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In August 2011, several areas of London experienced episodes of large-scale disorder, comprising looting,
rioting and violence. Much subsequent discourse has questioned the adequacy of the police response, in
terms of the resources available and strategies used. In this article, we present a mathematical model of the
spatial development of the disorder, which can be used to examine the effect of varying policing
arrangements. The model is capable of simulating the general emergent patterns of the events and focusses
on three fundamental aspects: the apparently-contagious nature of participation; the distances travelled to
riot locations; and the deterrent effect of policing. We demonstrate that the spatial configuration of London
places some areas at naturally higher risk than others, highlighting the importance of spatial considerations
when planning for such events. We also investigate the consequences of varying police numbers and reaction
time, which has the potential to guide policy in this area.

T
he need for public policy to be informed by an evidence-based approach has been recognised for some time;
however, this is often problematic, particularly in the context of rare events. The difficulty is especially
evident in situations where quantitative recommendations are required, such as estimating the appropriate

contingency for a certain scenario, since traditional hypothesis testing is undermined by the paucity of data. In
such cases, mathematical modelling has much to offer, allowing rigorous quantitative analysis of the system in
question and the testing of varying scenarios. Recent advances in the modelling of large-scale social systems using
techniques of complexity science mean this is now a viable approach, and indeed its potential has been demon-
strated in such fields as epidemic modelling1,2, crowd control3 and infrastructure resilience4. Here, we employ
such an approach in the context of the 2011 London riots and the policy questions subsequently arising.

The London riots occurred between 6–10 August 2011, as the UK experienced its most widespread and
sustained period of civil unrest for at least 20 years. Repeated episodes of looting, rioting, arson and inter-personal
violence took place in several cities, including London, Manchester and Birmingham. The consequences of the
events include numerous instances of injury, including five deaths, and extensive property damage, for which
liability has been estimated as £250 million5. Here, we focus on the disorder in London, the worst-affected city.

The London riots have been the subject of much research in the academic6, governmental7 and journalistic8

communities. The majority of this research, however, as with much of that considering previous episodes9, has
focussed on the psycho-social motives of individual rioters, ascribing willingness to participate to various social
factors, including unemployment, poor police relations and endemic criminality. Our work is distinct from this;
rather than consider how and why the riots began, we take their initiation as our starting point and instead
consider their spatio-temporal development. This approach is informed by the policy question which motivates
our work: how, once such an incident is in progress, the police might best respond in order to suppress disorder as
quickly as possible.

Several questions relating to the response of the authorities were raised following the disorder. Although order
was restored after five days, it has been variously claimed that the police were inadequately prepared and slow to
react to developments, and that disorder might have been suppressed sooner; indeed, official inquiries have
acknowledged such shortcomings5,10,11. Alongside a need to anticipate better the disorder itself, these inquiries
have emphasised the need to establish a level of policing resource, and mode of response, commensurate with an
outbreak of this magnitude. Mathematical modelling can contribute to this by allowing quantitative examination
of the effect of varying police responses, and the investigation of a range of scenarios.

A crucial factor in determining police response to a riot, and indeed for policing in general12, is an under-
standing of the spatio-temporal distribution of events. The London riots are notable for the fact that, despite being
apparently catalysed by a specific incident - the fatal shooting by a police officer of a suspect in Tottenham, North
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London, and a subsequent peaceful protest - disorder escalated in a
dramatic and unanticipated way, spreading widely across the city.
Understanding why and how this spreading occurred, and why some
areas were afflicted more than others, is therefore fundamental to the
planning of responses.

The use of mathematical modelling to explore the mechanisms
behind the spatial heterogeneity seen in the disorder can go some way
towards explaining the events. In this respect, our work follows the
‘generative’ approach previously used in the modelling of, for
example, residential segregation13, state formation14 and collective
action in social networks15, in that our aim is simply to establish
whether our hypothesised mechanisms are capable of giving rise to
realistic patterns. Although our work is motivated by empirical data,
we make no attempt to replicate the London disorder, but rather to
imitate the general ‘stylised facts’ observed.

A significant body of theory exists concerning criminal involve-
ment and target choice, which, in tandem with the empirical results
presented in the following section, informs the model. Although such
theories are premised on the assumption that offenders act rationally
during a riot, and so cannot necessarily be invoked a priori, previous
research suggests that, in general, that assumption is defensible16–18.
Indeed, research specific to the London disorder suggests that crim-
inological theory, such as social disorganisation theory19 and rational
choice theory20, is applicable in that case21, and that its implications
are therefore a well-justified basis for a model.

The concept of the rational offender implies that their decisions
are influenced by the relative merits of actions - for instance, the
potential rewards available at different sites - and that they seek to
minimise costs, choosing nearby targets and seeking to avoid cap-
ture, as appears to be the case during rioting22. From a modelling
perspective, this implies that these factors should be included in any
formulation of the utility associated with a particular location.
Closely related to this, crime pattern theory23 seeks to explain the
location of crime in terms of the ‘awareness spaces’ of potential
offenders, i.e. the locations of opportunities and offenders’ know-
ledge of them. For a riot, this would again suggest that participants
are more likely to target nearby locations, as has been demonstrated
across a variety of crime types24, and that these locations are likely to
be those which are commonly perceived to offer large potential
rewards. These ideas inform our choice of spatial system in the
model.

Considering instead the initial decision to offend, theory can
inform both the mechanism by which potential participants are
influenced, and the differing effect this influence might have.
Theories of environmental criminology state that environmental
precipitators (in this case, knowledge of ongoing rioting) can serve
to prompt, pressure, permit or provoke offending25; the ‘safety in
numbers’ effect in riots, in terms of the risk of arrest26,27, is a particu-
larly clear example of how this might modify the cost/benefit struc-
ture28. In the case of London, there is a widely-held perception6, that
awareness of disorder provided a self-reinforcing stimulus to rioter
involvement, facilitated in many cases by social media. These ideas
are clearly fundamental to the evolution and spreading of disorder,
and suggest a contagion-like mechanism for this.

Such cues may not, however, act uniformly, and whether they lead
to offending may be dependent on local circumstances. The notion
that environment affects the propensity of residents to engage in
crime is well-developed in criminology: social disorganisation the-
ory19 suggests that criminality is more likely to take hold in areas with
weak social fabric, due to a lack of informal social control29.
Deprivation relates closely to these ideas: more deprived communit-
ies lack the resources and structure to regulate themselves in this way.
For the purpose of model-building, this implies a need to incorporate
geo-demographic factors in the proposed mechanisms.

Previous attempts to model riots have employed both continuous
and agent-based approaches. The former have generally been

attempts to adapt models of crowd dynamics to the case of rioting
whilst doing little to accommodate realistic human behaviour30,31.
Agent-based models, following the civil violence model of
Epstein26, have had some success in using game-theoretic concepts
to inform agent behaviour32,33. These have generally, though, given
little attention to geographical concerns, either treating movement as
random or else in a fairly naive sense. More recent approaches,
however, have remedied this somewhat by incorporating real spatial
data via GIS34 and including sophisticated spatial decision-making35.
Our work is, as far as we are aware, the first to incorporate such
behaviour outside an agent-based framework, and is also differen-
tiated by its focus on the case of London, both in its incorporation of
data and consideration of particular policy concerns.

After describing the general trends observed in the data, we
describe a model which incorporates several phases of riot develop-
ment: a contagious process of involvement, a target choice stage, and
an interaction between participants and police. We then dem-
onstrate, via numerical simulation, that the model is capable of
reproducing the general trends identified. With a realistic simulation
established, this framework is used to explore policy issues, such as
the effect of varying police response and the pre-disposition of cer-
tain areas to riot activity.

Results
Characteristics of disorder. In seeking insight into the behaviour of
individuals during an episode of rioting, we consider both existing
theoretical research into such incidents36 (and criminal activity in
general) and specific observations from the London disorder. The
latter takes the form of analysis of data provided by the Metropolitan
Police, which contains the details of all individuals arrested in
relation to the riots and matches the home addresses and offence
locations of suspects. Since it is typically argued that individuals act
rationally during a riot (i.e. that their decisions are based on some
cost/benefit analysis)16–18 these observations can be used to inform a
model of the actions of rioters.

A fundamental observation is the predominant targeting of retail
sites, reflecting the acquisitive nature of much offending. Crimes
against commercial premises, including both acquisitive crime and
criminal damage, accounted for 51% of all offences in the UK as a
whole37, and offences clustered in areas such as Clapham Junction,
Croydon, Ealing and Brixton. This can be immediately reconciled
with crime pattern theory23; the richness of opportunity at retail
premises is likely to be common knowledge amongst riot partici-
pants, and they therefore act as crime attractors. In line with this,
for our model we adopt a system of retail centres as the sites of
disorder.

We also consider the origins of offenders, i.e. the locations of their
residences, and, therefore, the distances they travelled to the sites
where they offended. As seen in Figure 1a, the flows of offenders
follow a clear distance-decay relationship. Although statistical tests38

find that the distribution does not correspond to most common
forms, the best fit is provided by an exponential distribution with
parameter 0.274. An offender’s perception of distance does not
necessarily aggregate to an exponential distance decay, since other
factors, some of which are temporally-varying, are likely to contrib-
ute, and we nevertheless incorporate an exponential distance decay
within in our model. Distributions such as these are reminiscent of
those seen in the analysis of flows in retail systems39,40, and so, noting
also the central role of commercial centres, we model the behaviour
of rioters partly by analogy with this.

Analysing the riot locations further, we explore the relationship
between deprivation and offending. Figure 1b shows that a dispro-
portionately high number of offences occurred in more deprived
areas (approximately 50% within the 20% most deprived), using
the UK’s Index of Multiple Deprivation (IMD) to rank census units.
Looking instead at suspects’ residences, Figure 1c shows the average
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proportion of riot suspects for groups of LSOAs ordered by depriva-
tion, where in this case, anticipating its incorporation as a variable in
the model, we use a deprivation score based on IMD ranking. A
relationship between offending and deprivation has also been found
elsewhere37, and youth unemployment and child poverty have also
been identified41. That the most deprived areas acted disproportio-
nately as both origins and destinations will clearly influence the
distance distribution, and vice versa, but work elsewhere shows that
both effects persist when controlling for the other21.

With this notion in mind, we incorporate the deprivation score
discussed above as a feature within our model, allowing for a higher
probability of offending in deprived areas.

We also note distinctive temporal patterns in the riot data, as seen
in Figure 1d. From the small initial disturbance, incidents escalated

in volume and intensity on each successive day, with police response
growing in line with this, from 3,480 on Saturday evening to 16,000
by Tuesday5. This may also be seen at the scale of individual days,
where the majority of criminality took place at night and built to a
peak in the early hours. Whilst various explanations for this have
been put forward, a particularly compelling one suggests that aware-
ness of disorder provided a self-reinforcing stimulus to rioter
involvement6, and a contagion-based model is therefore appealing.

Model. We develop a mathematical model with the aim of exploring
the spatial and temporal patterns of the events in London.
Recognising that non-linearities inherent in the system imply a
significant dependence on initial conditions (which are unknown),
and that numerous factors not considered here are likely to play a

Figure 1 | Observations from arrest data. (a) Log-linear plot of the complementary cumulative distribution function of D, the distance between

residential and offence locations. The straight line shows a hypothetical exponential distribution with parameter 0.274 (60.01 for a 95% confidence

interval), for which the Kolmogorov-Smirnov distance statistic is 0.0246 (which compares with 0.332 for the equivalent fitted power-law). (b) Lorenz

curve for the distribution of riot locations amongst Lower Super Output Areas (LSOAs; UK census units with average population approximately 1,500)

ranked according to deprivation (where 1 is most deprived). The dashed line represents perfect equality. (c) Relationship between area-level deprivation

and the proportion of residents involved in disorder, where the horizontal axis represents a score derived from IMD so that all values lie in [0, 1] and so

that London’s most deprived area is given a value of 1. d) Temporal distribution of recorded crime.
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material role, we do not seek to replicate exactly the London events.
Rather, we aim to produce a ‘generative’ type model which can give
rise to realistic patterns and macro-level behaviour that insight might
plausibly be gained through analysis of the underlying dynamics.

Our model draws on elements of several existing ones; our con-
tribution is in their combination and adaptation to produce an inte-
grated spatial model of disorder, and in the analysis of varying police
strategies. The model can be divided into three components: an
epidemiological model for riot participation, a spatial interaction
model (SIM)42 for the spatial allocation of rioters and police, and a
model for interaction between rioters and police previously applied
in the context of civil violence26.

General concepts. The model is defined across a discrete system of
two entities: residential areas and retail centres. These are indexed
by i and j respectively and embedded in space, and we use LSOAs
and defined ‘retail cores’ when considering London. Participating
individuals are notionally tracked through the system via a logical
sequence which involves a decision to participate taking place at their
home, a choice of site at which to offend, and possible removal due to
arrest by police officers. These officers are active at all times but may
move and be located according to different principles.

To model rioters’ decisions, some concept of the attractiveness of a
riot site is required. This is formulated using a ‘cost/benefit’ structure,
as is normal for SIMs, where benefit represents the potential reward
at a site and cost embodies both travel cost and the deterrent effect of
police.

We assume that the benefit for site j is given by the logarithm of Zj,
a non-dimensional measure of its relative value (e.g. the ratio of j’s
floorspace to the mean across the system), as is a standard assump-
tion in retail models of this type43,44, reflecting diminishing returns to
scale. For bij, the benefit of site j as perceived by an individual in i, we
therefore have

bij*log Zj, Vi: ð1Þ

Turning to deterrence, we suggest that the primary gauge by which an
individual assesses whether the situation at a site is conducive to riot
is the probability of arrest, determined by the relative numbers of
rioters and police: low perceived chance of capture encourages par-
ticipation. Several such expressions for probability of arrest have
been proposed; in this case we take an adapted version of the for-
mulation of Epstein26 as our starting point:

P arrest in j in one time unitð Þ~1{exp {
Qj

aDj

0
@

1
A, ð2Þ

where Qj is the number of police officers in j, Dj the number of rioters
in j, and a the number of police officers required, on average, to
‘contain’ one rioter. The use of the floor function tQj

�
aDjs has

empirical motivation; the Metropolitan Police review of the
London disorder11 explicitly states that ‘‘decisions were made not
to arrest due to the prioritisation of competing demands…specifi-
cally, the need to protect emergency services, prevent the spread of
further disorder and hold ground until the arrival of more police
resources’’. Accordingly, when the police are ‘outnumbered’ at a site
(i.e. Qj , aDj), the situation is considered to be out of control and the
police are unable to make any arrests without the addition of ‘backup’
(and thus the probability is 0). On the basis that increased probability
corresponds to increased deterrence, we therefore express deterrence
thus:

deterrence*
Qj

aDj
: ð3Þ

We also incorporate a linear function of the distance between res-
idential areas and riot sites, as is typical for analogous retail systems.

Taking this as proportional to dij, the distance between the centroids
of i and j, we can then combine with (2) and (3) to obtain the full
expression for benefit - cost:

w1 log Zj{w2dij{w3
Qj

aDj
, ð4Þ

where the wn are constants. The associated attractiveness term Wij

which appears in the terms of the spatial interaction model can, as
described elsewhere44, then be written as follows:

Wij~Zar
j exp {brdij

� �
exp {

crQj

Dj

0
@

1
A, ð5Þ

where ar, br and cr (which itself absorbs a) are parameters to be
obtained in calibration with real-world data (the subscript r denoting
reference to riot participants). It is through the form of (5) that an
exponential distance decay, discussed in the previous section, fea-
tures in the model.

Riot participation. Motivated by the hypothesis, consistent with the
temporal progression of the riots, that exposure to nearby disorder
had the effect of inciting participation, we propose a Susceptible-
Infected-Removed (SIR) model45; that is, a mechanism akin to
infection by which individuals transfer to an active rioting state
according to their level of exposure. Recalling the correlation
between propensity to riot and deprivation, we also incorporate
this, and the function we propose is therefore:

P individual in i chooses to offendð Þ~rm
i

P
j Wij

1z
P

j Wij
, ð6Þ

where ri is a measure of the deprivation in i (which we take to be
based upon the IMD) and m an exponent to be calibrated. A logistic
function is used here to represent the existence of a threshold at
which rioting becomes appealing; any transition is likely to be
localised rather than gradual. Intuitively, this probability will be
small when the overall attractiveness of potential riot areas is low,
whereas, when the ‘ambient’ level of rioting is high, the probability of
offending tends towardsrm

i . From another perspective, where two
areas were equally exposed to disorder, greater participation would
arise in the more deprived of the two.

Translating this to the macro-level for a residential area i, we
therefore find an expression for Ni(t), the rate at which individuals
choose to participate at time t. Under the assumption that decisions
are independent between individuals, this is given by the product of
population size and decision probability,

Ni tð Þ~gIi tð Þrm
i

P
j Wij tð Þ

1z
P

j Wij tð Þ , ð7Þ

where g is an infection rate and Ii(t) the number of inactive indivi-
duals resident in area i. We can now formulate expressions for Ii(t)
and Ri(t), the number of rioters whose residence is in a given zone i,
as well as their change in a time period [t, t 1 dt). These, along with
their initial conditions (Ii(0) is the residential population of i and
Ri(0) a seed of participants, to be chosen) determine the numbers of
individuals of each type, in each residential area, at all times. The
choice to structure the model in this way is motivated by our focus on
the residential origins of rioters, since it enables us to understand the
composition of rioting groups in these terms. At this stage we also
include an extra term Ci(t), to be fully defined later, for the rate at
which participants from i are arrested at time t:

Ri tzdtð Þ~Ri tð Þzdt Ni tð Þ{Ci tð Þð Þ ð8Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1303 | DOI: 10.1038/srep01303 4



Ii tzdtð Þ~Ii tð Þ{dtNi tð Þ ð9Þ

Spatial assignment. We assign active rioters to sites of disorder using
an entropy-maximising SIM; the purpose of these models is to
estimate the most probable flows in a spatial system such as ours,
given certain constraints42.

Rather than incorporating the attractiveness function, Wij, directly
into the spatial interaction equations, we use its moving average over
a number of previous time steps, for several reasons: to account for
factors such as travel time on the part of rioters, to represent ‘lag’ in
the spread of information through the system, and to dampen the
effect of sudden fluctuations in attractiveness. The values used to
determine the assignments at a given time, referred to as effective
attractiveness and denoted We

ij, are therefore the average values of
Wij over the Lr most recent time steps in our discretised temporal
scheme (which has intervals dt; when t , (Lr – 1)dt, we ‘pad’ with the
t 5 0 value):

We
ij tð Þ~ 1

Lr

XLr{1

l~0

Wij t{ldtð Þ: ð10Þ

Following the standard entropy maximising derivation of a SIM44, it
can be shown that Sij, an estimate of the number of rioters from i who
are participating in disorder in j at time t is given by:

Sij tð Þ~
Ri tð ÞWe

ij tð ÞP
k We

ik tð Þ : ð11Þ

An identical expression for Sij may be formulated using an alternative
derivation: by considering (4) as a utility term in a conditional logit
model46. In either case, summing over residential areas i yields the
total number of rioters Dj in j:

Dj tð Þ~
X

i

Ri tð ÞWe
ij tð ÞP

k We
ik tð Þ : ð12Þ

It should be noted here that each time unit is therefore implicitly
defined as the mean time taken for each participant to travel from a
home location to a chosen riot site.

The assignment of police resources to areas of disorder is also
realised via a SIM, as for riot participants; there are, however, note-
worthy differences. First, police units have no ‘home’ location and are
active and situated at potential sites of disorder at all times. The
response lag Lp is also different to that for rioters (and intended to
be higher); reflecting the delay in learning of the plans and move-
ments of rioters, and conferring upon the rioters a degree of ‘first-
mover advantage’.

The main difference for police, however, is in the attractiveness
function, analogous here to the requirement for officers at a given
site. Following a similar argument to that of the rioters seen in (4), we
assume the benefit - cost of police follows:

w1 log Zjzw2Dj: ð13Þ

This expression (13) includes no spatial decay term, reflecting the
fact that the police do not prioritise incidents on the basis of prox-
imity10 and can travel to incidents rapidly. In addition, the second
term is a function of rioter numbers only: given that their aim is to
eliminate all disorder, the number of police already at a site is likely to

be immaterial to the police. As in (5) and described elsewhere44, the
attractiveness function Vj representing police requirement, is
therefore:

Vj~Z
ap

j exp cpDj

� �
, ð14Þ

where ap and cp are, as before, parameters to be calibrated which
encode the relative importance of the two factors. Following the
identical process seen with (5) above, we may first calculate effective
requirement to take into account time lags in the system,

Ve
j tð Þ~ 1

Lp

XLp{1

l~0

Vj t{ldtð Þ: ð15Þ

and, in conjunction with a SIM, as in (11) and (12), can derive an
expression for the total number of police officers in location j at time
t:

Qj tð Þ~P
Ve

j tð ÞP
k Ve

k tð Þ , ð16Þ

where P is the total number of police officers in the system.

Interaction between police and rioters. To model the interaction of
police and rioters, we return to the mechanism of arrest and its
associated probability described previously. This gives the
probability of capture for an individual rioter, and multiplying by
the number of participants present therefore gives the expected
number arrested. Since, for reasons explained previously, we
classify participants by residential location, this is done separately
for each area to give Ci(t), the rate at which individuals who
originated in i are arrested at time t:

Ci tð Þ~t
X

j

Sij tð Þ 1{ exp {
Qj

Dj

0
@

1
A

0
@

1
A: ð17Þ

where t is an arrest rate parameter.

Demonstration case. As a step towards verification of the model,
and to establish a ‘base case’ for further investigation, a series of
numerical simulations were run, representing the escalation of
events during a typical evening. Individual simulations ran for 10
time units (where one unit is the time taken for a rioter to travel to
their destination) and involved sequential iteration through the
model equations in the order (12), (16), (8). The system was
seeded with 100 riot participants, assigned to residential areas in
proportion to population and allocated to sites of disorder
according to the static component of attractiveness (i.e. Zar

j ).
Similarly, 5,000 police officers (the approximate number deployed
on each of the first 3 days in London) were initially placed at retail
sites according to Z

ap

j . Given the high dimensionality of the model,
many parameter sets were found to yield feasible results. To focus our
discussion an example parameter set was chosen (Table 1) which
gives rise to outcomes broadly in agreement with the features
observed in the data, both in terms of borough level participants
(Figure 2) and distance decay (Figure 3).

Since the riots occurred over 5 days, with incidents initialised in
various locations across that period, these aggregate results offer little
validation other than to confirm that the model is capable of replic-
ating the general characteristics of the data. By instead initialising
small incidents at just two locations, rather than simultaneously

Table 1 | Parameters used in base case simulation

Parameter ar b cr ap cp g k t Lr Lp dt

Value 0.6 0.5 0.11 0.65 0.012 0.006 6 0.75 30 60 0.0143

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1303 | DOI: 10.1038/srep01303 5



across the city, we may explore the susceptibility of retail centres.
Such initialisation is also reflective of the way in which real incidents
are thought to arise: many of the outbreaks began as small local
gatherings of unrest7,11.

Our analysis considers retail sites which were worst affected:
Brixton, Croydon, Clapham Junction and Ealing. We ran four such
simulations in each case, pairing the site of interest with each of its
closest geographical neighbours. In all simulations (Figure 4) the
centres which experienced widespread rioting in reality also saw
substantial growth from the initial small disturbance in the model,
while the vast majority of other retail locations saw incidents decay to
zero. These results serve as further validation, but also, given the
structure of the model, offer insight into why some sites were more
susceptible than others, since the dynamics are based on a combina-
tion of factors: proximity to populous areas of high deprivation, and
the balance of centre size and police presence. These are important
results, as such an approach might be applied as an indicator of future
susceptibility.

Police resources and response. To gain quantitative insight into the
level of police resource required to maintain control in a situation
such as London’s, we used the results of our demonstration case to
analyse the effect of policing configuration on the development of
disorder. To meaningfully compare realisations of the system, we
define a quantity severity to summarise the cumulative disorder,
given by the overall extent to which police are outnumbered by
rioters:

severity~
X

j

XT

t

Dj tð Þ
Qj tð Þ ð18Þ

Two parameters were varied independently in our simulations - total
police P and response lag Lp - with parameters as in Table 1
otherwise, and results are shown in Figure 5. Police numbers
correspond to those seen in London, and reflect what was seen in
data: numbers above approximately 10,000 appear sufficient to
suppress disorder. In the case of speed of response, the difference
in severity as Lp increases, relative to a base case of Lp 5 0, is plotted.
After a noisy stage at small values, the severity appears to increase
with lag. Although the increase is small as a proportion of absolute
value, it should be borne in mind that these simulations are run with
parameter values chosen such that a certain level of severity is
assumed. Any changes, therefore, are variations around a level
which has been implied a priori by other factors, such as police
and rioter numbers. As expected, the trend observed reflects the
importance of delivering police to scenes of disorder before control
is lost. The same simulations were also run for other police
configurations - specifically where police are assigned to locations
initially, either uniformly or proportionally with Zap , and remain
static throughout - but results differ only slightly from the
dynamic case and are not shown.

Discussion
Motivated by the events in London in 2011, we have presented a
model of civil disorder which is able to replicate the general features
of that outbreak. Whilst simple, the model incorporates the fun-
damental features of such an incident, and might be applicable to
others of a similar nature. We have used the model to explore how the
level of resource available to be deployed by the police might affect
the outcome of such an incident, which is currently an open question
in the UK and has clear and timely implications for policy. The
availability and use of police intelligence as a means of deploying

Figure 2 | Borough level choropleth of rioter residential locations from (a) data and (b) simulated results. Although the extreme dependence on initial

conditions precludes our model from generating an exact replica of the observed incidents, the results show good qualitative agreement, with 26 of the 33

boroughs showing rioter percentages in the same or adjacent bands as the data. The remaining discrepancy may be accounted for by factors specific to the

London disorder, such as communication between groups, other activity patterns occurring at the time, or social factors beyond the scope of this work.

The labels 1,2,3,4 correspond to retail centres in Brixton, Croydon, Clapham Junction and Ealing respectively, which are considered individually in our

later simulations.

Figure 3 | Log-linear plot of the complementary cumulative distribution
function for D, the distances between residences and offence locations
within the demonstration simulation.
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Figure 4 | The susceptibility of retail sites. For each of the four centres worst affected in the riots: (a) Brixton, (b) Croydon, (c) Clapham Junction

and (d) Ealing, we ran four separate simulations, pairing the site of interest with each of its closest geographical neighbours in turn. An initial disturbance

of one rioter was included at both sites and the model run to allow the incidents to evolve. Results shown for the sites of interest are the average of their four

simulations, and in each case substantial growth is seen, particularly in comparison to the neighbouring centres.

Figure 5 | The effect on severity of modifying (a) the number of police officers, and (b) their response lag.
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officers rapidly and efficiently - for which our concept of lag is a
proxy - is also of particular interest. Both of these are found to have
a material, and quantifiable, effect in our work. More sophisticated
strategies on the part of both police and rioters could be incorporated
in future iterations of the model, with the ultimate aim of making
further quantitative recommendations.

Methods
Data. The behaviour of rioters is studied via the analysis of recorded crime data,
provided by the Metropolitan Police. This consists of all offences detected by the
police in London in the period 6-11th August 2011, and which have been classified as
being associated with the riots. Although the usual caveats concerning recorded crime
data - regarding completeness and representativeness - do apply, these data are the
best available for the London riots. Each record corresponds to a single incident, and
specifies the area where the offence took place, the date and time at which the offence
was estimated to have occurred, the residence of the offender and the age of the
offender. It should be noted that no offender appears more than once in the data. This
is preferable, since our focus is on involvement only, and the fact that a single instance
of participation might comprise several crimes (perhaps determined subjectively) is
liable to introduce bias to the data.

The dataset is comprised of 3,914 records; however, only 2,299 of these contain
entries for both residential and offence location. Since both of these elements are
fundamental to the model, only those records were analysed. In using this informa-
tion to determine the distribution of ‘journeys to crime’ (i.e. the distance between
home and offence), the Euclidean distance between the centroids of the basic census
units within which the two points fall is used. Although it is recognised that this is not
necessarily a true representation of the cost associated with travel, it is the only metric
which can be applied consistently to our data; furthermore, common alternatives
incorporating travel time may well not apply in such extraordinary circumstances.

The geographical data we use in our analysis of residential areas are Lower and
Medium Super Output Areas, a hierarchical geographical structure defined by the UK
government for census purposes. The census itself is also used to provide the residential
populations of each of these areas, as used in the model. Government statistics for
deprivation are also available at the level of Lower Super Output Areas, in the form of the
Index of Multiple Deprivation (produced by the Department for Communities and Local
Government in 2011). This is a UK-wide indicator, by which areas are ranked according
to a combination of employment, health, education, housing, and other factors.

We also use data concerning London’s retail centres, as defined by the Department
for Communities and Local Government (see www.planningstatistics.org.uk). These
are consistently-defined ‘areas of town centre activity’, and measurements of the total
area of retail floorspace are given for each; it is this quantity that is used as a proxy for
the size of each centre in our model. To calculate the distances between residential
areas and retail centres required by our model, the Euclidean distance between zone
centroids is used.

Numerical simulations. The data described above are used as the inputs for
numerical simulations of the model described previously. The model is implemented
as a discrete-time system, with each time step involving sequential iteration through
the model equations given in the earlier text.

In order to obtain the configuration used for the demonstration case, a parameter
search was carried out across the space of all tunable parameters. The process began
by selecting plausible ranges for each parameter, informed by previous work with
similar models. One simulation was carried out for each configuration in a coarse
sampling of this space, with several observables computed for each completed run: the
distribution of riot magnitude across all sites, the number of riot sites where the level
of offending was of an order higher than the mean level, the temporal progression of
the simulation, and the distribution of flow-weighted travel distances. Using these
observations, a smaller region of parameter space was identified for which all
observations were of similar character to the riot data (in the sense that their relative
difference was within a certain tolerance). The process was then repeated for the
smaller parameter space, using a lower tolerance, and several further similar iterations
followed.
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