions in which CR1 could be detected were white matter
and cerebellum and the expression levels in both regions were low. This would suggest that
the role of CR1 in AD may be related to its function at a systemic level or in relation to the
brain vasculature. Taken together, our results suggest that CR1 genetic variability does not
act through different splicing variants or through differences in expression. The most
probable scenario is that the variants found to be significant in GWAS and the coding
variants found here to be in LD with these GWAS hits are tagging the structural variants
known to exist in the CR1 gene.

BIN1 - Bridging integrator 1; chromosome 2q14—Three SNPs in the BIN1 locus
(rs744373 (Hollingworth et al., 2011, Hu et al., 2011), rs7561528 (Hu et al., 2011, Naj et al.,
2011) and rs12989701 (Hu et al., 2011) have been identified by GWAS as associated with
LOAD. These three SNPs lie in a noncoding region upstream of BIN1 and downstream of
CYP27C1. In this locus, BIN1 (encoding the “bridging integrator 1” protein) appears to be
the most likely functional candidate. Neither of the GWAS associated SNPs lie in regulatory
regions, CpG islands or in microRNA target sites. Rs744373 is in a reported recombination
hotspot (in HapMap) and all SNPs are in predicted transcription binding sites. There are
only four non-synonymous SNPs published (NCBI SNP database, version 132) in BIN1 and
for these, MAFs are described for rs112318500 and only for African populations. We
attempted to genotype two SNPs in BIN1 in our cohort, rs76037557 and rs112318500, and
were unable to identify the presence of the minor allele in any of the cases studied.

Although no significant eQTLs could be found for BIN1 in our samples, it is interesting to
note the regional expression differences in its expression within the CNS. On the basis of the
microarray results, BIN1 had the highest expression in white matter, with the mean gene
expression being 5.1 times higher in white matter as compared to cerebellum (Bonferroni
corrected p <1.0 × 10−30). In addition, we found evidence of alternative splicing by brain
region with one or more of three isoforms (NM_139343, NM_139344 and NM_139345,
Bonferroni corrected alternative splicing p value <1.0 × 10−30) being lower in white matter
as compared to all other CNS regions (Fig. 2).

Isoforms that are expressed in the central nervous system are thought to be involved in
synaptic vesicle endocytosis and may interact with dynanim, synaptojanin, endophilin, and
clathrin. More specifically, BIN1 has been shown to be involved in both dynamin- (Wigge
and McMahon, 1998) and clathrin-mediated endocytosis (CME) (Pant et al., 2009). CME is
thought to mediate the internalization of Amyloid Precursor Protein (APP; MIM 104760)
from the cell surface (Nordstedt et al., 1993), after which the Aβ peptide can be cleaved
from the APP. Presence of the Aβ peptide in turn inhibits CME (Kelly and Ferreira, 2007)
and therefore stops excess APP from entering the cell by a mechanism of auto-inhibition.
The BIN1 protein may also have an important endocytic role being involved in synaptic
vesicle recycling at the synaptic terminal (Di Paolo et al., 2002) (Pant et al., 2009). Aberrant
splice variants have been described to be expressed in tumor cell lines and misregulated
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alternative splicing of BIN1 has been shown to be associated with T tubule alterations and
muscle weakness in myotonic dystrophy (Fugier et al., 2011), which leads us to hypothesize
a similar situation for the CNS isoforms.

Both BIN1 and PICALM are part of endocytic pathways (Guerreiro and Hardy, 2011,
Olgiati et al., 2011). The results we present here (Figs. 2 and 3) show both higher expression
of BIN1 and a different complement of BIN1 isoforms in white matter. Along with the
different balance of isoforms for PICALM in white matter (for more details see next section)
we speculate that endocytic pathways function in a distinct manner in white matter as
compared to other brain regions.

Alzheimer’s disease has historically been characterized by neuronal loss and gray matter
atrophy. More recently the involvement of white matter in the disease has started to be
considered (Hua et al., 2008). These results seem even more interesting in light of the
association obtained by Braskie and colleagues between Clusterin rs11136000 and white
matter microstructure in young adults (Braskie et al., 2011). Although no replication dataset
was available in this study, white matter disturbances in AD seem to be a common factor
worthy of further analyses.

PICALM - Phosphatidylinositol binding clathrin assembly protein;
chromosome 11q14—There are four SNPs associated with the PICALM gene that have
been identified in GWAS. These are rs592297 (Harold et al., 2009), rs561655 (Harold et al.,
2009, Naj et al., 2011), rs541458 (Corneveaux et al., 2010, Harold et al., 2009, Lambert et
al., 2009), and rs3851179 (Harold et al., 2009, Seshadri et al., 2010). The first of these SNPs
is a synonymous variant (p.Gln174Gln) located in exon 5 of PICALM which may influence
the activity of a sequence predicted to be an exon splicing enhancer. The other three SNPs
are located upstream of the gene. rs561655 is found within a region that is thought to be a
transcription factor binding site (Harold et al., 2009). It is possible that the change at this
locus may increase or decrease the affinity of this region of the PICALM gene to
transcription factors, thus changing the expression levels of the gene. rs541458 is located
8kb 5’ of PICALM and has been shown to be in LD with rs3851179, located 88.5kb 5’ of
the gene (Harold et al., 2009). It is possible that the presence of both these SNPs in the 5’
region outside the gene may have an effect on the expression of the gene.

Eleven non-synonymous SNPs have been described in the PICALM gene (NCBI SNP
database, version 132). From these, two were reported to have an established heterozygosity
>0.05 (rs118027183 and rs74727972). Genotyping these SNPs in our cohort did not reveal
any case with the minor allele, thus it is not likely that the association seen in the genome
wide association studies is due to common coding variability in this gene.

Similarly to BIN1, PICALM is involved in CME (Dreyling et al., 1996, Tebar et al., 1999,
Yao et al., 2005), and has been shown to have a particular influence on the activity of
VAMP-2 (Harel et al., 2008), a SNARE protein responsible for directing neurotransmitter
vesicles to the presynaptic membrane. This role of the protein, allied to the observation of a
reduced synaptic density in the brains of AD patients, suggests that the activity of this
protein is potentially important in disease aetiology. The mean gene expression of PICALM
was found to be 1.9 times higher in white matter as compared to cerebellum (Bonferroni
corrected p value <1.0 × 10−30). Two PICALM isoforms are detected by the exon array:
full-length PICALM and a shorter form that lacks exon 13. Our results show that the short
form of PICALM is expressed at lower levels in white matter as compared to the other CNS
regions, in particular cerebellum (Figure 3, Bonferroni corrected alternative splicing p value
<1.0 × 10−30).
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Several methQTL associations were significant after multiple test correction. In cerebellum,
these include associations with CpG sites in APOC1, BCL3 and CBLC on chromosome 19,
as well as ME3, MGC34732 and MS4A6E on chromosome 11. In frontal cortex, six
significant associations with a CpG site mapping to APOE, as well as one association at
APOC2 were identified. From these, only the association observed between rs10751134 in
PICALM and a CpG site in ME3 (a gene adjacent to PICALM, Fig. 4) is in moderate LD
with the GWAS SNPs studied here (r2 between rs10751134 and rs561655, rs3851179,
rs541458 in HapMap populations varies between 0.5 – 0.6) and may contribute to the
genome-wide association signal found for PICALM.

MS4A6A/MS4A4E - Membrane-spanning 4-domains, subfamily A, members 6A
and 4E; chromosome 11q12.1—There are three SNPs in the MS4A gene cluster that
have been associated with an increased risk of LOAD. These are rs4938933 in MS4A4A
(Hollingworth et al., 2011, Naj et al., 2011), rs670139 in MS4A4E (Hollingworth et al.,
2011, Naj et al., 2011) and rs610932 in MS4A6A (Hollingworth et al., 2011). Several SNPs
are described in these genes. In order to have a comprehensive view of the locus we targeted
non-synonymous coding SNPs in MS4A6A, MS4A4E and MS4A4A (Table 1). As expected
the SNPs shown to be significantly associated with AD in the previous GWAS were in LD
with each other. No significant LD was observed between these AD risk SNPs and the
targeted coding SNPs studied here (highest r2=0.5 between rs610932 and rs7232), indicating
that non-synonymous common genetic variability in the MS4A4 locus probably does not
explain the associations established in the GWAS.

The role of the genes located in the MS4A cluster is so far poorly understood. The cluster is
found on chromosome 11 and is made up of at least sixteen genes (Liang and Tedder, 2001).
It has been suggested that the proteins encoded by the cluster may be ion channels or
adaptor proteins (Liang et al., 2001, Zuccolo et al., 2010). It is likely that the genes in the
cluster all have a similar role due to their high homology (Liang et al., 2001). However, until
more is known of their function it is impossible to speculate as to the potential role of
polymorphisms in these genes in AD aetiology. Whereas MS4A6A was detected in all brain
regions, using microarrays, we were unable to confidently detect MS4A4A in cerebellum,
frontal cortex or occipital cortex.

ABCA7 - ATP-binding cassette, sub-family A (ABC1), member 7; chromosome
19p13.3—Two SNPs in ABCA7 have been associated with LOAD: rs3752246 and
rs3764650 (Hollingworth et al., 2011, Naj et al., 2011). rs3752246, in exon 32 of the gene,
leads to a protein change (p.Gly1527Ala) which was the only coding non-synonymous
change to be identified by GWAS. In an attempt to identify an associated functional variant
at the ABCA7 locus, Hollingworth and colleagues chose to genotype rs3752246 in an
additional cohort because this was a non-synonymous SNP with the highest LD with
rs3764650 out of all HapMap ABCA7-coding variants based on r2 values (r2 = 0.36, D′ =
0.89) (Hollingworth et al., 2011). Although, in our study, we established a lower degree of
LD (r2=0.1 between rs3764650 and rs3752246), this was also the highest LD found between
rs3764650 and all the coding SNPs studied here (Figure 5). This suggests that the risk of AD
conferred by the presence of rs3764650 is not due to the presence of multiple other common
coding SNPs in the gene. rs3764650 SNP is found at position 115 of the intron between
exons 13 and 14. There is no evidence to suggest that rs3764650 has an effect on the
expression of the gene (Hollingworth et al., 2011). rs3752246 is predicted in silico to be a
benign variant (Polyphen-2 score=0). This variant is in moderate LD (r2=0.6) with
rs4147934, which is also predicted to be non-pathogenic. Nonetheless, rs3752246 was the
only missense change to be identified by GWAS and functional studies of the real impact of
these two variants at the protein level should further elucidate if any of these are the real risk
associated variants in ABCA7.
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ABCA7 had low, but detectable expression in all CNS regions with no striking regional
differences in gene expression patterns (data not shown).

The ABCA7 gene is a member of a large family of ATP-binding cassette genes divided into
the subfamilies A-G based upon sequence homology (Kim et al., 2008). The transporters of
the A and G subfamilies are particularly responsible for the movement of lipids such as
sterols, phospholipids and bile acids across membranes against the concentration gradient of
the substrate (Schmitz et al., 2000, Schmitz and Kaminski, 2001, Kusuhara and Sugiyama,
2007). ABCA1 is known to have a role in the transport of cholesterol to lipid-free acceptors
such as apoA-I and apoE. The high homology between ABCA1 and ABCA7 suggests that
the two proteins should share a similar role. The high lipid content of the CNS means that
lipid homeostasis is essential and so, changes in the ability to transport cholesterol, are
potentially pathogenic. It has been shown that the levels of cholesterol influence the
processing of the APP protein: during times of high intracellular content, the activity of α-
secretase is inhibited, whilst the activity of β- and γ-secretases is enhanced (Bodovitz and
Klein, 1996, Tun et al., 2002, Kalvodova et al., 2005, Vetrivel et al., 2005). The role of
ABCA7 in this situation is currently unclear as there is conflicting evidence regarding its
ability to transport cholesterol: work with ABCA7−/− mice has shown that cholesterol
efflux is not dependent upon ABCA7 (Kim et al., 2005); however work with human
embryonic kidney (HEK)293 cells has shown that transfection with ABCA7 cDNA leads to
1.7 to 2 times increase in cholesterol efflux (Chan et al., 2008). It is likely therefore that
ABCA7 plays a role in cholesterol transport, but that this is a process that also involves
other proteins.

CLU- Clusterin; chromosome 8p21-p12—The CLU gene encodes the clusterin or
apolipoprotein J protein, expressed ubiquitously but with a known higher prevalence in the
brain, ovary, testis and liver (de Silva et al., 1990). Levels of clusterin are shown to be
elevated in the cortex and hippocampus areas of the brains of AD patients (Oda et al., 1994).
Although we found high expression of CLU throughout the control CNS, we were unable to
demonstrate that this gene was more highly expressed in cortex or hippocampus relative to
other CNS regions (Fig. 6). Clusterin binds to Aβ plaques in the cerebrospinal fluid, forming
a complex that is able to cross the blood-brain barrier (Zlokovic, 1996). Levels of clusterin
in the plasma are positively correlated with the risk of AD (Schrijvers et al., 2011). It is
therefore possible that the increased risk of AD induced by the SNPs described may be due
to an increased level of expression. We sequenced the exonic regions of CLU in 495 AD
cases and 330 healthy controls. In this study, a total of twenty-four variants were found in
both cases and controls with similar frequencies, indicating that common coding variability
in this gene does not underlie the association seen with the intronic SNPs (Guerreiro et al.,
2010). In order to determine if common variants at the CLU locus effect expression of
nearby (cis) mRNA transcripts, an eQTL analysis was also performed. No significant eQTL
associations were observed for the SNPs previously associated with AD, which led us to
conclude that the most likely mechanism underpinning the association is either small effects
of genetic variability on resting gene expression, or effects on damage induced expression of
the protein. These conclusions are also supported by the absence of significant differences in
the expression of the gene between several brain regions and in the gene splicing (Fig. 6).
More recently, rare coding variants in CLU have been associated with the risk for AD
(Bettens et al., 2012). However, this variability was found to be independent of the common
association signal identified by the GWAS. Small studies have also reported an association
between rs9331888 and alternative splicing of CLU (Szymanski et al., 2011) and blood
clusterin levels (Xing et al., 2012).
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CONCLUSION
Clearly, developing an understanding of the nature and mechanism of loci for Alzheimer’s
disease (and other neurological diseases), which are identified by genome wide association
studies and are not coding changes is going to be a considerable challenge (Table 2). This
study shows that simple eQTL studies in control brain tissue may not identify effects in
many cases. There remain several options which are not mutually exclusive: (1) the study is
underpowered (although larger than most previous studies) (2) genetic variability in splicing
is an important consideration (3) genetic variability in other RNA species at the locus is
important besides the obvious mRNA (4) genetic variability in damage induced expression,
and not in resting expression, is the important factor.

The first three possibilities can be gradually overcome by either more samples or by
improvements (for example) in sequencing technologies, which would allow transcript
QTLs to be assessed as well as QTLs for other RNA species. Understanding QTLs in
damage induced expression is inherently difficult (Webster et al., 2009). Measuring changes
in damage induced expression in tissue with changing cell populations and developing
rigorous algorithms to interpret such data is problematic, but may be necessary, especially
for understanding the etiology of late onset neurodegenerative diseases.
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SCRs short consensus repeats

LHR a long homologous repeat

ESR erythrocyte sedimentation rate

CME clathrin-mediated endocytosis
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Fig. 1.
Representation of the CR1 gene with the localization of the SNPs found as significant by
GWAS as well as the SNPs studied here. On the left, linkage disequilibrium plot for the
CR1 SNPs found to be significant in GWAS and the common coding variants genotyped in
this study.
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Fig. 2.
BIN1 expression and splicing across the human CNS. A, Boxplot showing BIN1 expression
across 12 human CNS regions, as measured using Affymetrix exon arrays in 137
neuropathologically normal individuals. B, Plot of expression levels (y axis) for each probe
set (x axis) for BIN1 in cerebellum, frontal cortex, hippocampus and white matter, showing
a statistically significant interaction between probe set expression (“exon usage”) and brain
region. Non-parallel probeset expression levels (highlighted in the boxed region) indicate
region-dependent differential splicing of the corresponding exon. Plots are adapted from
Partek Genomics suite auto-generated output.
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Fig. 3.
PICALM expression and splicing across the human CNS. A, Boxplot showing PICALM
expression across 12 human CNS regions, as measured using Affymetrix exon arrays in 137
neuropathologically normal individuals. B, Plot of expression levels (y axis) for each probe
set (x axis) for PICALM in cerebellum, frontal cortex, hippocampus and white matter,
showing a statistically significant interaction between probe set expression (“exon usage”)
and brain region. Non-parallel probeset expression levels (highlighted in the boxed region)
indicate region-dependent differential splicing of the corresponding exon. Plots are adapted
from Partek Genomics suite auto-generated output.
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Fig. 4.
Association between genotypes and CpG sites in cerebellum. Here the results are shown as
log-transformed P values color-coded to match the CpG probe in the loci. The regions
associated in chromosome 11 are represented: in the top panel the MS4A6E locus and in the
bottom panel the ME3 region. From these, only rs10897024 in PICALM (associated with a
p-value of 4.65×10-6 with the probe cg07560096 in ME3, represented in green) is in
moderate LD with the GWAS hits for PICALM (rs561655, rs3851179 and rs541458).
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Fig. 5.
Representation of the ABCA7 gene with the localization of the SNPs found as significant by
GWAS as well as the SNPs studied here. On the right, linkage disequilibrium plot for the
ABCA7 SNPs found to be significant in GWAS and the common coding variants genotyped
in this study.
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Fig. 6.
Boxplot showing CLU expression across 12 human CNS regions, as measured using
Affymetrix exon arrays in 137 neuropathologically normal lindividuals.
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Table 2

Initial loci identified by GWAS in AD and predicted type of causal variants in each locus.

GWAS identified loci

APOE* Both amino acid and eQTL effects

CLU Not common amino acid change / Possible alternative splicing

CR1 Exon insertion polymorphism

BIN1 Not common amino acid change

PICALM Not common amino acid change / Possible methQTL

ABCA7 Probably amino acid change

MS4A6A/MS4A4E Not common amino acid change

*
Locus not studied here
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