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LEC1 acts as a key regulator of embryo-
genesis in Arabidopsis thaliana, but 

is involved in a wide range of functions, 
all the way from embryo morphogen-
esis to seed maturation. New data show 
that LEC1, partially in conjunction with 
abscisic acid, affects auxin synthesis, and 
both brassinosteroid and light signaling. 
The phenotype of LEC1 overexpressors 
confirms LEC1’s known participation 
in the regulation of somatic embryogen-
esis, but also indicates additional roles 
in embryonic and extra-embryonic cell 
elongation. Here we present an inte-
grated model of LEC1 function and sug-
gest potential directions to be taken in 
future research in this important area of 
plant science.

The regulation of transcription by tran-
scription factors (TFs) relies on their 
specific interaction with sequence motifs 
in their target gene promoter, a process 
which triggers the downstream tran-
scriptional machinery. Many TFs have 
been shown to be involved in multiple 
developmental events and/or responses 
to environmental cues, through the vari-
ability of their spatio-temporal expres-
sion and their interaction with other TFs. 
The LEAFY COTYLEDON1 (LEC1) 
TF is a CCAAT-box-binding factor, 
whose expression in the Arabidopsis thali-
ana embryo and endosperm peaks at an 
early stage of seed development and then 
declines up to the green pre-mature seed 
stage.1,2 The multifaceted phenotype of 
LEC1 loss-of-function mutants dem-
onstrates this TF’s involvement in the 
morphogenesis of the embryo, the speci-
fication of the suspensor and cotyledons, 
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the synthesis and accumulation of seed 
storage compounds, and in various desic-
cation- and dormancy-related processes. 
Both in vitro and in vivo experiments 
have established that LEC1 binds with 
NF-Y subunits,3,4 with TFs of other 
classes4,5 and with a non-TF protein.6 
An additional level of understanding of 
LEC1 function has been provided by the 
demonstration that LEC1 has functional 
relations outside the known seed matu-
ration-related LEC1-AFL/B3 network7,8 
and even outside the process of seed devel-
opment itself.9 Here, we have attempted 
to integrate its known with its more novel 
proposed functions to assemble a model 
for LEC1 function. The picture is one 
where a crosstalk network involves both 
transcriptional and hormonal control 
(Fig. 1).

LEC1 and Embryogenesis

LEC1 transcript abundance peaks at 
the globular-to-heart stage transition 
and then declines steadily toward early 
seed maturation10 (Fig. 1A, B). During 
embryo morphogenesis, the most promi-
nent function of LEC1 is the specifi-
cation of cotyledon identity. The lec1 
mutant produces leafy cotyledons,11 
whereas the ectopic expression of LEC1 
results in the formation of cotyledonary 
leaves9 (Fig. 1C). During seed matura-
tion, LEC1 expression is required for the 
synthesis of storage compounds, includ-
ing components of lipid synthesis and 
storage (such as oleosins).9,12 As part of 
the NF-YC2 complex, the LEC1 product 
activates the promoter of certain storage 
protein encoding genes.4,13 These seed 
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BR and auxin.16-18 Light signaling factors 
which form part of the photomorpho-
genic response have also been implicated 
with hypocotyl elongation in dark-grown 
plants, a process which is additionally 
influenced by the fatty acid reserve of the 
endosperm.19 These observations are sug-
gestive of a connection between the seed 
maturation- and seedling elongation-
related functions of LEC1. While the 
global role of ABA in the elongation pro-
cess is only poorly understood, it has been 
established that ABA inhibits both BR 
signaling20 and embryonic stem elonga-
tion.21 This elongation-inhibiting role of 
ABA led us to assume that LEC1 during 
etiolation may act independent of ABA 
(Fig. 1D). Discriminating between the 

LEC1 and Etiolation

The expression of LEC1 has also been 
detected in etiolated seedlings,6,14 an 
observation fully consistent with the de-
etiolated, short hypocotyl phenotype of 
dark-grown lec1 seedlings15 (Fig. 1B, C) 
and the mimicking of etiolation (including 
hypocotyl elongation and hook formation) 
shown by LEC1 overexpressing seedlings.9 
Given that LEC1 activity regulates genes 
implicated with auxin, brassinosteroid 
(BR) and light, the hypothesis has been 
mooted that both hypocotyl elongation 
and hook formation may be integrated 
by LEC1.9 Hypocotyl elongation as well 
as certain other processes appear to be 
enhanced via a positive synergy between 

maturation-related functions are depen-
dent on the presence of abscisic acid 
(ABA) (Fig. 1D). Since the relevant ABA 
responsive elements (ABREs) are over-
represented in LEC1-regulated target 
promoters,9 it is conceivable that LEC1 
probably confers ABA inducibility to its 
target genes by the recruitment of addi-
tional ABRE binding transcription fac-
tors such as bZIP. An example of this 
type of interaction is represented by the 
substitutability of bZIP67 for ABA, as a 
cofactor of LEC1 in the regulation of a 
specific storage protein encoding gene.4 A 
comprehensive genome-wide analysis of 
the LEC1 interactome would therefore be 
useful to allow the identification of fur-
ther co-operating factors.

Figure 1. Model of LEC1 functions during the development of Arabidopsis thaliana. (A) Schematic representations of Arabidopsis seed developmental 
stages starting from the globular stage (early embryogenesis) until seed maturation resulting in a fully desiccated seed. Upon germination in the dark 
the elongating radicle protrudes the seed coat. In order to reach the light, during etiolation hypocotyl elongation and apical hook formation drive the 
seedling through the soil and protect the apical meristem from mechanical damage, respectively. (B) LEC1 expression in the respective developmental 
stages. During embryogenesis LEC1 mRNA can be detected during early stages declining until maturation. Further on weak expression can be found 
in the etiolated seedling. LEC1 expression is incompatible with vegetative growth and the artificial system of ectopic expression of LEC1 outside of its 
natural expression domains is indicated by OE (overexpression). (C) Schematic representations of lec1 mutant phenotypes. Lec1 embryos are character-
ized by round cotyledons that do not curl. The embryonic axis is shorter due to missing hypocotyl elongation. The lec1 embryo is desiccation-intol-
erant and has to be rescued before maturation in order to continue growth. In the dark lec1 seedlings fail to elongate and light-grown lec1 seedlings 
develop trichomes on their cotyledons. (D) Functional relations of LEC1.
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potential associated with this TF, which 
only emphasizes the need for developing 
more holistic analytical approaches to bet-
ter understand plant differentiation and 
development.
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ABA-dependent and ABA-independent 
functions of LEC1 is a priority topic for 
further experimentation.

LEC1 and Vegetative Plant  
Development

The formation by the vegetative seedling 
of cotyledonary leaves and pickle-like root 
tips able to accumulate storage compounds 
can be induced by the ectopic expression 
of LEC1 and the provision of exogenous 
ABA.9 The supply of auxin induces the 
initiation of somatic embryogenesis from 
competent tissues, a phenomenon consis-
tent with the activation of transcription 
of the auxin synthesis gene YUCCA1022 
when LEC1 is expressed in the presence 
of ABA.9 The seed-specific expression 
of YUCCA10 may affect the elongation 
of the embryo downstream of the activ-
ity of LEC1, and opposing phenotypes 
due to varying auxin concentrations have 
been described. Enhanced auxin signal-
ing is known to inhibit the elongation of 
the embryonic axis during germination21 
and auxin synthesis suppresses hypocotyl 
growth post germination.23 However, 
some elongation-promoting effects of 
auxin have also been described.24

The LEC1 induced and auxin-mediated 
embryonic differentiation of structures 
associated with the shoot (cotyledonary 
leaves) and root (pickle roots) raises the 
question of their cellular origin. Currently 
it is unclear whether these structures are 
either derived from relict undifferentiated 
stem cells or whether a process of trans-
differentiation (possibly via a de-differen-
tiated state) is required. The analysis of 
stem cell marker expression in a system of 
controlled activation of LEC1 expression9 
will help to answer this question.

Conclusions

Recent insights into the function of LEC1 
have revealed the complexity of down-
stream regulatory interactions involving 
this TF, acting at various stages of plant 
development. LEC1 appears to be an inte-
grator of a number of regulatory events, 
including the action of heterologous TFs 
as well as both light and hormone signal-
ing. At present it is only possible to investi-
gate a minor part of the full combinatorial 




