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Introduction

Various microorganisms frequently attack plants with the pur-
pose to acquire nutrients. The outcome of these interactions can 
be neutral (commercialism), harmful (parasitism), or beneficial 
(mutualism) to the host. In mutualistic associations, the inter-
action between plant and microbe is thought to be highly bal-
anced and plants apparently control the degree of colonization. 
Under certain environmental conditions, plants might lose this 
control and mutualists can even cause diseases.1 This raises the 
question whether plants distinguish between pathogenic and 
mutualistic invaders in all cases. Various studies have shown that 
like pathogens mutualistic symbionts activate immune signaling 
in plants upon perception.2,3 Thus, both, mutualistic symbionts 
and pathogens must obviously overcome the host’s surveillance 
system to colonize plants. While strategies of mutualists are less 
well understood,4 pathogens release so-called effector proteins to 
disturb plant immune signaling or to reprogram host metabo-
lism including modifications of the host hormone homeostasis.5 
Plant immunity strongly relies on plant hormones to orchestrate 
a complex and interactive network of defense pathways to ward 
off attackers.6-8 Among plant hormones, ethylene (ET) essentially 
participates in the activation and regulation of plant immunity.9 
ET is formed from methionine via the activity of the enzyme 
S-adenosyl-l-methionine (SAM) synthetase, which converts 
methionine to SAM.10 1-aminocyclopropane-1-carboxylic acid 
(ACC) synthases (ACS) use SAM to generate ACC. ACC is con-
verted to ET by the enzyme ACC oxidase. ACSs are involved in 
ET biosynthesis.11 The abundance of ACSs closely correlates with 
the level of ET production in most plant tissues and various ACS 
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ethylene (eT) is a gaseous phytohormone that participates 
in various plant physiological processes and essentially 
contributes to plant immunity. eT conducts its functions by 
regulating the expression of eT-responsive genes or in crosstalk 
with other hormones. Several recent studies have shown the 
significance of eT in the establishment and development of 
plant-microbe interactions. Therefore, it is not surprising that 
pathogens and mutualistic symbionts target eT synthesis 
or signaling to colonize plants. This review introduces the 
significance of eT metabolism in plant-microbe interactions, 
with an emphasis on its role in mutualistic symbioses.
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gene family members are expressed differentially in response to 
developmental and environmental triggers.11,12

ET perception and signaling is highly regulated at transcrip-
tional and post-transcriptional levels, and is well defined in the 
model plant Arabidopsis.13 ET is recognized by endoplasmic 
reticulum (ER) membrane-bound receptors (e.g., ETHYLENE 
RECEPTOR1, ETR1). In the absence of ET, the receptors acti-
vate the Raf-like protein kinase CONSTITUTIVE TRIPLE 
RESPONSE 1 (CTR1) to block the ET response pathway.14 In 
contrast, binding of ET inactivates the receptors and deactivates 
CTR1, which allows downstream effectors like ETHYLENE 
INSENSITIVE 2 (EIN2) to translocate from the ER membrane 
to the nucleus and to function as a positive regulator of ET signal-
ing.13,15,16 ET signaling downstream of EIN2 is mediated by EIN3 
and EIN3-like (EIL) proteins, the key transcription factors regu-
lating ET responses.17 ET can stabilize EIN3 by preventing its 
degradation by EIN3-binding F-box proteins 1 and 2 (EBF1/2). 
In the absence of ET, EBF1/2 negatively regulate ET signal trans-
duction by subjecting EIN3 and possibly the related EIL proteins 
to an ubiquitin/26S proteasome pathway.18-20 Upon ET treat-
ment, EIN3 quickly stabilize and accumulates in the nucleus, 
where it functions as transcription factor. EIN3 and EIL1 regulate 
ET-responsive genes by binding to the primary ET response ele-
ment in promoter regions. ETHYLENE RESPONSE FACTOR 
1 (ERF1) is another transcriptional regulator of another set of 
ET-responsive genes. EIN3 and ERF1 act sequentially in a cas-
cade of transcriptional regulation initiated by ET.21 The impact 
of ET and other plant hormones on plant immunity has been 
introduced in various excellent reviews, which, however, provide 
limited information on its role in mutualistic interactions.9,22,23 
The present review aims to highlight similarities and differences 
of ET functions in pathogenic and mutualistic symbioses.

Function of ET in Plant Immunity

Plant immunity is immediately activated after microbial recog-
nition and, if microbes lack effective counterstrategies, usually 
stops the establishment of pathogenic and presumably mutu-
alistic plant-microbe interactions. Like pathogens, mutualistic 
symbionts trigger plant immunity, as the underlying perception 
system does not discern life styles but recognizes microbe-derived 
molecules. So-called pattern recognition receptors (PRRs) per-
ceive highly conserved microbial molecules termed microbe-asso-
ciated molecular patterns (MAMPs). Well described MAMPs are 
fungal chitin or bacterial flagellin (active epitope flg22), which 
are detected in Arabidopsis by the PRRs CHITIN ELICITOR 
RECEPTOR KINASE 1 (CERK1) and FLAGELLIN-SENSING 
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concentration-dependent.43 While higher ET levels are consid-
ered as being inhibitory to the formation of AM, very low con-
centrations may promote arbuscule formation.38,42 Therefore, 
the amount of ET synthesized at a particular time is appar-
ently essential for AM establishment.38,44 These results suggest 
an immune function of high ET levels that block the establish-
ment of mutualistic symbioses. This is unexpected, considering 
the general biotrophic life style of mutualists. Although ET is 
part of MTI and thought to substantiate MTI,26,27,29 ET mostly 
wards off necrotrophic rather than biotrophic pathogens.8,23 
Since ET accumulation in beneficial root interactions, including 
the ectomycorrhizal interactions of Laccaria laccata and Pisolithus 
tinctorius with roots of Pinus mugo,45 is obviously not part of 
the establishment of the symbiosis, it might represent a defense 
response upon perception of the mutualists by the root immune 
system. In fact, MAMPs elicit immune responses in roots that are 
at least partially similar to those in leaves.3,46 In addition to root 
oxidative burst, MAMPs induce MPK3 and 6 phosphorylation 
and expression of canonical marker genes in roots.3,47 Moreover, 
mutualistic fungi such as Piriformospora indica release immunity-
activating MAMPs, which can impair the establishment of the 
mutualistic root symbioses.3 Consistent with this, flg22-triggered 
defense responses in roots of Lotus japonicas negatively influenced 
nodulation by inhibiting rhizobial infections and delaying nod-
ule organogenesis48 or disturbed Arabidopsis root colonization 
by P. indica.3 Therefore, mutualists might have developed strate-
gies to prevent the activation of root immunity as reported for 
plant-rhizobia symbioses. Despite the presence of FLS2 in both 
plants, flagellin from Mesorhizobium loti or Sinorhizobium meli-
loti does not elicit immune responses in L. japonicus and tomato; 
most probably due to the differences in the N termini of these 
flagellins, which prevent recognition by FLS2.48 Apparently, this 
represents a co-evolutionary adaptation between rhizobia and its 
hosts to support the establishment of the mutualistic symbioses. 
Mutualistic microbes have developed further strategies to disturb 
immune activation. Like pathogens, mutualists secrete so-called 
effectors in order to disturb host immune signaling. Considering 
the role of ET in plant immunity and its negative impact on the 
establishment of mutualistic fungal symbioses, mutualists might 
use effectors or have developed yet unknown strategies to block 
ET signaling. The mycorrhizal fungus R. intraradices was shown 
to release the effector Sp7 in order to suppress plant defense 
responses.49 Sp7 has a nuclear localization signal, as well as several 
repeat domains of unknown function. The effector interacts with 
the host transcription factor ERF19, suggesting a biological func-
tion of Sp7 in regulating the expression of several ET responsive 
defense genes. Interestingly, fungal extracts from R. intraradices 
induced expression of ERF19 in M. truncatula roots while the 
infection of M. truncatula roots by R. intraradices only transiently 
induced ERF19 gene expression.49 Similarly, the plant growth-
promoting bacterium Pseudomonas fluorescens is apparently able 
to suppress the expression of genes encoding certain ET tran-
scription factors during bacterial root colonization.35 Other plant 
growth-promoting bacteria (PGPBs), such as Rhizobacteria spp., 
possess the enzyme ACC deaminase, which degrades the ET pre-
cursor ACC and thus facilitates plant growth and development 

2 (FLS2), respectively.24,25 The immune response activated by 
PRRs is defined as MAMP-triggered immunity (MTI). Certain 
signal transduction pathways associated with pathogen recogni-
tion are linked with increased ET production.26 Moreover, FLS2 
transcription is controlled by binding of EIN3 and EIL1 to the 
FLS2 promoter.27 flg22 treatment induces ET production due to 
the phosphorylation of the rate-limiting ET biosynthetic enzymes 
ACS2 and ACS6 by the MAP kinases 3 and 6. These MPKs 
further phosphorylate EIN3 resulting in its stabilization.17,28 
However, not only EIN3 and EIL1 define ET as an integral part 
of the plant immune system. ET activates various transcription 
factors (e.g., ERF1) that are involved in the regulation of immu-
nity-associated genes. By this means and via its complex interac-
tions with other hormones such as salicylic acid (SA) or jasmonate 
(JA), ET contributes to the robustness and effectiveness of plant 
immunity.23,29 ET-associated immunity was shown to affect the 
virulence of different pathogens with necrotrophic and hemibio-
trophic lifestyles.30-32 Plants disturbed in translating ET produc-
tion to signaling such as the ein2 mutant are impaired in MTI, 
resulting in enhanced susceptibility to the bacterial pathogen 
Pseudomonas syringae.26 ET application or constitutive expression 
of ERF1 protects plants against the necrotrophic fungus Botrytis 
cinerea, while ET-insensitive mutants (e.g., ein2) show increased 
susceptibility to B. cinerea.33,34 In addition to its impact on local 
resistance, ET is further required for induced systemic resistance 
(ISR) activated in roots by rhizobacteria and resulting in the sys-
temic protection of leaves against microbial pathogens.35

ET in Mutualistic Plant-Microbe Interactions

Despite its impact on mutualistic plant-microbe symbioses, little 
attention has been paid to the function of ET in the establishment 
of these associations.36-41 For instance, ET application was shown 
to negatively influence nodulation in legume-rhizobia symbioses 
as ET prevented Nod factor signaling in Medicago truncatula.36 
In addition, ET significantly restricted the spread of the arbuscu-
lar mycorrhizal (AM) fungus Glomus aggregatum in pea (Pisum 
sativum). Interestingly, the number of fungal appressoria formed 
was not affected by ET, but the appressoria showed abnormal 
morphology (swollen and highly branched). This resulted in a 
reduction of AM fungal entry into the root tissue, slower hyphal 
growth, and therefore reduced colonization. Colonization gener-
ally proceeded, although the extension of colonization units was 
restricted.37 ET has been further suggested as a negative regula-
tor in early phases of the symbiotic interaction of M. truncatula 
with the mycorrhizal fungi Endogone versiformis (syn. G. versi-
forme) and Rhizophagus intraradices (syn. G. intraradices).40 It is 
most likely a key regulator of Rhizophagus clarus (syn. G. clarum) 
root colonization in tomato mutants epinastic (epi)39 and never 
ripe,41 which show an ET overproduction and low ET sensitiv-
ity phenotype, respectively.42 The inhibitory effects of ET on 
root colonization of these mutants was mainly explained by a 
reduced intraradical fungal growth.42 Finally, ET affected col-
onization of Nicotiana attenuata by R. intraradices.38 Although 
all these studies underpin a negative impact of ET on root col-
onization by mycorrhizal fungi, this effect of ET is apparently 
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cell death as already implicated by the absence of root necrotiza-
tion in P. indica-colonized roots.57-59 P. indica induces a vacuolar 
programmed cell death by impairing ER function. The result-
ing ER stress activates a vacuolar processing enzyme (γVPE), 
whose caspase 1-like activity is required for the execution of cell 
death.58 Considering the improved root colonization in ctr1 and 
eto1 mutants at late interaction stages, P. indica might even use 
the pro cell death activities of ET in favor of its cell death-depen-
dent life style.

Conclusions

In general, ET is apparently a negative regulator of mutualis-
tic root symbioses, although exceptions occur (e.g., P. indica). 
Considering the biotrophic life style of these root microbes, these 
findings are in clear contrast to the mostly supportive effect of 
ET on leaf colonization by biotrophic pathogens. To understand 
this discrepancy, further analyses of the function of ET in root 
symbioses is required. This includes basic experiments to answer 
whether ET impairs root symbioses by affecting immunity or 
physiological processes (e.g., root hair development). It is fur-
thermore almost unknown, which role ET has as part of hor-
monal regulatory networks in roots. Studies in tomato showed 
the significance of hormonal crosstalk, as abscisic acid supported 
mycorrhization by antagonising ET.60,61 These analyses will 
reveal hormonal networks that might significantly differ from 
leaf tissue. The apparent absence of an ET-JA synergism in roots 
to support biotrophic mycorrhization as reported for biotrophic 
plant-pathogen interactions in leaves might be a first indication. 
In contrast to ET, JA seems to support nodulation and mycor-
rhization of roots.62
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by decreasing plant ET levels.50 However, PGPBs might rely 
on ACC deaminase activity not only to block ET immunity. 
Many PGPBs depend on ACC degradation products as nitrogen 
source.51,52 Thus, the positive correlation between ACC deami-
nase activity and PGPB growth might have nutritional and/or 
immunity-related reasons.

ET does not per se counteract the establishment of mutualis-
tic symbioses. For instance, nodule initiation and associated cell 
division at the base of lateral roots in the semiaquatic legume 
Sesbania rostrata requires ET.53 In the absence of ET, S. rostrata 
colonization and nodulation did not occur.53 ET effectively 
supports fungal root colonization of the mutualistic fungus P. 
indica in the monocot barley and dicot Arabidopsis. In barley, 
the free ACC content is elevated during early colonization stages. 
Further, while treatment with the ET precursor ACC supported 
barley root colonization, application of the ET inhibitor 1-meth-
ylcyclopropene (MCP) reduced it. In Arabidopsis, the effect of 
ET on P. indica colonization was studied using ET mutants.54,55 
Similar to barley, the Arabidopsis ET insensitive mutant ein2-1 
showed reduced root colonization while Arabidopsis mutants 
ctr1 and eto1-1, which display constitutive ET signaling or ET 
biosynthesis, respectively, exhibited significantly increased root 
colonization.55 This study further showed that ET-induced 
immunity might not disturb but support root colonization by 
P. indica. Arabidopsis plants overexpressing ERF1 (35::ERF1), 
and thus displaying constitutive ET-associated defense, showed 
improved root colonization by P. indica.55 These findings may be 
explained by the antagonism of ET and SA-mediated immune 
signaling. Chen et al. (2009) demonstrated the repression of SA 
immunity by EIN3/EIL1.56 EIN3/EIL1 are further activated by 
the JA pathway23 and P. indica was dependent on JA for sup-
pression of SA-mediated immunity and for successful fungal 
root colonization.3 Thus, P. indica may recruit the ET and JA 
pathway to block SA mediated immunity, which would other-
wise effectively stop root colonization.3 Interestingly, ET signal-
ing even supported later cell death-dependent colonization of P. 
indica, which is in contrast to the effectiveness of ET signaling in 
stopping necrotrophic pathogens such as B. cinerea. This is most 
probably explained by different types of cell death activated by P. 
indica and necrotrophic pathogens. P. indica-induced cell death 
is molecularly and biochemically different from necrotrophic 
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