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Summary
In pregnancy, trophoblast invasion and uterine spiral artery remodeling are important for lowering
maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery
remodeling has long been implicated in preeclampsia, a major complication of pregnancy, but the
underlying mechanisms remain unclear1, 2. Corin is a cardiac protease that activates atrial
natriuretic peptide (ANP), a cardiac hormone important in regulating blood pressure3.
Unexpectedly, corin expression was detected in the pregnant uterus4. Here we identify a novel
function of corin and ANP in promoting trophoblast invasion and spiral artery remodeling. We
show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria,
characteristics of preeclampsia. In these mice, trophoblast invasion and uterine spiral artery
remodeling were markedly impaired. Consistently, we find that ANP potently stimulated human
trophoblasts in invading Matrigels. In patients with preeclampsia, uterine corin mRNA and protein
levels were significantly lower than that in normal pregnancies. Moreover, we have identified
corin gene mutations in preeclamptic patients, which decreased corin activity in processing pro-
ANP. These results indicate that corin and ANP are essential for physiological changes at the
maternal-fetal interface, suggesting that defects in corin and ANP function may contribute to
preeclampsia.

Pregnancy poses a serious challenge for maintaining normal blood pressure. Pregnancy-
induced hypertension, a major cause of maternal and fetal deaths, occurs in ~10% of
pregnancies5, 6. During pregnancy, the uterus undergoes profound morphological changes,
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including trophoblast invasion and spiral artery remodeling. In preeclampsia, impaired spiral
artery remodeling is common, but the underlying mechanisms are unclear1, 2, 7-9. Studies
indicate that vascular growth factor receptors, angiotensin and estradiol are involved in the
disease10-14.

Corin is a cardiac protease that activates ANP, a cardiac hormone regulating blood pressure
and sodium homeostasis15. In mice, lack of corin prevents ANP generation and causes
hypertension16. In humans, corin variants are associated with hypertension17. Interestingly,
corin expression was detected in the pregnant mouse4 (Fig. 1a) and human uterus
(Supplementary Fig. 1). As a transmembrane protein, corin is expected to act at the
expression sites, suggesting a possible function in the pregnant uterus.

To understand the role of corin in pregnancy, we created a mouse model, in which a corin
transgene was expressed under a cardiac promoter (Fig. 1b). The transgenic (Tg) and corin
knockout (ko) mice were crossed to generate ko/Tg mice expressing corin only in the heart
(Fig. 1c, d). In ko/Tg mice, transgenic corin expression restored pro-ANP processing in the
heart (Supplementary Fig. 2) and normalized blood pressure (Fig. 1e), indicating that cardiac
corin was sufficient to maintain normal blood pressure in non-pregnant (np) mice.

In pregnant corin ko mice, blood pressure increased at ~17 days post-coitus and rose further
before returning to the np level after delivery (Fig. 1f), which resembled late gestational
hypertension in preeclamptic women. In corin ko/Tg mice, which were normotensive, blood
pressure increased similarly during pregnancy (Fig. 1g), indicating that cardiac corin
expression did not prevent pregnancy-induced hypertension. The data also show that in these
mice hypertension in pregnancy was not due to preexisting high blood pressure. In addition
to in the uterus, corin mRNA was detected in the umbilical cord and placenta
(Supplementary Fig. 3). To distinguish the role of maternal corin from that of placental or
other fetal organs, corin ko females were mated with either wt or ko males. The resulting
fetuses carried one or no copy of the functional corin gene. Normally, enzymes encoded by
one gene copy are sufficient for their function. As shown in Fig. 1h, pregnant corin ko
females, mated with either wt or ko males, had similarly increased blood pressure, indicating
that lack of maternal, but not fetal, corin caused hypertension in pregnancy.

Proteinuria is a hallmark of preeclampsia. WT, corin ko and ko/Tg mice had similar urinary
protein levels before pregnancy and at mid gestation. The levels, however, increased in corin
ko and ko/Tg mice at late gestation (Fig. 1i), consistent with reported proteinuria in mouse
models of preeclampsia18. Ischemic glomeruli, indicated by fewer red blood cells, were
found in pregnant corin ko and ko/Tg mice (Fig. 1j, i-vi) but not in np mice (Supplementary
Fig. 4). PAS staining revealed increased extracellular matrixes and collapsed glomerular
capillaries in pregnant corin ko and ko/Tg mice (Fig. 1j, vii-ix). Electron microscopy
showed narrow glomerular capillary lumens and thick basement membranes (Fig. 1k),
suggesting endotheliosis and increased extracellular matrixes. Additional pathological
features such as necrotic cells and calcium deposits in the placental labyrinth also existed in
these mice (Supplementary Fig. 5), indicating insufficient uteroplacental perfusion.
Consistently, corin ko and ko/Tg mice had smaller litters (7.1 ± 2.3 (n=28) and 6.8 ± 2.7
(n=28), respectively, vs. wt 9.1 ± 1.2 (n=21) pups/litter; p values <0.001).

We examined embryos of E12.5 day, an early time point before blood pressure increase in
corin ko and ko/Tg mice, and E18.5 day before delivery. WT E12.5 embryos exhibited
obvious trophoblast invasion, shown by cytokeratin (cytok) staining (Fig. 2a), and large
vessels mostly in the deep decidua, shown by smooth muscle actin (SMA) staining (Fig. 2b),
indicating that smooth muscles in the superficial decidua were replaced by invading
trophoblasts. In contrast, trophoblast invasion in corin ko and ko/Tg embryos was markedly
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reduced (Fig. 2a) and smaller arteries were found in both superficial and deep decidua (Fig.
2b). In E18.5 wt embryos, more abundant trophoblasts were found in the decidua and
myometrium compared with those in corin ko and ko/Tg mice (Fig. 2c, d). By H&E
staining, larger and more abundant decidual spiral arteries were observed in wt than corin ko
or ko/Tg mice (Fig. 2e). Fig. 2f-h showed strong cytok (trophoblasts) staining but weak von
Willebrand factor (vWF) (endothelial) and SMA (smooth muscles) staining in wt decidual
and myometrial arteries. These data indicate that trophoblast invasion and spiral artery
remodeling were impaired in corin ko and ko/Tg mice and that this defect occurred before
blood pressure increased in these mice.

Corin activates ANP in the heart15. It was unknown if the corin function in pregnancy also
was mediated by ANP. Pro-ANP is expressed in the np and pregnant uterus (Supplementary
Fig. 6). If corin acts on pro-ANP to promote trophoblast invasion and spiral artery
remodeling, thereby preventing hypertension in pregnancy, ANP and corin ko mice should
have similar phenotypes. ANP ko mice are hypertensive (Fig. 3a) but their blood pressure
was not monitored during pregnancy19. We found similarly increased blood pressure in
pregnant ANP ko mice (Fig. 3b). The mice also had late gestational proteinuria (Fig. 3c) and
smaller litters (4.4 ± 1.7 (n=25) vs. wt 9.1 ± 1.2 (n=21) pups/litter, p<0.001). By
immunostaining, impaired trophoblast invasion and smaller spiral arteries were observed in
E12.5 embryos (Fig. 3d, e). In E18.5 embryos, ANP ko mice had far fewer trophoblasts
(Fig. 3f, g) and smaller arteries (Fig. 3h) in the decidua and myometrium than those in wt.
Consistently, weak cytok-staining but strong vWF-staining were found in arteries in ANP ko
mice (Fig. 3i). Thus, ANP and corin ko mice had very similar phenotypes, indicating that the
role of corin in pregnancy is most likely mediated by ANP.

In the heart, corin produces ANP, which in turn regulates blood pressure by promoting
natriuresis and vasodilation3. Here we found that lack of corin and ANP impaired
trophoblast invasion and spiral artery remodeling, which was not rescued by cardiac corin
expression in corin ko/Tg mice. ANP is known to relax vascular smooth muscles. Recently,
ANP and its downstream cGMP-dependent protein kinase were shown to be important in
angiogenic processes by promoting endothelial regeneration20, 21. Thus, ANP may function
locally to remodel uterine arteries. Our results also suggest that ANP may directly promote
trophoblast invasion (Fig. 4a). This hypothesis was tested. We found that ANP markedly
stimulated human trophoblasts to invade Matrigels (Fig. 4b) (Supplementary Fig. 7a). In
these cells, ANP receptor mRNA expression was confirmed (Supplementary Fig. 7b) and
ANP-stimulated intracellular cGMP production was detected (Fig. 4c) (Supplementary Fig.
7c).

Our findings underscore the importance of locally produced ANP by corin, which acts on
trophoblasts and vascular cells in the uterus. Because heart-derived ANP circulates inside
the vessel, our model may explain why cardiac corin failed to promote trophoblast invasion
and uterine artery remodeling, as shown in corin ko/Tg mice. To verify this hypothesis, we
quantified corin mRNA and protein in human uteruses by RT-PCR and ELISA. The levels
were low in np women but increased in pregnant women (Fig. 4d, e). In preeclamptic
women, the levels were significantly lower than in normal pregnancies. Similar results were
found by immunostaining (Supplementary Fig. 8). Consistently, pro-ANP levels in uterine
tissues were significantly higher in preeclamptic women than normal pregnant women (Fig.
4f), indicating that reduced uterine corin expression impaired pro-ANP processing in these
patients. Corin is a membrane-bound protein4, 15. Recent studies showed that corin can be
shed from cardiomyocytes and that soluble corin was detected in human plasma22, 23. We
found that plasma corin levels were higher in preeclamptic patients than np or normal
pregnant women (Fig. 4g). Thus, plasma corin levels did not reflect that in tissues,
indicating that plasma corin was likely derived from the heart, where corin expression was
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increased in response to high blood volume and pressure in pregnancy. These results further
support a local corin function in the pregnant uterus.

We then sequenced the CORIN gene24 in preeclamptic patients and identified a mutation
altering Lys to Glu at position 317 in LDL receptor repeat 2 in one woman (Fig. 4h, j) and
another mutation altering Ser to Gly at position 472 in frizzled 2 domain in two women from
the same family who had preeclampsia (Fig. 4i, j). In functional studies, K317E and S472G
mutations did not affect corin expression in HEK293 cells but markedly reduced corin
activity in processing pro-ANP (Fig. 4k-n). The data was consistent with previous findings
that LDL receptor repeats and frizzled domains are critical for corin activity25, suggesting
that the mutations may impair corin function in the patients, thereby contributing to
preeclampsia. Interestingly, corin variants in frizzled 2 domain that impaired corin function
have been reported in African Americans17, 26, a high risk population for preeclampisa.

Previously, high levels of plasma pro-ANP/ANP were detected in preeclamptic
patients27, 28. As shown with our plasma soluble corin data, plasma protein levels may not
reflect those in tissues. Together, we have identified a novel local function of corin and ANP
in promoting trophoblast invasion and spiral artery remodeling to prevent hypertension in
pregnancy. Our data suggest that impaired corin expression or function in the pregnant
uterus may represent an important mechanism underlying preeclampsia. Studies to further
understand impaired uterine corin expression in preeclamptic patients may help to develop
new strategies to enhance the corin/ANP pathway to prevent or treat this life-threatening
disease.

METHODS SUMMARY
Corin and ANP ko mice were described previously16, 19. Tg mice with cardiac corin
expression were generated using a heart-specific promoter. Blood pressure was measured by
radiotelemetry16. Tissue sections from np and pregnant mice were stained with H&E,
Masson's trichrome, PAS or von Kossa or immunostained with antibodies against cytok,
SMA, vWF or corin. Renal sections were also examined by electron microscopy. Transwell
invasion assay was done with human primary villous trophoblasts (ScienCell) and
trophoblastic JEG3, BeWo, JAR cell lines (ATCC) in Matrigel Invasion Chambers (BD
Biosciences). ANP-stimulated cGMP production in trophoblasts was assayed in 96-well
plates. Intracellular cGMP levels were determined using an EIA kit (Enzo Life Sciences).
Corin levels in human blood and uterus tissue samples were measured by ELISA22. Pro-
ANP levels in human uterus tissues were measured by ELISA (Alpco Diagnostics). CORIN
gene exons24 from preeclamptic patients were PCR amplified and directly sequenced. Corin
gene mutations identified were studied by expressing mutant corin proteins in HEK293 cells
and testing their activities in pro-ANP processing assays, as described previously26.

SUPPLEMENTARY ONLINE METHODS
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Hypertension, proteinuria and renal pathology in pregnant corin ko and ko/Tg mice
a, Corin mRNA expression in mouse uteruses. b, Corin Tg construct. pA: poly A. c, d,
Western analysis of corin protein in wt, corin ko and ko/Tg mice. e, Blood pressure (BP)
(mean ± s.d.) in np females. BP increased in corin ko (f) and ko/Tg (g) mice in pregnancy.
Data represent mean ± s.d. *P<0.05 vs. wt of the same time point. †P<0.05 vs. np level of
the same genotype. h, Similar BP changes in corin ko females mated with ko or wt males. i,
Late gestational proteinuria in corin ko and ko/Tg mice. Data represent mean ± s.d.
**P<0.01, n=7-8 per group. j, Renal ischemia in pregnant corin ko and ko/Tg mice, shown
in H&E (i-iii), Masson trichrome (iv-vi) or PAS (vii-ix) stained E18.5 sections. bar: 20 μm.
Red blood cells (yellow arrows) and open capillaries (red arrows) in wt glumeruli are
indicated. k, Narrow glomerular capillary lumen (L) and thick basement membranes (red
arrows) in corin ko and ko/Tg mice at E18.5 shown by electron microscopy.
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Figure 2. Impaired trophoblast invasion and spiral artery remodeling in corin ko and ko/Tg
mice
E12.5 embryo sections were stained for trophoblasts (a) or smooth muscles (b). Fetal (F)
and maternal (M) sides are indicated. Boxed areas in top panels are shown at a higher
magnification (x200). c, E18.5 embryo sections were stained for trophoblasts. In lower
panels (x100), yellow lines indicate the decidua and myometrium boundary. d, Quantitative
data (mean ± s.d.) of cytok staining. e, Fewer and smaller decidual spiral arteries (arrows) in
H&E-stained E18.5 corin ko and ko/Tg embryos. f-h, Co-staining of SMA, vWF, cytok and
nuclei in E18.5 embryos. Red arrows indicate cytok (green) signals, white arrows vWF (red)
signals, and orange arrows mixed (yellow) signals.
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Figure 3. Hypertension, proteinuria and uteroplacental pathology in pregnant ANP ko mice
a, BP (mean ± s.d.) in np females, **P<0.01. b, Elevated BP (mean ± s.d.) in pregnant ANP
ko mice. †P<0.05 vs. np level. c, Gestational proteinuria in ANP ko mice. Data represent
mean ± s.d. Impaired trophoblast invasion and smooch muscle remodeling in E12.5 embryos
stained for cytok (d) or SMA (e). Boxed areas in top panels are shown at a higher
magnification (x200). f, Impaired trophoblast invasion in E18.5 embryos stained for cytok.
g, Quantitative data (mean ± s.d.) of cytok staining in E18.5 ANP ko embryos. h, Impaired
decidual and myometrial artery remodeling (arrows) in H&E-stained E18.5 ANP ko
embryos. i, Co-staining of cytok, vWF and nuclei in E18.5 ANP ko embryos. Red arrows
indicate cytok (green) signals and white arrows vWF (red) signals.
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Figure 4. ANP-stimulated human trophoblast invasion, and impaired uterine corin expression
and corin mutations in preeclamptic patients
a, A model illustrating that corin-produced ANP in the pregnant uterus promotes trophoblast
invasion (red arrows) and vascular wall remodeling (black arrows). ANP stimulated human
BeWo and primary trophoblasts in Matrigel invasion (b) and intracellular cGMP production
(c). Data represent mean ± s.d. *P<0.05; **P<0.01 vs. control. Corin mRNA (d) and protein
(e) and N-terminal (NT) pro-ANP levels (f) in human uterus samples. Horizontal lines
indicate mean values. g, Plasma soluble corin levels (mean ± s.d.) in preeclamptic patients
and normal controls. h-j, CORIN gene mutations causing K317E (h) and S472G (i) changes
in corin (j). TM, transmembrane; Fz, frizzled; LDLR, LDL receptor; SR, scavenger
receptor. k,l, Expression of K317E and S472G mutants in HEK293 cells (top panels).
Vector, wt corin and inactive corin R801A and S985A mutants were controls. K317E and
S472G mutations reduced pro-ANP processing activity (bottom panels). m,n, Quantitative
data (mean ± s.d.) from ≥3 experiments.
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