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The structural features that enable replicative DNA polymerases to synthesize DNA rapidly
and accurately also limit their ability to copy damaged DNA. Direct replication of DNA
damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to
mammals and executed by an array of specialized DNA polymerases. This chapter examines
how these translesion polymerases replicate damaged DNA and how they are regulated to
balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also
discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hyper-
mutation and the contribution it makes to the mutations that sculpt the genome of cancer
cells.

Genome replication is normally an extremely
accurate process with an error rate as low as

one in 1010 bases in mammalian cells. This
extraordinary fidelity is the result of a combi-
nation of factors: the intrinsic ability of the rep-
licative polymerases to select the correct nu-
cleotide, their ability to recognize and excise
misincorporated nucleotides, and the activity
of postreplicative mismatch repair (Loeb and
Monnat 2008; Arana and Kunkel 2010). How-
ever, the features that give the replicative poly-
merases their high intrinsic fidelity also mean
that they are easily stalled by DNA damage.
Since the DNA at the fork is unwound, any
attempt to excize the damage will result in
DNA breaks and replication fork collapse. To
avoid this, cells replicate through the damage,
restoring it to duplex DNA before attempting
excision repair. This is known as damage toler-
ance. Damage tolerance can be achieved by re-

combinational mechanisms or directly by trans-
lesion synthesis (TLS).

TLS is conserved throughout evolution. It
relies on specialized DNA polymerases that have
active sites capable of accommodating damaged
or distorted templates. However, use of these
polymerases carries an increased risk of muta-
genesis because damaged bases are frequently
non- or misinstructional and because the struc-
tural adaptations that allow lesion replication
also result in reduced fidelity when copying un-
damaged DNA. The principal DNA polymer-
ases responsible for TLS during replication be-
long to the Y-family (Sale et al. 2012), along
with the B-family enzyme Pol z (Gan et al.
2008). In addition, DNA polymerases of the X
and A family are capable of TLS and can con-
tribute to mutagenesis during DNA-repair re-
actions such as base excision repair (BER) and
nonhomologous end joining (NHEJ). Whereas
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TLS plays an important role in creating muta-
tions, the TLS polymerases possess structural
features that often help them extract the correct
code from diversely damaged templates. Cou-
pled with control mechanisms that ensure their
access to DNA templates is strictly regulated,
this helps limit the opportunities for these po-
lymerases to cause undesirable mutagenesis.

THE MECHANISMS OF TRANSLESION
SYNTHESIS BY THE EUKARYOTIC Y-FAMILY
POLYMERASES AND Pol z

The budding yeast Saccharomyces cerevisiae has
three DNA polymerases specialized for TLS:
RAD30 (Pol h) and Rev1, both from the Y-fam-
ily, and the B-family enzyme Pol z. Vertebrate
cells possess two further Y-family polymerases
Pol k and Pol i (Fig. 1).

General Features of the Y-Family
Polymerases

The Y-family polymerases all adopt the same
overall right-handed topology as the replicative
polymerases, despite little conservation of pri-
mary sequence between them (Yang and Wood-
gate 2007) (Fig. 2). As in replicative polymer-
ases, the key carboxylate residues necessary for
catalysis reside in the “palm” domain, but they
are housed within a much larger active site pock-
et that can accommodate bulky or distorted
templates. The fingers and thumb domains,
which in the replicative polymerases are re-
quired to detect the fit of a correctly paired in-
coming nucleotide, are generally shorter and
make fewer contacts with both the template
and incoming nucleotide. This reduces the en-
zymes’ ability to discriminate the correct incom-
ing base and thus contributes to their dimin-
ished fidelity and processivity. An additional
little-finger domain, also known as the polymer-
ase-associated domain (PAD), helps stabilize the
Y-family polymerases on DNA. Critically, the Y-
family TLS polymerases also lack a 30-50 proof-
reading exonuclease domain. Together, these
features result in genuinely error-prone enzymes
with incorporation error rates of up to one in 10
(McCulloch and Kunkel 2008).

Pol h

Polh, also known as RAD30 in yeast (McDonald
et al. 1997), plays a key role in the accurate rep-
lication of the principal form of UV-induc-
ed DNA damage, the cyclobutane pyrimidine
dimer (CPD) (Johnson et al. 1999b). On un-
damaged DNA, however, Pol h is significantly
error prone (Washington et al. 1999; Johnson
et al. 2000c; Matsuda et al. 2000; Matsuda
et al. 2001). Mutations in Pol h are linked to
the clinical syndrome xeroderma pigmentosum
variant (XPV) (Johnson et al. 1999a; Masutani
et al. 1999), characterized by hypersensitivity to
UV-induced skin-pigmentation changes and an
increased incidence of skin cancers (Cleaver
1972). Pol h-deficient cells are hypermutable
following UV exposure (Stary et al. 2003; Choi
and Pfeifer 2005; Busuttil et al. 2008), which
results from inaccurate bypass of CPDs by Pol
k or Pol i working in cooperation with Pol z
(Wang et al. 2007; Gueranger et al. 2008; Ziv
et al. 2009) and from more frequent DNA breaks
and chromosome aberrations (Cleaver et al.
1999; Limoli et al. 2002a,b).

Structurally, the ability of Pol h to replicate
CPDs accurately is due to its large active site,
which is able to accommodate both bases of a
CPD in such a manner that the linked Ts can
pair correctly with incoming dA (Biertumpfel
et al. 2010; Silverstein et al. 2010) (Fig. 2B). The
structural distortion of the newly synthesized
duplex caused by the T-T dimer is controlled
by a positively charged b-strand in the little-
finger domain that acts as a splint (yellow patch
in Fig. 2B) that ensures the reading frame is
maintained. Further DNA synthesis beyond
the CPD is limited to three bases by steric clashes
that likely result in the enzyme being displaced
from the DNA, thereby limiting the extent of
low-fidelity synthesis (Biertumpfel et al. 2010).
Polh, however, is not able to completely replicate
the highly helix-distorting (6-4) pyrimidine-
pyrimidone photoproduct, the second most
abundant UV lesion, although Pol h can incor-
porate dG opposite the 30 base of this lesion in
vitro (Masutani et al. 2000; Johnson et al. 2001).
In vivo, however, Pol h-deficient cells do not
exhibit a significant defect in the replication of
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(6-4) photoproducts, suggesting that other po-
lymerases, possibly Pol z, are normally respon-
sible foraccurate replication of this lesion (Gibbs
et al. 2005; Hendel et al. 2008; Szüts et al. 2008;
Yoon et al. 2010).

The ability of Pol h to accommodate a di-
nucleotide lesion in its active site also contrib-

utes to its ability to replicate intrastrand cross-
links at G-G dinucleotides caused by cisplatin, a
commonly used chemotherapeutic agent. The
active site stabilizes the lesion, allowing the 30

G to Watson–Crick pair with incoming dCTP,
while still providing the rigidly inclined 50 G
space within the active site (Alt et al. 2007;
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Figure 1. Domain structure of TLS polymerases in S. cerevisiae and Homo sapiens. The diagrams are to scale
except that hREV3 and hPol u are truncated, as indicated by parallel diagonal lines. The REV7 subunit of Pol z is
not shown. PAD, polymerase-associated domain (also known as the little finger); BRCT, a domain with ho-
mology to the BRCA1 carboxyl terminus; UBM and UBZ, ubiquitin-binding domains; PID, polymerase-
interacting domain (of REV1); RIR, REV1-interacting region (of other Y-family polymerases).
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Ummat et al. 2012; Zhao et al. 2012). Replica-
tion of the 50 G is much less efficient and accu-
rate, and, in vivo, this step is catalyzed by Pol z
(Shachar et al. 2009). Pol h also contributes to
the replication of single-base lesions, notably
7,8-dihydro-8-oxoguanine (8-oxoG), the most
common oxidative lesion in DNA, opposite
which it incorporates the correct dC (de Padula

et al. 2004). Again, however, extension requires
Pol z (Haracska et al. 2003).

Pol i

Pol i evolved as a gene duplication of RAD30
(McDonald et al. 1999) and is present in most
vertebrates and in some lower eukaryotes, but
notably not birds or S. cerevisiae (Waters et al.
2009). It is remarkably error prone, exhibiting
markedly different fidelities depending on the
template base (Tissier et al. 2000b). This prop-
erty is explained by its unusual active site, which
restricts the conformation of template purines
to syn, promoting Hoogsteen pairing with the
incoming base (Nair et al. 2004). In the case of
8-oxoG, the syn conformation would normally
result in pairing with incorrect dA. However,
the narrow active site of Pol i prevents this, fa-
voring instead pairing with the smaller, and cor-
rect, dC (Kirouac and Ling 2011).

The in vivo roles of Pol i have been more
difficult to establish firmly. After some debate
about the role of Pol i in bypassing CPDs (John-
son et al. 2000b; Tissier et al. 2000a; Choi et al.
2006; Vaisman et al. 2006), several studies have
now established that Pol i can indeed contribute
to replication of UV lesions in vivo. When both
Pol i and Pol h are disrupted, the formation of
UV-induced skin tumors in mice is accelerated
(Dumstorf et al. 2006; Ohkumo et al. 2006).
Further, in a human Burkitt lymphoma cell
line lacking both Pol i and Pol h, mutational
hotspots present in a Pol h single mutant were
lost (Gueranger et al. 2008).

Pol i is also implicated in BER. It possesses
dRP lyase activity, interacts with XRCC1, and
can substitute for Pol b in an in vitro short-
patch BER reaction (Bebenek et al. 2001; Petta
et al. 2008). However, the extent to which use of
Pol i in this context contributes to mutagenesis
is not known.

Pol k

Pol k is the most widely conserved of the Y-
family polymerases with homologs in bacteria,
archaea, and eukaryotes. Interestingly, however,
it is not found in S. cerevisiae (Ohmori et al.
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Figure 2. Comparative anatomy of a replicative poly-
merase and a TLS polymerase. (A) S. cerevisiae poly-
merase d, PDB 3IAY (Swan et al. 2009), a replicative
B-family polymerase. The domains are shaded: palm,
pink; thumb, green; fingers, cyan; exonuclease, pur-
ple. The DNA is in black, and the active site in the
palm and incoming nucleotide triphosphate is in red.
(B) H. sapiens polymerase h, PDB 3SI8 (Biertumpfel
et al. 2010), a Y-family TLS polymerase with a T-T
CPD in the þ2 position. The domains in common
with Pol d are shaded the same. The little-finger do-
main/PAD is shaded in light brown. The DNA is in
black, except the CPD, which is pink. The active site
and incoming nucleotide triphosphate pairing with
the first base after the CPD are in red. The b-strand
splint in the little finger/PAD domain that constrains
the CPD is highlighted in yellow.
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2001). It is the most accurate of the Y-family
polymerases on undamaged DNA (Johnson
et al. 2000a) and has a less marked tendency
for –1 frameshifts than its bacterial homolog
dinB (Ohashi et al. 2000). Pol k can bypass
many lesions, albeit with relatively low efficien-
cy, but is blocked by dinucleotide lesions (Ba-
voux et al. 2005a) as its catalytic site can only
accommodate a single Watson–Crick base pair
(Lone et al. 2007). It can, however, replicate
some N2-dG adducts such as N2-furfuryl-dG
(Jarosz et al. 2006); N2-(1-carboxyethyl)-20-
dG, a byproduct of glycolysis (Yuan et al.
2008); and N2-benzo[a]pyrene-diol-epoxide-
dG (Zhang et al. 2000, 2002b; Rechkoblit
et al. 2002) efficiently and accurately. How-
ever, N2-dG adducts formed by the impor-
tant lipid-oxidation products acrolein and
4-hydroxynonenal (g-hydroxy-1,N2-propano-
20-dG and trans-4-hydroxy-2-nonenal-dG re-
spectively) block Pol k. In these cases, Pol k
can operate in a two-step TLS reaction by ex-
tending from dC inserted by Pol i (Washington
et al. 2004b; Wolfle et al. 2006). Indeed, Pol k is
adept at extending a diverse range of mis-
matched termini (Washington et al. 2002),
and this is likely to be related to the stability it
gains from the manner in which it encircles
DNA, largely a function of a unique domain
in its amino terminus termed the N-clasp
(Lone et al. 2007). However, in vivo evidence
suggests that the role of extender polymerase
(Fig. 3) is dominated by Pol z (Shachar et al.
2009), even for lesions such as N2-benzo[a]py-
rene-dG, that in vitro can be efficiently bypassed
by Pol k alone (Zhang et al. 2000; Avkin et al.
2004).

Pol k also cooperates with Pol d in the gap-
filling step of nucleotide excision repair (NER),
being recruited by ubiquitinated proliferating-
cell-nuclear-antigen (PCNA) and the scaffold
protein XRCC1 (Ogi and Lehmann 2006).
The recruitment of Pol k may facilitate repair-
patch synthesis in conditions of low dNTPs, as
pertains to G1, because of the relatively low Km

of the enzyme. However, it would also be ex-
pected to contribute to mutagenesis at the rate
of about one mutation per 30 repair patches
(each of 30 nucleotides) (Ogi et al. 2010).

The Catalytic Activity of REV1

REV1 can insert dC opposite an abasic site (Nel-
son et al. 1996a) a limited number of adducts,
notably N2-adducts of guanine (Zhang et al.
2002c; Washington et al. 2004a; Nair et al.
2008), and template dG (Nelson et al. 1996a;
Haracska et al. 2002). However, it does this in
a most unusual way. It does not directly pair the
incoming dC with the DNA template. Instead, it
swings the template dG out of the helix and
temporarily coordinates it with a specialized
loop within the little finger. In place of the tem-
plate dG, REV1 places its own Arg324, which
hydrogen bonds with incoming dC (Nair et al.
2005). This mechanism thus allows the bypass
of bulky dG adducts (Nair et al. 2008) and sug-
gests how REV1 can act as a template-indepen-
dent dC transferase. The catalytic activity of
REV1 is employed during the bypass of abasic
sites in the immunoglobulin (Ig) loci of verte-
brate B cells (Jansen et al. 2006; Ross and Sale
2006; Masuda et al. 2009) (see below) and dur-
ing abasic site bypass in yeast (Kim et al. 2011).
REV1 has also been implicated in the replica-
tion of sequences capable of forming DNA
secondary structures, notably triplet repeats
(Collins et al. 2007) and G-quadruplexes (Sar-
kies et al. 2010). However, inactivation of the dC
transferase of REV1 has no measurable effect on
the sensitivity of chicken DT40 cells to a range
of DNA-damaging agents (Ross et al. 2005) or
on murine development (Masuda et al. 2009),
but it is required for budding yeast to survive
exposure to the G-adducting agent 4-nitroqui-
noline-1-oxide (Wiltrout and Walker 2011).
Nonetheless, complete loss of REV1 results in
defective TLS through lesions that are not sub-
strates for its catalytic activity (Gibbs et al. 2000;
Simpson and Sale 2003; Ross et al. 2005; Jansen
et al. 2009). This is attributable to loss of a sec-
ond function of REV1 in the coordination of
other TLS polymerases, which is discussed fur-
ther below.

Pol z

Pol z is a B-family enzyme related to the repli-
cative polymerases Pols d, 1, anda. It is essential
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for practically all DNA-damage-induced and a
significant proportion of spontaneous muta-
genesis in yeast (Lemontt 1971; Cassier et al.
1980; Quah et al. 1980; Morrison et al. 1989;
Roche et al. 1994; Harfe and Jinks-Robertson
2000), despite the relatively modest sensitivity
of pol z mutants to DNA-damaging agents
(Lawrence and Christensen 1976). The core of
Pol z is made up of two subunits: Rev3, the
catalytic subunit, and Rev7, an accessory sub-
unit that stimulates the activity of Rev3 (Nelson
et al. 1996b) and links Pol z to Rev1 (Acharya
et al. 2005). Like the Pol d catalytic subunit
(Pol3), Rev3 associates with the accessory pro-
teins Pol31 and Pol32 via its carboxyl terminus

(Acharya et al. 2009; Johnson et al. 2012), which
harbors an iron–sulphur cluster (Netz et al.
2012). This suggests a common element to the
recruitment and regulation of the two polymer-
ases.

Pol z lacks proofreading exonuclease activi-
ty, and the accuracy of the yeast enzyme is lower
than Pol d and Pol 1 at about 10 – 4, similar to Pol
a (Johnson et al. 2000b). It is not significantly
modified in vitro by the presence of the acces-
sory proteins RPA, RFC, and PCNA (Zhong
et al. 2006). In vitro, Pol z is generally ineffi-
cient at inserting bases opposite lesions but is
markedly adept at extending from mismatched
primer termini and those containing abnormal
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extender polymerase (PolTLSins/ext) is Polh, which can replicate this lesion on its own, aided by its large active site
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structures (Johnson et al. 2000b; Haracska et al.
2003; Washington et al. 2004a). It has been pro-
posed that this is its principal in vivo role (Pra-
kash et al. 2005). However, genetic evidence
argues that in vivo Pol z is also capable of sig-
nificant single-step bypass of lesions such as
(6-4) photoproducts (Gibbs et al. 2005; Szüts
et al. 2008; Yoon et al. 2010).

Pol z has been notoriously hard to study
in vertebrate cells. Vertebrate Pol z also compris-
es REV3 and REV7 subunits, but REV3 is con-
siderably larger than its yeast counterpart at
some 350 kDa, mostly because of the insertion
of a large exon of unknown function toward its
amino terminus (Gan et al. 2008). Currently,
the only structural information on the complex
concerns the REV7-interacting peptide from
human REV3 in complex with REV7 showing
how the interaction could produce an interface
for the binding of REV1 (Hara et al. 2010). De-
spite the report of an antibody that can detect
endogenous REV3 (Wang et al. 2011), the size
of Pol z, along with its apparently very low levels
of expression in cells (Ogawara et al. 2010), has
significantly hampered biochemical and cell bi-
ological studies. Further, unlike its yeast coun-
terpart, deletion of Pol z in mice results in em-
bryonic lethality (Bemark et al. 2000; Esposito
et al. 2000; Wittschieben et al. 2000; Kajiwara
et al. 2001; O-Wang et al. 2002; Van Sloun et al.
2002) and senescence of primary fibroblasts
(Lange et al. 2012). However, transformed
mouse and chicken cells are able to proliferate
in the absence of REV3 (Sonoda et al. 2003;
Zander and Bemark 2004).

Pol z also plays a role in double-strand break
repair. The DNA synthesis associated with re-
combination in S. cerevisiae is error prone com-
pared with that of replication, and this muta-
genesis is dependent on Pol z (Strathern et al.
1995; Holbeck and Strathern 1997). Further,
immunoprecipitation shows that yeast Pol z

and REV1 are associated with HO-endonucle-
ase-induced double-strand breaks (Hirano and
Sugimoto 2006). Vertebrate Pol z and REV1 also
appear to be involved in double-strand break
repair, although their precise role in this process
remains poorly understood (Sonoda et al. 2003;
Sharma et al. 2011).

COOPERATION BETWEEN TLS
POLYMERASES IN BYPASSING LESIONS

It is evident from the examples discussed above
that, in some cases, lesion bypass can be effected
in a single step by a single DNA polymerase, for
example, the bypass of CPDs by Pol h (Fig. 3A).
However, in general, this type of TLS appears
to be the exception rather than the rule. Many
in vitro and structural studies have highlighted
constraints that polymerases face in solving
both problems of incorporation opposite a le-
sion and extension from the resulting mis-
matched terminus. Certain polymerases seem
to be particularly good at the insertion step,
for instance, Pol i and REV1, whereas others
are more proficient at extension, notably Pol z
and, to a lesser extent, Pol k. These findings led
to the proposal that lesion bypass is often a two-
step process (Johnson et al. 2000b) (Fig. 3B).
Recent work has confirmed that two-step by-
pass is the norm for several important lesions
and that Pol z plays a crucial role as an extender
in vivo, even in cases where bypass can be car-
ried out by a single polymerase in vitro (Shachar
et al. 2009).

CONTROL OF TRANSLESION SYNTHESIS

The potential mutagenicity of TLS polymerases
means that they must be carefully controlled.
Control of TLS has been most extensively stud-
ied in relation to the Y-family polymerases and
Pol z (Gan et al. 2008; Sale et al. 2012). The
regulation of the mutagenic X- and A-family
polymerases, discussed below, is much less well
understood but is likely to depend on the DNA-
repair mechanisms in which they participate.

Unlike in Escherichia coli, changes in the
overall cellular levels of the translesion polymer-
ases do not appear to play a major role in the
regulation of eukaryotic TLS. The exception is
Rev1 in S. cerevisiae, which is under profound
cell-cycle control with markedly elevated levels
in G2 (Waters and Walker 2006). Rather, the
preferred method seems to be to locally concen-
trate the enzymes in replication factories (Kan-
nouche et al. 2001; Sabbioneda et al. 2008;
Sale et al. 2012). Formation of these factories is
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driven by a number of factors, including PCNA
ubiquitination (discussed below), although im-
portantly, focus formation is not strictly neces-
sary for polymerase function (Ross et al. 2005;
Gueranger et al. 2008). Nonetheless, local con-
centration of the Y-family polymerases in the
vicinity of distressed forks may be a first step
to increase the likelihood of their recruitment
to stalled termini (Sabbioneda et al. 2008).

Ubiquitination of Proliferating Cell
Nuclear Antigen

Following replication arrest, eukaryotic PCNA
is monoubiquitinated at lysine 164 in a reaction
mediated by the E3 ubiquitin ligase RAD18
working in conjunction with the E2 ubiquitin-
conjugating enzyme RAD6 (Hoege et al. 2002;
Stelter and Ulrich 2003; Haracska et al. 2004;
Kannouche et al. 2004). In vertebrates, there
are additional ubiquitin ligases capable of intro-
ducing this modification (Simpson et al. 2006;
Zhang et al. 2008; Terai et al. 2010). The activity
of RAD18 is stimulated by its association with
RPA-coated single-stranded DNA (Davies et al.
2008), and PCNA monoubiquitation serves to
recruit the Y-family polymerases to sites of rep-
lication arrest by enhancing their direct associ-
ation with PCNA through an interaction be-
tween ubiquitin-PCNA and ubiquitin-binding
motif (UBM) or ubiquitin-binding zinc (UBZ)
domains in the carboxyl terminus of the poly-
merases (Bienko et al. 2005).

PCNA can also be polyubiquitinated with
K63-linked chains built on the initial ubiquitin
conjugated to K164 of PCNA (Hoege et al. 2002;
Chiu et al. 2006). In yeast, at least, PCNA can also
be SUMOylated (Papouli et al. 2005; Pfander
et al. 2005). These modifications are principally
linked to recombinational modes of damage by-
pass. Nonetheless, it is clear that there is complex
cross-talk between the mechanisms that control
recombination and TLS (Sale 2012). For exam-
ple, the E3 ligase responsible for PCNA poly-
ubiquitination is also required for efficient TLS
in both S. cerevisiae (Pages et al. 2008) and Schizo-
saccharomyces pombe (Coulon et al. 2010).

S. cerevisiae lacking ubiquitinatable PCNA
( pol30-119, which carries a K164R substitu-

tion) have a generalized defect in UV-induced
mutagenesis that is indistinguishable from ei-
ther a rad6 or a rev3 mutant (Stelter and Ulrich
2003; Haracska et al. 2004). However, both
mouse and chicken cells with a pcnaK164R mu-
tation retain significant TLS activity (Arakawa
et al. 2006; Langerak et al. 2007; Szüts et al. 2008;
Hendel et al. 2011; Krijger et al. 2011). At least in
DT40 cells, the majority of this PCNA ubiquiti-
nation-independent TLS is dependent on a
noncatalytic function of REV1 (Arakawa et al.
2006; Edmunds et al. 2008; Szüts et al. 2008).

The Noncatalytic Role of REV1
in Translesion Synthesis

In addition to its catalytic function, REV1 plays
an important part in the coordination of TLS
through protein–protein interactions with oth-
er TLS polymerases, PCNA, and ubiquitin. The
extreme carboxyl terminus of vertebrate REV1
interacts with the other Y-family polymerases
(Guo et al. 2003; Ohashi et al. 2004; Tissier
et al. 2004) and with Pol z via its REV7 subunit
(Murakumo et al. 2001). Deletion of this do-
main results in the same damage-tolerance de-
fect seen in a complete rev1 mutant (Ross et al.
2005; Edmunds et al. 2008). The carboxyl ter-
minus of REV1 in S. cerevisiae also binds to
Rad30 (Pol h) and to Rev7 (Pol z), although
the way in which it interacts with Pol h appears
to be distinct from the vertebrate protein (Ac-
harya et al. 2007; D’Souza et al. 2008; Kosarek
et al. 2008). Structural studies of the mam-
malian REV1 carboxyl terminus have reveal-
ed an atypical four-helix bundle with distinct
interaction surfaces for REV7 and the REV1-
interacting regions (RIRs) of Pol h and k (Po-
zhidaeva et al. 2012; Wojtaszek et al. 2012).
Adjacent to this carboxy-terminal domain are
two UBM domains that may facilitate the bind-
ing of REV1 to ubiquitinated PCNA (Garg and
Burgers 2005; Guo et al. 2006b) or other ubiq-
uitinated proteins in the vicinity of stalled rep-
lication forks (Edmunds et al. 2008). The region
in which the UBMs are embedded also mediates
a direct interaction with PCNA (Ross et al. 2005;
Wood et al. 2007). This arrangement suggests
that REV1 could act as an adaptor to coordinate
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the interaction between PCNA, the inserter Y-
family polymerases, and the extender polymer-
ase Pol z during TLS.

This noncatalytic function of REV1 is re-
quired for normal replication-fork progression
following DNA damage in mouse and chicken
DT40 cells (Edmunds et al. 2008; Jansen et al.
2009), suggesting that REV1 plays a role at, or
close to, the replication fork. In DT40 cells, this
early role appears to be independent of PCNA
ubiquitination (Edmunds et al. 2008). REV1
also plays a later role in filling postreplicative
gaps, left when replication reprimes downstream
of an arrested fork. This role is very prominent
in mouse cells (Jansen et al. 2009) but much
less obvious in DT40 (Edmunds et al. 2008),
probably because it is masked by the very active
recombinational pathways in the latter system.

The role of the amino-terminal BRCT do-
main of REV1 remains incompletely under-
stood. The rev1-1 mutant of S. cerevisiae carries
a G193R substitution within the BRCT domain
and exhibits defective mutagenic tolerance of
(6-4) photoproducts despite retaining almost
full catalytic activity (Nelson et al. 2000). Mouse
cells lacking the BRCT domain of REV1 exhibit
defective DNA damage tolerance, an increase in
UVC-induced chromosome aberrations, and
spontaneous intragenic deletions in the HPRT
locus (Jansen et al. 2005). Further, there is strong
evidence that the BRCT domain is required for
the early role of REV1 close to replication forks
(Jansen et al. 2009). The reported binding of the
BRCT domain to PCNA (Guo et al. 2006a) has
been challenged (de Groote et al. 2011). Instead,
it is proposed to preferentially bind recessed 50

phosphorylated primer-template junctions (de
Groote et al. 2011). This raises the interesting
possibility that REV1, like the 9-1-1 checkpoint
complex, is recruited to postreplicative gaps by
binding to the 50 end of the gap.

TLS Polymerase Phosphorylation
and the 9-1-1 Clamp

The exposure of RPA-coated single-strand-
ed DNA at stalled replication forks not only
triggers PCNA ubiquitination, but also ATR-
dependent checkpoint activation (Byun et al.

2005). Both REV1 and Polh are phosphorylated
by ATR, although how this regulates TLS is
still unclear (Sabbioneda et al. 2007; Pages
et al. 2009; Gohler et al. 2011). Significantly,
full activation of the ATR-dependent replication
checkpoint requires downstream repriming and
recruitment of the 9-1-1 checkpoint clamp to
the 50 phosphorylated end of the resulting RPA-
coated gap (Zou and Elledge 2003; Majka et al.
2006). As well as stimulating ATR-dependent
phosphorylation, this PCNA-like clamp also di-
rectly interacts with Pol k and Pol z/Rev1 (Kai
and Wang 2003; Sabbioneda et al. 2005). This
has led to the suggestion that the apparatus
needed for TLS of highly distorting lesions is
actually recruited to the 50 end of a postreplica-
tive gap, subsequently translocating back to the
arrested 30 terminus. This mechanism would
intrinsically restrict access of TLS to forks at
which stalling is sufficiently persistent to give
rise to downstream repriming (Jansen et al.
2007).

Ubiquitination of the TLS Polymerases

An emerging level of polymerase regulation is
posttranslational modification of the polymer-
ases themselves by ubiquitination (Bienko et al.
2005; Guo et al. 2006b; Wimmer et al. 2008;
Bienko et al. 2010; Jung et al. 2010). The signifi-
cance of polymerase ubiquitination is still un-
der investigation, the best understood case be-
ing Pol h. Pol h is monoubiquitinated on its
carboxyl terminus, probably by PIRH2 (Jung
et al. 2010), and this inhibits its interaction
with PCNA, suggesting that deubiquitination
of Pol h is needed for its recruitment to stalled
forks (Bienko et al. 2010).

The Fanconi Anemia Pathway

As has already been noted, TLS plays an impor-
tant role in the cellular response to DNA inter-
strand cross-links. The replication-dependent
repair of cross-links is coordinated by the Fan-
coni anemia (FA) complex, which is instrumen-
tal in ensuring the correct recruitment of both
homologous recombination and TLS (Niedz-
wiedz et al. 2004; Raschle et al. 2008; Knipscheer
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et al. 2009; Long et al. 2011). However, evidence
is emerging that the FA pathway may also play a
role in the coordination of TLS that is indepen-
dent of cross-link repair, the FA pathway appear-
ing to be particularly important for REV1-
dependent TLS (Mirchandani et al. 2008; Kee
and D’Andrea 2010; Kim et al. 2012).

The Role of the Lesion Itself

Despite the emergence of these refined mecha-
nisms for polymerase recruitment, it remains
largely unclear what determines polymerase
selection at a particular lesion. It seems likely,
based on some of the parameters discussed
above, that the lesion itself plays a role in deter-
mining which polymerase is ultimately em-
ployed, even if this is simply a question of which
enzyme can perform the reaction in the most
straightforward manner, seen for example in the
replication of CPDs by Pol h. It may also be that
the context in which the lesion is found limits
the options for its bypass (Sale 2012).

OTHER POTENTIALLY MUTAGENIC
POLYMERASES IN VERTEBRATES

Higher eukaryotes, and particularly vertebrates,
have an expanded repertoire of potentially er-
ror-prone DNA polymerases of the X and A
families. These enzymes are capable of TLS
and are likely to contribute to mutagenesis in
vivo through the specialized support they pro-
vide to specific DNA-repair pathways.

Translesion Synthesis and Mutagenesis by
Eukaryotic X-Family Polymerases

S. cerevisiae has a single X-family DNA polymer-
ase, Pol 4, which plays a role in NHEJ (Wilson
and Lieber 1999; Tseng and Tomkinson 2002)
and possibly BER (Bebenek et al. 2005). It can
fill in small gaps and extend primer termini
that have limited homology but has a high er-
ror rate, partly because of lack of proofreading
exonuclease activity (Bebenek et al. 2005).
Thus, even though the patches it synthesizes
are short, its deployment is likely to be muta-
genic.

Mammals have four X-family polymerases:
Pol b, terminal deoxynucleotidyl transferase
(TdT), Pol l, and Pol m, of which Pols b, l,
and m are also capable of lesion bypass. Pol b
can incorporate A or C opposite 8-oxoG with
roughly equal efficiency because the templating
8-oxoG can adopt both syn and anti conforma-
tions in the active site of the enzyme (Batra
et al. 2012). Pol m is closely related to TdT
and, like TdT (Desiderio et al. 1984), plays a
role in V(D)J recombination of Ig genes, in-
creasing junctional diversity (Bertocci et al.
2006). However, it is more widely expressed
and participates more broadly in NHEJ (Chayot
et al. 2012). Pol l is the closest relative of S.
cerevisiae Pol 4. It possesses dRP lyase activity
and can participate in BER in vitro (Garcia-Diaz
et al. 2001). However, its major in vivo role also
appears to be in NHEJ, both during V(D)J re-
combination and more generally. Pol m and Pol
l are both capable of TLS of a range of lesions in
vitro (Duvauchelle et al. 2002; Maga et al. 2002;
Zhang et al. 2002a) but have a propensity for
primer misalignment that leads to –1 frame-
shifts (Bebenek et al. 2003; Covo et al. 2004;
Bebenek et al. 2008). However, Pol l is also
capable of high-fidelity bypass, including of
8-oxoG, especially in the presence of the auxil-
iary factors replication protein A (RPA) and
PCNA (Maga et al. 2007), helped by its novel
proofreading mechanism in which misincorpo-
rated dA can be removed by pyrophosphorolysis
(Crespan et al. 2012). The in vivo significance of
this TLS capability for repair and for mutagen-
esis remains to be fully explored, but it is likely
to facilitate the processing of complex breaks
and gaps that also contain damaged bases (Pi-
cher and Blanco 2007; Zhou et al. 2008; Skosa-
reva et al. 2012).

Translesion Synthesis and Mutagenesis
by the Vertebrate A-Family Polymerases,
Pol u and Pol n

Pol u (Mus308) is an unusual enzyme in that it
contains both helicase and polymerase domains
(Harris et al. 1996; Sharief et al. 1999; Seki et al.
2003), of which there are additional paralogs in
vertebrates: Pol n (Marini et al. 2003), which
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lacks the helicase domain, and Hel308, which
lacks DNA polymerase domains (Marini and
Wood 2002). Unlike most A-family polymer-
ases, such as E. coli Pol I, Pol u, and Pol n are
significantly error prone (Seki et al. 2004; Takata
et al. 2006). Pol u exhibits a similar base sub-
stitution frequency to Pol k but also has a high
rate of indel mutagenesis (Arana et al. 2008,
2011), and Pol n is unusual in incorporating
T opposite template G with a frequency ap-
proaching 0.5 (Takata et al. 2006). Both en-
zymes are also capable of TLS. Pol u can bypass
abasic sites in a single step, incorporating A al-
most as readily as opposite template T (Seki
et al. 2004), whereas both can bypass thymine
glycol, again incorporating A. Neither Pol u

nor Pol n can replicate the dinucleotide CPD
and (6-4) photoproduct lesions completely
(Seki et al. 2004; Takata et al. 2006). However,
Pol u is able to extend from mismatched pri-
mer termini including from bases incorporated
opposite these UV-induced lesions (Seki and
Wood 2008). Recently, Pol n has also been
shown to be capable of bypassing certain ex-
tremely large major groove adducts, including
interstrand cross-links (Yamanaka et al. 2010),
which is facilitated by its ability to catalyze
strand-displacement DNA synthesis (Takata
et al. 2006).

Evidence points to Pol u and Pol n being
involved in a number of repair pathways, al-
though firm clues as to their regulation are
sparse. Both enzymes are processive and, given
their error rates, it seems likely that their access
to DNA is controlled. Mus308 was initially
identified through its involvement in tolerance
of interstrand cross-linking agents (Harris et al.
1996), and the role Pol u and Pol n play in DNA
interstrand cross-link repair may reflect their
ability to perform TLS or participate in certain
forms of homologous recombination (Zietlow
et al. 2009; Kohzaki et al. 2010; Moldovan et
al. 2010; Yamanaka et al. 2010). Importantly,
Pol n both physically and functionally interacts
with the FA pathway (Moldovan et al. 2010).
Additionally, Drosophila Mus308 is involved in
microhomology-mediated NHEJ (Chan et al.
2010; Yu and McVey 2010) and Pol u in BER
(Yoshimura et al. 2006; Prasad et al. 2009),

which is likely facilitated by its terminal-trans-
ferase (Hogg et al. 2012) and dRP-lyase (Prasad
et al. 2009) activities. As with the X-family po-
lymerases, it seems likely that these roles are
important in contexts involving complex or
clustered damage.

THE ROLE OF TRANSLESION SYNTHESIS
IN SOMATIC MUTATION OF
IMMUNOGLOBULIN GENES

During the vertebrate immune response, TLS is
co-opted to help generate an extraordinarily
high level of mutagenesis in the Ig genes. Ig so-
matic hypermutation is driven by targeted de-
amination of C by activation-induced deami-
nase (AID) (Di Noia and Neuberger 2007).
Although AID can only deaminate dC, its action
is responsible for mutagenesis at all four bases.
This mutagenesis can be divided into two genet-
ically distinguishable phases, one targeted to C/
G base pairs and a second targeted to A/T (Rada
et al. 1998) (Fig. 4). These phases reflect the two
broad mechanisms by which the translesion po-
lymerases generate mutations; many mutations
at C/G reflect error-prone replication of abasic
sites, whereas mutations at A/T result from in-
trinsically error-prone DNA synthesis, princi-
pally by Pol h.

Mutagenesis at C/G base pairs is conceptu-
ally simple. It can result from direct replication
of U generated by AID to give C/G to T/A tran-
sitions (Petersen-Mahrt et al. 2002), which ac-
count for about 60% of mutations at C/G. Al-
ternatively, U can be excised by uracil DNA
glycosylase (UNG) (Di Noia and Neuberger
2002; Rada et al. 2002; Imai et al. 2003) forming
an abasic site, from which TLS can generate all
possible substitutions. There is strong evidence
that the deoxycytidyl transferase activity of
REV1 contributes to generating C to G trans-
version mutations (Jansen et al. 2006; Ross and
Sale 2006; Masuda et al. 2009), but it is less clear
which other polymerases are involved. A role
for Pol u has been proposed (Masuda et al.
2005; Zan et al. 2005; Masuda et al. 2006), but
is controversial (Martomo et al. 2008). The role
played by Pol z is also enigmatic. Early experi-
ments showed that lowering Pol z levels reduced
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hypermutation (Diaz et al. 2001; Zan et al.
2001), but it has been argued that this may
simply be attributable to fewer cell divisions
(Schenten et al. 2009). However, careful analy-
sis of the pattern of hypermutation in Pol h2/2

Pol zþ/2 animals revealed a decrease in tandem
base substitutions compared with Pol h2/2 Pol

zþ/þ animals, suggesting that Pol z does indeed
contribute (Saribasak et al. 2012). Further, ge-
netic analysis in DT40 cells suggests that Pol z
contributes to the extension of at least some by-
pass events in the Ig locus (Hirota et al. 2010).

The origin of mutations at A/T base pairs is
more complex. While still dependent on AID,
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Figure 4. The role of TLS in Ig gene somatic hypermutation. Ig gene hypermutation is initiated by AID, which
deaminates dC in the Ig variable-region genes to produce uracil. This triggers a number of mutagenic conse-
quences. In the right column, U is replicated by Pol d or Pol 1, resulting in C/G to T/A transitions (Phase Ia
[Neuberger et al. 2003]). Alternatively, U is excised to generate an abasic site (central columns). This can be
replicated by a polymerase capable of TLS to generate all possible mutations at dC (Phase Ib). REV1 is illustrated
and is responsible for C/G to G/C transversions. Alternatively, replication of the abasic site stimulates PCNA
ubiquitination, possibly by gap formation following replication arrest, and this recruits Pol h. This can result in
mutations at the site of dC deamination to generate Phase Ib mutation and could also lead to Phase II mutations at
A/T base pairs generated by misincorporation on undamaged DNA by Pol h. Finally, the initial U/G mismatch
can be recognized as a mismatch by MSH2/6, resulting in resection by EXO1 and formation of a gap. This, in turn,
stimulates PCNA ubiquitination, recruitment of Pol h, and Phase II mutagenesis at A/T base pairs.
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A/T mutagenesis requires Pol h (Zeng et al.
2001; Delbos et al. 2005, 2007) and is likely to
be the result of intrinsically error-prone synthe-
sis by the enzyme (Pavlov et al. 2002). How is
this linked to deamination of dC? A/T muta-
genesis is only partially dependent on uracil ex-
cision by UNG. A second pathway, involving
recognition and processing of the U/G mis-
match by MSH2/6 and EXO1 is actually quan-
titatively more prominent (Rada et al. 2004). It
seems likely that both uracil excision and mis-
match recognition generate a common sub-
strate, possibly a single-stranded gap (Sale
et al. 2009), that promotes ubiquitination of
PCNA and recruitment of Pol h (Langerak
et al. 2007; Roa et al. 2008; Krijger et al. 2011).
Under normal circumstances Pol h is the only
polymerase responsible for A/T mutagenesis
(Delbos et al. 2007). Pol i does not appear to
contribute to Ig diversification in mice (Mc-
Donald et al. 2003; Delbos et al. 2005; Martomo
et al. 2006), whereas Pol k can partially substi-
tute for Pol h, resulting in an alteration in the
spectrum of mutagenesis to A to C and T to G
transversions (Delbos et al. 2005; Faili et al.
2009). It is thus far unclear how and why Pol
h is preferentially selected.

MUTAGENESIS AND THE CANCER GENOME

Cancer is driven by the stepwise accumulation
of mutations in key genes that control normal
cellular behavior. The advent of massive se-
quencing technologies has revealed the extraor-
dinary extent of mutagenesis in many tumors,
with more than 100,000 individual point mu-
tations per genome in some cases (Stratton
2011). The pattern of somatic mutations in can-
cer has been likened to an archaeological record
that contains the history of all the mutagenic
processes operational during the evolution of
the tumor (Stratton 2011). Deciphering these
patterns is going to be extremely complex and
will require a detailed knowledge of how dif-
ferent agents damage DNA and how this dam-
age is converted into mutations through the
lesion-replication mechanisms discussed here.
In some cases, it is already possible to distin-
guish patterns that make sense. For instance,

tobacco smoke-associated lung-cancer genomes
exhibit high levels of G:C to T:A transversions,
characteristic of oxidative and adduct damage at
G (Pleasance et al. 2010b). Likewise, the mela-
noma genome exhibits a high number of C to T
transitions at dipyrimidine sequences character-
istic of error-prone bypass of UV-induced dam-
age (Pleasance et al. 2010a).

However, in many cases the patterns are
more complex, and recent approaches have ap-
plied machine-learning algorithms to decon-
volve individual mutational patterns (Nik-Zai-
nal et al. 2012). A particularly striking example is
a class of mutations detected in breast-cancer
genomes, often in highly clustered mutational
showers or kataegis (Nik-Zainal et al. 2012).
These mutations are C to T and C to G substi-
tutions at TpCpX trinucleotides, a signature
consistent with the action of some members of
the AID/APOBEC family (Beale et al. 2004).
Since these enzymes act on single-stranded
DNA, the clusters of mutation may reflect areas
where single-stranded DNA has been exposed,
for instance by replication arrest or resection
during homology-directed repair (Robert et al.
2012). By analogy with Ig-gene somatic hyper-
mutation the C to T transitions may reflect di-
rect replication of uracil, whereas the C to G
transversions may be the result of REV1-depen-
dent abasic site replication.

TRANSLESION SYNTHESIS AND CANCER:
A CAUSE AND POTENTIAL TARGET?

Although an inherited deficiency in Pol h re-
sults in a marked predisposition to skin can-
cer, spontaneously arising mutation of the
TLS polymerases has not emerged as a common
event in human cancer (Lange et al. 2011).
Nonetheless, polymorphisms in the TLS poly-
merases (Wang et al. 2004; Sakiyama et al. 2005;
He et al. 2008) and dysregulation of their ex-
pression (O-Wang et al. 2001; Yang et al. 2004;
Albertella et al. 2005b; Bavoux et al. 2005b;
Lee and Matsushita 2005) have been linked to
cancer.

In addition to TLS potentially contributing
to the development of some cancers, there is
considerable interest in modulating TLS as an
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adjunct to conventional cancer chemotherapy.
There are two potentially important ways in
which this could improve current treatments.
First, downregulation of TLS sensitizes cells to
commonly used chemotherapeutics, notably
the widely used platinum-based DNA cross-
linking agents such as cisplatin and oxaliplatin
(Simpson and Sale 2003; Sonoda et al. 2003; Wu
et al. 2004; Albertella et al. 2005a; Sharma et al.
2012). Proof of the potential of this approach
has been provided by experiments in mice in
which suppression of REV3 resulted in sen-
sitization of an otherwise chemoresistant lung
tumor to cisplatin (Doles et al. 2010). Second,
many current cancer chemotherapeutics act by
damaging DNA, and TLS could contribute to
chemotherapy-induced mutagenesis that leads
to the acquisition of resistance and, potentially,
secondary tumor formation. The role of TLS in
the acquisition of resistance to chemotherapeu-
tics has been demonstrated both in cell lines
(Wu et al. 2004; Okuda et al. 2005) and in
mice (Xie et al. 2010). Thus, modulation of
TLS holds significant promise as an adjunct to
conventional chemotherapy, both as a means of
increasing its effectiveness and reducing the
emergence of resistance and secondary tumors.
More work will be needed, however, to under-
stand the balance between the beneficial effects
of TLS inhibition and the hazardous conse-
quences of inducing potentially more damaging
genomic instability.
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