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Abstract

After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role,
often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks
has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic
noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic
perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the
intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable
biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation
algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at
modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)
the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of
both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we
show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the
involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.
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Introduction

Cellular functions and decisions are implemented through the

coordinate interactions of a very large number of molecular

species. Central unit of these processes is the DNA, a polymer that

is in part segmented in subunits, called genes, which control the

production of the key cellular molecules: the proteins, via the

mechanism of the transcription. Some relevant proteins, called

transcription factors, in turn interact with genes to modulate either

the production of other proteins or their own production.

Given the above rough outlook of the intracellular machineries

it is not surprising that two modeling tools, actually born in other

applicative domains, revealed to be of the utmost relevance in

molecular biology. They are the inter-related concepts of feedback

[1,2] and of network [3–6], with their mathematical backbones:

the dynamical systems theory and the graph theory, respectively.

From the interplay and integration of these two theories with

molecular biology, a new scientific field has appeared: Systems

Biology [3–5].

Mimicking general chemistry, bipartite graphs were initially

introduced in cellular biochemistry simply to formalize the

informal diagrams representing biomolecular reactions [8].

Afterwards, and especially after the deciphering of genomes, it

became clear that higher level concepts of network theories were

naturally able to unleash fundamental biological properties, that

were not previously understood. We briefly mention here the

concepts of hub gene, and of biomolecular motif [3–7].

Note that the concept of network is also historically important in

early phases of Systems Biology. Indeed, the first dynamical

models in molecular biology were particular finite automata

(graph-alike structures) called boolean networks [16]. These first

pioneering investigations on the dynamics of biomolecular

networks stressed two concepts that revealed nowadays to be

two hallmarks in Systems Biology.

The first key concept is that biomolecular networks are

multistable [12–15]. Indeed, it was quite soon understood – both

experimentally and theoretically – that multiple locally stable

equilibria allows for the presence of multiple functionalities, even

in small groups of interplaying proteins [7,17–25].

The second key concept is that the dynamic behavior of a

network is never totally deterministic [9–11], but it exhibits more

or less strong stochastic fluctuations due to its interplay with many,

and mainly unknown, other networks, as well as with various

random signals coming from the extracellular world. For long time

the stochastic effects due these two classes of interactions were

interpreted as a disturbance inducing undesired jumps between

states or, with marginally functional role, as an external initial

input directing towards one of the possible final states of the

network in study. In any case, in the important scenario of

deterministically monostable networks the stochastic behavior

under the action of extrinsic noises was seen as unimodal. In other
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words, external stochastic effects were seen similarly as in

radiophysics, namely as a disturbance more or less obfuscating

the real signal, to be controlled by those pathways working as a

low-pass analog filter [26,27]. For these reasons, a number of

theoretical and experimental investigations focused on the

existence of noise-reducing sub-networks [26,28,29]. However, it

has been recently shown the existence of fundamental limits on

filtering noise [30].

Moreover, if noises were only pure nuisances, there would be an

interesting consequence. Indeed, in such a case a monostable

network in presence of noise should exhibit more or less large

fluctuations around the unique deterministic equilibrium. In

probabilistic languages this means that the probability distribution

of the total signal (noise plus deterministic signal) should be a sort

of ‘‘bell’’ centered more or less at the deterministic equilibrium, i.e.

the probability distribution should be unimodal. However, at the

end of seventies it became clear in statistical physics that the real

stochastic scenario is far more complex, and the above-outlined

correspondence between deterministic monostability and stochas-

tic monomodality in presence of external noise was seriously

challenged [31]. Indeed, it was shown that many systems that are

monostable in absence of external stochastic noises have, in

presence of random Gaussian disturbances, multimodal equilibri-

um probability densities. This counter-intuitive phenomenon was

termed noise-induced transition [31], and it has been shown

relevant also in genetic networks [32,33].

Above we mainly focused on external random perturbations

acting on genetic and other biomolecular networks. In the

meantime, experimental studies revealed the other and equally

important role of stochastic effects in biochemical networks by

showing that many important transcription factors, as well as other

proteins and mRNA, are present in cells with very low

concentrations, i.e. with a small number of molecules [34–36].

Moreover, it was shown that RNA production is not continuous,

but instead it has the characteristics of stochastic bursts [37]. Thus,

a number of investigations has focused on this internal stochastic

effect, the ‘‘intrinsic noise’’ as some authors term it [39,40]. In

particular, it was shown – both theoretically and experimentally –

that also the intrinsic noise may induce multimodality in the

discrete probability distribution of proteins [33,41]. However, the

fact that intrinsically stochastic systems may exhibit behaviors

similar to systems affected by extrinsic Gaussian noises was very

well known in statistical and chemical physics, where this was

theoretically demonstrated by approximating the exact Chemical

Master Equations with an appropriate Fokker-Planck equation

[42–44], an approach leading to the Chemical Langevin Equation

[45].

Thus, after that for some time noise was mostly seen as a

nuisance, more recently it has finally been appreciated that the

above-mentioned and other noise-related phenomena may in

many cases have a constructive, functional role (see [46,47] and

references therein). For example, noise-induced multimodality

allows a transcription network for reaching states that would not

be accessible if the noise was absent [33,46,47]. Phenotype

variability in cellular populations is probably the most important

macroscopic effect of intracellular noise-induced multimodality

[46].

In Systems Biology, from the modeling point of view Swain and

coworkers [35] were among the first to study the co-presence of

both intrinsic and extrinsic randomness, by stressing the synergic

role in modifying the velocity and average in the context of the

basic network for the production and consumption of a single

protein, in absence of feedbacks. These and other important effects

were shown, although nonlinear phenomena such as multi-

modality were absent. The above study is also remarkable since:

(i) it has stressed the role of the autocorrelation time of the

external noise and, differently from other investigations, (ii) it has

stressed that modeling the external noise by means of a Gaussian

noise, either white or colored, may induce artifacts. In fact, since

the perturbed parameters may become negative, the authors

employed a lognormal positive noise to model the extrinsic

perturbations. In particular, in [35] a noise obtained by

exponentiating the classical Orenstin-Uhlenbeck noise was used

[31].

From the data analysis point of view, You and collaborators

[48] and Hilfinger and Paulsson [49] recently proposed interesting

methodologies to infer by convolution the contributions of

extrinsic noise also in some nonlinear networks, including a

synthetic toggle switch [48].

Our aim here is to provide mathematical tools – and motivating

biological examples – for the computational investigation of the

co-presence of extrinsic and intrinsic randomness in nonlinear

genetic (or in other biomolecular) networks, in the important case

of not only non-Gaussian, but also bounded, external perturba-

tions. We stress that, at the best of knowledge, this was never

analyzed before. Indeed, by imposing a bounded extrinsic noise

we increase the degree of realism of a model, since the external

perturbations must not only preserve the positiveness of reaction

rates, but must also be bounded. Moreover, it has also been shown

in other contexts such as mathematical oncology [50–52] and

statistical physics [50,53–55] that: (i) bounded noises deeply

impact on the transitions from unimodal to multimodal probability

distribution of state variables [51–55] and (ii) the dynamics of a

system under bounded noise may be substantially different from

the one of systems perturbed by other kinds of noises, for example

there is dependence of the behavior on the initial conditions [51].

Here we assess the two most fundamental steps of this novel line

of research.

The first step is to identify a suitable mathematical framework to

represent mass-action biochemical networks perturbed by bound-

ed noises (or simply left-bounded), which in turn can depend on

the state of the system. To this extent, in the first part of this work

we derive a master equation for these kinds of systems in terms of

the differential Chapman-Kolgomorov equation (DCKE) [42,56]

and propose a combination of the Gillespie’s Stochastic Simulation

Algorithm (SSA) [38,39] with a state-dependent Langevin system,

affecting the model jump rates, to simulate these systems.

The second step relates to the possibility of extending, in this

‘‘doubly stochastic’’ context, the Michaelis-Menten Quasi Steady

State approximation (QSSA) for enzymatic reactions [57]. We face

the validity of the QSSA in presence of both types of noise in the

second part of this work, where we numerically investigate the

classical Enzyme-Substrate-Product network. The application of

QSSA in this network has been recently investigated by Gillespie

and coworkers in absence of extrinsic noise [58]. Based on our

results, we propose the extension of the above structure also to

more general networks than those ruled by the rigourous mass-

action law via a stochastic QSSA.

Finally, we stress that the interplay between the extrinsic and

intrinsic noises affecting a biomolecular network might impact on

the dynamics of the involved molecules in many different and

complex ways. As such, in our opinion this topic cannot be

exhausted in a single work. For this reason, we provided three

examples of interest in biology, and of quite different natures. One

is the above-mentioned Michaelis-Menten reaction, the other two

are illustrated in the third part of this work, and are the following:

(i) a futile cycle [33] and (ii) a genetic toggle switch [18], which is

a fundamental motif for cellular differentiation and for other

Bounded Noises in Stochastic Biomolecular Networks

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e51174



switching functions. As expected, the co-presence of both intrinsic

stochasticity and bounded extrinsic random perturbations suggests

the presence of possibly unknown functional roles for noise in both

networks. The described noise-induced phenomena are shown to

be strongly related to physical characteristics of the extrinsic noise

such as the noise amplitude and its autocorrelation time.

Methods

Noise-free stochastic chemically reacting systems
We start by recalling the Chemical Master Equation and the

Stochastic Simulation Algorithm (SSA) by Doob and Gillespie

[38,39]. Systems where the jump rates are time-constant are

hereby referred to as stochastic noise-free systems. We consider a

well stirred system of molecules belonging to N chemical species

fS1, . . . ,SNg interacting through M chemical reactions

R1, . . . ,RM . We represent the (discrete) state of the target system

with a N-dimensional integer-valued vector X(t)~(X1(t),
. . . ,XN (t)) where Xi(t) is the number of molecules of species Si

at time t. To each reaction Rj is associated its stoichiometric vector

nj~(n1,j , . . . ,nN,j), where ni,j is the change in the Xi due to one Rj

reaction. The stoichiometric vectors form the N|M stoichiom-

etry matrix D~ n1 n2 . . . nM½ �. Thus, given X(t)~x the

firing of reaction Rj yields the new state xznj . A propensity

function aj(x) [38,39] is associated to each Rj so that aj(x)dt,

given X(t)~x, is the probability of reaction Rj to fire in state x in

the infinitesimal interval ½t,tzdt). Table 1 summarizes the

analytical form of such functions [38]. For more generic form of

the propensity functions (e.g. Michaelis-Menten, Hill kinetics) we

refer to [62].

We recall the definition of the Chemical Master Equation (CME)

[38,39,60,61] describing the time-evolution of the probability of a

system to occupy each one of a set of states. We study the time-

evolution of X(t), assuming that the system was initially in some

state x0 at time t0, i.e. X(t0)~x0. We denote with

P(x,tjx0,t0):P(x,tjv) the probability that, given X(t0)~x0, at

time t it is X(t)~x. From the usual hypothesis that at most one

reaction fires in the infinitesimal interval ½t,tzdt), it follows that

the time-evolution of P(x,tjv) is given by the following partial

differential equation termed ‘‘master equation’’

LtP(x,tjv)~
XM
j~1

P(x{nj ,tjv)aj(x{nj){P(x,tjv)aj(x) : ð1Þ

The CME is a special case of the more general Kolmogorov

Equations [63], i.e. the differential equations corresponding to the

time-evolution of stochastic Markov jump processes. As it is well

known, the CME can be solved analytically only for a very few

simple systems, and normalization techniques are sometimes

adopted to provide approximate solutions [64]. However,

algorithmic realization of the process associated to the CME are

possible by using the Doob-Gillespie Stochastic Simulation

Algorithm (SSA) [38,39,60,61], summarized as Algorithm 1

(Table 2). The SSA is reliable since it generates an exact trajectory

of the underlying process. Although equivalent formulations exist

[38,39,65], as well as some approximations [62,66,67], here we

consider its Direct Method formulation without loss of generality.

The SSA is a dynamic Monte-Carlo method describing a

statistically correct trajectory of a discrete non-linear Markov

process, whose probability density function is the solution of

equation (1) [68]. The SSA computes a single realization of the

process X(t), starting from state x0 at time t0 and up to time T .

Given X(t)~x the putative time t for the next reaction to fire is

chosen by sampling an exponentially distributed random variable,

i.e. t*Exp(a0(x)) where a0(x)~
XM

j~1
aj(x) and * denotes the

equality in law between random variables. The reaction to fire Rj

is chosen with weighted probability aj(x)=a0(x), and the system

state is updated accordingly.

The correctness of the SSA comes from the relation between the

jump process and the CME [38,68]. In fact, the probability, given

X(t)~x, that the next reaction in the system occurs in the

infinitesimal time interval ½tzt,tztzdt), denoted P(tjx,t),
follows

P(tjx,t)~
X

j

P(t,jjx,t)

~a0(x) exp {

ðt

0

a0(t0)dt0
� �

~a0(x)e{a0(x)t

ð2Þ

since P(t,jjx,t)~aj(x) exp {a0(x)tð Þ is the probability distribu-

tion of the putative time for the next firing of Rj , and the formula

follows by the independency of the reaction firings. Notice that in

equation (2) a0(t0) represents the propensity functions evaluated in

the system state at time t0wt, i.e. as if they were time-dependent

functions. In the case of noise-free systems that term evaluates as

a0(x) for any t[½t,tzt�, i.e. it is indeed time-homogenous whereas

in more general cases it may not, as we shall discuss later. Finally,

Table 1. Gillespie propensity functions. Analytical form of the
propensity functions [38].

Order Reaction Propensity

0-th 1.
k

Sw
k

1-st
Si .

k
Sw

kXi(t)

2-nd
2Si .

k
Sw

kXi(t)(Xi(t)21)/2

SizSi0 .
k

Sw
kXi(t)(Xi9(t)

doi:10.1371/journal.pone.0051174.t001

Table 2. Algorithm 1 Gillespie Stochastic Simulation
Algorithm [38,39].

1: Input: initial time t0, state x0 and final time T;

2: set xrx0 and trt0;

3: while t,T do

4: define a0(x)/
XM

j~1
aj (x);

5: let r1 , r2,U [0,1];

6: determine next jump as t/
1

a0(x)
ln

1

r1

� �
;

7: determine next reaction as

j/min n j r2
:a0(x)ƒ

Xn

i~1

ai(x)

( )
;

8: set xrx+nj and trt+t;

9: end while

doi:10.1371/journal.pone.0051174.t002
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the probability of the reaction to fire at tzt to be Rj follows by

conditioning on j, that is

P(jjt; x,t)~
P(t,jjx,t)

P(tjx,t)
~

aj(x) exp {a0(x)tð Þ
a0(x) exp {a0(x)tð Þ~

aj(x)

a0(x)
: ð3Þ

Noisy stochastic chemically reacting systems
We now introduce a theory of stochastic chemically reacting

systems with bounded noises in the jump rates by combining

Stochastic Differential Equations and the SSA. Here we consider a

system where each propensity function may be affected by a

extrinsic noise term. In general, such a term can be either a time or

state-dependent function, and the propensity function for reaction

Rj reads now as

aj(x,t)~aj(x)L�j (t) , ð4Þ

where aj(x) is a propensity function of a type listed in Table 1. The

noisy perturbation term L�j (t) is positive and bounded by some

Cjƒz?, i.e.

0ƒL�j (t)ƒCj ð5Þ

so we are actually considering both bounded and right-unbounded

noises, i.e. Cj~z?. In the former case we say that the j-th

extrinsic noise is bounded, in the latter that it is left-bounded.

Note that in applications we shall mainly consider unitary mean

perturbations, that is

SL�j (t)T~1 :

We consider here that the extrinsic noisy disturbance L�j (t) is a

function of a more generic S-dimensional noise j(t) with S§1 so

we write L�j (t)~Lj(j(t)) and equation (4) reads as

aj(x,t)~aj(x)Lj(j(t)) : ð6Þ

Notice that the use of a vector in equation (6) provides the

important case of multiple reactions sharing the same noise term,

i.e. the reactions may be affected in the same way by a unique

noise source.

In equation (6) Lj is a continuous functions Lj : RS?R and

j(t)[RS is a colored and, in general, non-gaussian noise that may

depend on the state X(t) of the chemical system. The dynamics of

j(t) is described by a S-dimensional Langevin system

j
0
(t)~f (j,X(t))zg(j,X(t))g(t) : ð7Þ

Here, g is a S-dimensional vector of uncorrelated white noises

of unitary intensities, g is a S|S matrix which we shall mainly

consider the be diagonal and f ,gh,k : RS|RN?RS.

When j(t) does not directly depend on X(t), i.e. the extrinsic

noise depends on an external source, which is the kind of noise we

mainly consider, equation (7) reduces to

j
0
(t)~f (j)zg(j)g(t) : ð8Þ

We stress that the ‘‘complete’’ Langevin system in equation (7) is

not a mere analytical exercise, but it has the aim of phenome-

nologically modeling extrinsic noises that are not totally indepen-

dent of the process in study.

The Chapman-Kolmogorov Forward Equation. When a

discrete-state jump process as one of those described in previous

section is linked with a continuous noise the state of the stochastic

process is the vector

z~(x,j) where x[NN ,j[RS , ð9Þ

and the state space of the process is now NN|RS. Our total

process can be considered as a particular case of the general

Markov process where diffusion, drift and discrete finite jumps are

all co-present for all state variables [42,56]. For this very general

family of stochastic processes the dynamics of the probability of

being in some state z at time t, given an initial state z0 at time t0

shortly denoted as v, is described by the differential Chapman-

Kolgomorov equation (DCKE) [42,56], whose generic form is

LtP(z,tjv)~{
X

j

Lzj
Aj(z,t)P(z,tjv)z

1

2

X
i,j

Lzi ,zj
Bi,j(z,t)P(z,tjv) ð10Þ

z

ð
½W (zjh,t)P(z,tjv){W (hjz,t)P(h,tjv)�dh :

Here Aj forms the drift vector for z, Bi,j(z,t) the diffusion matrix

and W the jump probability. For an elegant derivation of the

DCKE from the integral Chapman-Kolgomorov equation [63] we

refer to [56]. This equation describes various systems, in fact we

remind that (i) the Fokker-Planck equation is a particular case of

the DCKE without jumps (i.e. W (zjh,t)~0), (ii) the CME in

equation (1) is the DCKE without brownian motion and drift (i.e.

A(z,t)~0 and B(z,t)~0), (iii) the Liouville equation is the DCKE

without brownian motion and jumps (i.e. A(z,t)~0 and

W (zjh,t)~0) and (iv) the ODE with jumps correspond to the

case where only diffusion is absent (i.e. B(z,t)~0).

We stress that, at the best of our knowledge, this is the first time

where a master equation for stochastic chemically reacting systems

combined with bounded noises is considered. Let

P((x,j),tj(x0,j0),t0):P(z,tjv) ð11Þ

be the probability that at time t it is X(t)~x and j(t)~j, given

X(t0)~x0 and j(t0)~j0. The time-evolution of P(z,tjv) is

equation (10) where drift and diffusion are given by the Langevin

equation (7), that is

A~f (j,x) B~gT|g ð12Þ

with | the standard vector multiplication and gT the transpose of

g. Moreover, since only finite jumps are possible, then the jump

functions and diffusion satisfy

Lzizj
Bi,j(z,t)~0 W ((x,j)j(x,j�),t)~0 ð13Þ

Bounded Noises in Stochastic Biomolecular Networks
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for any i,j~1, . . . ,N , and noise j�[RS. Summarizing, for the

systems we consider the DCKE in equation (10) reads as

LtP((x,j),tjv)~{
XM
j~1

Lzj
fj(j,x)P((x,j),tjv)

z
1

2

XM
i~1

XM
j~1

Lzizj
Bi,j(j,x)P((x,j),tjv)

ð14Þ

z
XM
j~1

P((x{nj ,j),tjv)aj(x{nj)Lj(j(t))

{P((x,j),tjv)
PM
j~1

aj(x)Lj(j(t)) :

This equation is the natural generalization of the CME in

equation (1), and completely characterize noisy systems. As such,

however, its realization can be prohibitively difficult and is hence

convenient to define algorithms to perform the simulation of noisy

systems.

The SSA with Bounded Noise. We now define the Stochastic

Simulation Algorithm with Bounded Noise (SSAn). The algorithm

performs a realization of the stochastic process underlying the

system where a (generic) realization of the noise is assumed. As for

the CME and the SSA, this corresponds to computing a

realization of a process satisfying equation (14). This implies that,

as for the SSA, the SSAn is reliable since the generated trajectory

is exact. This, in future, will allow to use the SSAn as a base to

define approximate simulation to sample from equation (14), as it

is done from the SSA and the CME [62,66,67]. The SSAn takes

inspiration from the (generic) SSA with time-dependent propensity

functions [69] as well as the SSA for hybrid deterministic/

stochastic systems [70–73], thus generalizing the jump equation (2)

to a time inhomogeneous distribution, which we discuss in the

following.

For a system with M reactions the time evolution equation for

X(t) is

dX(t)~
XM
j~1

njdNj(t) ð15Þ

where fNj(t)jt§t0g is the stochastic process counting the number

of times that Rj occurs in ½t0,t� with initial condition Nj(t0)~0.

For Markov processes Nj(t) is an inhomogeneous Poisson process

satisfying

P(Nj(tzdt){Nj(t)~1jx)~aj(x,t)dt~aj(x)Lj(j(t))dt ð16Þ

when X(t)~x. In hybrid systems this is is a doubly stochastic

Poisson process with time-dependent intensity, in our case this is a

Cox process [74,75] since the intensity itself is a stochastic process,

i.e. it depends on the stochastic noise. More simply, in noise-free

systems, this equation evaluates as aj(x)dt, thus denoting a time

homogeneous Poisson process. As in [70,72,73,76,77] such a

process ca be transformed in a time homogenous Poisson process

with parameter 1, and a simulation algorithm can be exploited.

Let us denote with Tj(t) the time at next occurrence of reaction Rj

after time t, then

P(Tj(t)[½t,tzdt�jx)~aj(x)Lj(j(t))dtzo(dt) ð17Þ

follows by equation (16) and higher order terms vanish by the

usual hypothesis that the reaction firings are locally independent,

as in the derivation of equation (1). Given the system to be in state

x at time t, the transformation

Aj(t,tzt)~aj(x)

ðtzt

t

Lj(j(t0))dt0 ð18Þ

which is a monotonic (increasing) function of t is used to

determine the putative time for Rj to fire. Given a sequence rj,k of

independent exponential random variables with mean 1 for

j~1, . . . ,M and k[N, equation (16) implies that

Nj(t)~
X?
n~1

1f
Pn

k~1
gj,kƒAj (t,t0)g : ð19Þ

This provides that, if the systems is in state X(t)~x, then the next

time for the next reaction firing of Rj is the smallest time tw0 such

that

Aj(tzt,t)~r ð20Þ

with r*Exp(1), and thus the next jump of the overall system is

taken as the minimum among all possible times, that is by solving

equality

XM
j~1

Aj(tzt,t)~
XM
j~1

aj(x)

ðtzt

t

Lj(j(t0))dt0~r ð21Þ

with r*Exp(1). This holds because minfTj jj~1, . . . ,Mg is still

exponential with parameter
XM

j~1
Aj(tzt,t) and the jumps are

independent. We remark that for a noise-free reaction

Aj(tzt,t)~taj(x), thus suggesting that the combination of noisy

and noise-free reactions is straightforward. The index of the

reaction to fire is instead a random variable following

P(jjt; x,t)~
aj(x)Lj(j(tzt))PM

i~1

ai(x)Li(j(tzt))

: ð22Þ

The SSAn is Algorithm 2 (Table 3); its skeleton is similar to

Gillespie’s SSA, so the algorithm simulates the firing of M

reactions in a (discrete) state x tracking molecule counts. In

addiction to the SSA, this algorithm also tracks the (continuos)

state storing the noises.

As for the SSA, jumps are determining by using two uniform

numbers r1 and r2. Step 5 is the (joint) solution of both equation

(21) and Langevin system (7), i.e. x(t0) in t0[½t,tzt�. This allows to

both (i) determine the putative time for the next reaction to fire,

i.e. the t solving equation (21), and to (ii) update noise realization,

i.e. system (7). This step is the computational bottleneck of this

algorithm since it can not be analytical, unless for simple cases, as

instead was for the SSA (step 6 had an exact solution for t). We

remark that this does not affect the exactness of the SSAn with

respect to the trajectory of the underlying stochastic process. Being

non-analytical an iterative method, e.g. the Newton-Raphson, has

to be embedded in the SSAn implementation. Furthermore, noise

integration is also non-analytical thus inducing a further numerical

Bounded Noises in Stochastic Biomolecular Networks
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approximation issue. To this extent, the integral in equation (21),

i.e. a conventional Lebesgue integral since the perturbation

Lj(j(t)) is a colored stochastic process [78], can be solved by

adopting an interpolation scheme. An example linear scheme is

ðtzt

t

Lj(j(s))ds&
X

ts[jt,t

Ds minfLs
j ,L

sz1
j gz 1

2
jLs

j {Lsz1
j j

� �
ð23Þ

where

jt,t~f(t,j(t))g|f(ts,j(ts))jtvts
vtztg|f(tzt,j(tzt))g ð24Þ

is a single trajectory of the vectorial noise process in ½t,tzt�,
Ls

j ~Lj(j(ts)) for ts[jt,t and Ds the noise granularity. We remark

that this is a discretization of a continuous noise, thus inducing an

approximation, but is in general the only possible approach. To

reduce approximation errors in the SSAn the maximum size of the

jump in the noise realization, i.e. the noise granularity

Ds~tsz1{ts, should be much smaller than the minimum

autocorrelation time of the perturbing stochastic processes

Lj(j(t)).

Once the jumpt time t has been determined, sample values for j
are determined according to equation (22) in step 6, as similarly

done in the SSA. This sample is again numerical and an arbitrary

precision can be obtained by properly generating the noise.

All these two equations, as well as the numerical method to solve

equation (21) are implemented in the SSAn implementation which

can be found in the NoisySIM free library [59], as discussed in the

Results section.

Extension to non mass-action nonlinear kinetic

laws. Large networks with large chemical concentrations, i.e.

characterized by deterministic behaviors, are amenable to

significant simplifications by means of the well known Quasi Steady

State Approximation (QSSA) [7,57,58,79]. The validity conditions

underlying these assumptions are very well-known in the context

of deterministic models [57], despite not much being known for

the corresponding stochastic models. Recently, Gillespie and

coworkers [58] showed that, in the classical Michaelis-Menten

Enzyme-Substrate-Product network, a kind of Stochastic QSSA

(SQSSA) may be applied as well, and that in such its limitations

are identical to the deterministic QSSA. Thus, it is of interest to

consider SQSSAs also in our ‘‘doubly stochastic’’ setting, even

though possible pitfalls may arise due to the presence of the

extrinsic noises. As an example, in Results section we will present

numerical experiments similar to those of [58], with the purpose of

validating the SQSSA for noisy Michaelis-Menten enzymatic

reactions.

Of course, in a SQSSA not only the propensities may be

nonlinear function of state variables, but they may depend

nonlinearly also on the perturbations, so that instead of the

elementary perturbed propensities we shall have generalized

perturbed propensities of the form

aj(x,y(t))

where y is a vector with elements yj~Lj(j) for j~1, . . . ,M. This

makes possible, within the above outlined limitation for the

applicability of the SQSSA, to write a DCKE for these systems as

LtP((x,j),tjs)&{
XM
j~1

Lzj
fj(j,x)P((x,j),tjs) ð25Þ

z
1

2

XM
i~1

XM
j~1

Lzizj
Bi,j(j,x)P((x,j),tjs)

z
XM
j~1

P((x{nj ,j),tjs)aj(x{nj ,y(t))

{P((x,j),tjs)
XM
j~1

aj(x,y(t)) :

As far as the simulation algorithm is concerned, it remains quite

close to Algorithm 2 (Table 3) provided that the jump times are

sampled according to the following distribution

P(tjx,t)~aj(x,y(tzt)) exp {

ðtnzt

tn

aj(x,y(k))dk

� �
: ð26Þ

Results

We performed SSAn-based analysis of some simple biological

networks, actually present in most complex realistic networks. We

start by studying the legitimacy of the stochastic Michaelis-Menten

approximation of when noise affects enzyme kinetics [58]. Then

we study the role of the co-presence of intrinsic and extrinsic

bounded noises in a in a model of enzymatic futile cycle [33] and,

finally, in a bistable ‘‘toggle switch’’ model of gene expression

[24,86]. All the simulations have been performed by a Java

implementation of the SSAn, currently available within the

NoisySIM free library [59].

The Sine-Wiener noise [53]
The bounded noise m(t) that we use in our simulations is

obtained by applying a bounded continuous function h : R?R to

a random walk W , i.e. W
0
(t)~g(t) with g(t) a white noise. We

have

Table 3. Algorithm 2 Stochastic Simulation Algorithm with
Bounded Noises (SSAn).

1: Input: initial time t0, state x0 and final timeT;

2: set xrx0 and trt0;

3: while t,T do

4: let r1 , r2,U [0,1];

5: find next jump by solving equation (21), that isXM
j~1

aj (x)

ðtzt

t

Lj(j(t0))dt0~ ln
1

r1

� �
while generating noise j(t) in t9e[t, t+t];

6: determine next reaction as

j/min n j r2
:a0(x,tzt)ƒ

Xn

i~1

ai(x,tzt)

( )
;

7: set xrx+nj and trt+t;

8: end while

doi:10.1371/journal.pone.0051174.t003
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m(t)~h(W )

so that for some b[R it holds {bƒh(W )ƒb. The effect of the

truncation of the tails induced by the approach here illustrated is

that, due to this ‘‘compression’’, the stationary probability densities

of this class of processes satisfy

P(m~jbj)~z?:

Probably the best studied bounded stochastic process obtained

by using this approach is the so-called Sine-Wiener noise [53], that

is

m(t)~b sin

ffiffiffi
2

t

r
W (t)

 !
ð27Þ

where b is the noise intensity and t is the autocorrelation time. The

average and the variance of this noise are

Sm(t)T~0 Sm(t)2T~b2=2

and its autocorrelation is such that [53]

Sm(t)m(tzz)T~
b2

2
exp

{z

t

� �
1{ exp

{4t

t

� �� �
:

Note that, since we mean to use noises of the form 1zm(t), i.e.

the unitary-mean perturbations in equation (6), then the noise

amplitude must be such that 0ƒbƒ1.

For this noise, the probability density is the following [89]

P(m)~
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2{m2

q :

By these properties, this noise can be considered a realistic

extension of the well-known symmetric dichotomous Markov noise

a(t), whose stationary density is
1

2
d(a{b)zd(azb)ð Þ, for a[R

and d the Dirac delta function [80]. Finally, we remark that the

white-noise process W (t) is generated at times ftiji§0g according

to the recursive schema W (tiz1)~W (ti)zri

ffiffiffi
h
p

with initial

condition W (t0)~r0. Here ri[N(0,1) and h~tiz1{ti for i§0
is its discretization step; it has to satisfy h%t so we typically chose

h&t=100. Notice that the noise autocorrelation is expected to

deeply impact on the simulation times.

Enzyme kinetics
Enzyme-catalyzed reactions are fundamental for life, and in

deterministic chemical kinetics theories are often conveniently

represented in an approximated non mass-action form, the well-

known Michaelis-Menten kinetics [7,57,58]. Such approximation

of the exact mass-action model is based on a Quasi Steady-State

Assumption (QSSA) [57,79], valid under some well known

conditions. In [58] it is studied the legitimacy of the Michaelis-

Menten approximation of the Enzyme-Substrate-Product stochas-

tic reaction kinetics. Most important, it is shown that such a

stochastic approximation, i.e. the SQSSA in previous section,

obeys the same validity conditions for the deterministic regime.

This suggests the legitimacy of using – in case of low number of

molecules – the Gillespie algorithm not only for simulating mass-

action law kinetics, but more in general to simulate more complex

rate laws, once a simple conversion of deterministic Michaelis-

Menten models is performed and provided – of course – that the

SQSSA validity conditions are fulfilled.

In this section we investigate numerically whether the

Michaelis-Menten approximations and the stochastic results

obtained in [58] still hold true in case that a bounded stochastic

noise perturb the kinetic constants of the propensities of the exact

mass-action law system Enzyme-Substrate-Product. Let E be an

enzyme, S a substrate and P a product, the exact mass-action

model of enzymatic reactions comprises the following three

reactions

EzS .
c1

ES ES .
c2

EzS ES .
c3

EzP

where c1, c2 and c3 are the kinetic constants. The network

describes the transformation of substrate S into product P, as

driven by the formation of the enzyme-substrate complex ES,

which is reversible.

The deterministic version of such reactions is

S0~{c1S:Ezc2ES E0~{c1S:Ez(c2zc3)ES ð28Þ

ES0~c1S:E{(c2zc3)ES P0~c3ES ,

where we write S:E to distinguish the multiplication of E and S
from complex ES. By the relations

ET~E(t)zES(t) P(t)~P(t0)zS(t0){(S(t)zES(t)) ð29Þ

a QSSA reduces to one the number of involved equations. Indeed,

since ES is in quasi-steady-state, i.e. ES0~0, then

P0&
VmaxS

KMzS
where Vmax~c3ET and KM~

c2zc3

c1
:ð30Þ

Here KM is termed the Michaelis-Menten constant. In practice,

the QSSA permits to reduce the three-reactions model to the

single-reaction model

S.P

with non mass-action non linear rate (VmaxS)=(KMzS). In [58]

the condition

ET%S0zKM ð31Þ

is used to determine a region of the parameters space guaranteeing

the legitimacy of the Michaelis-Menten approximation. When

condition (31) holds, a separation exists between the fast pre-

steady-state and the slower steady-state timescales [79] and the

solution of the Michaelis-Menten approximation closely tracks the

solution of the exact model on the slow timescale.
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Here we show that the same condition is sufficient to legitimate

the Michaelis-Menten approximation with bounded noises arbi-

trarily applied to any of the involved reactions. We start by

recalling the result in [58] about the noise-free models given in

Table 4. We considered two initial conditions: (i) one with 10
copies of substrate, 1 enzyme and 0 complexes and products, and

(ii) one with 10 copies of substrate, 100 enzyme and 0 complexes

and products. As in [58] we set c1~c3~1 and c2~10; notice that

the parameters are dimensionless and, more important, in (i) they

satisfy condition (31) since ET~1 and S0zKM~21, in (ii) no. In

Figure 1 we reproduced the results in [58] for (i) in right panel and

(ii) in left. As expected, in (i) the approximation is valid on the

slow time-scale, and not valid in the fast, i.e. for tv3, in (ii) it is

not valid also in the slow time-scale.

If noises are considered the models in Table 4 change

accordingly. So, for instance when independent Sine-Wiener

noises are applied to each reaction, the exact model becomes

a1~c1 1zb1 sin
ffiffiffiffiffiffiffiffiffi
2=t1

p
W1(t)

� �h i
E:S

a2~c2 1zb2 sin
ffiffiffiffiffiffiffiffiffi
2=t2

p
W2(t)

� �h i
ES

a3~c3 1zb3 sin
ffiffiffiffiffiffiffiffiffi
2=t3

p
W3(t)

� �h i
ES

and the Michaelis-Menten constant becomes the time-dependent

function

K�M (t)~
c2 1zb2 sin

ffiffiffiffiffiffiffiffiffi
2=t2

p
W2(t)

� �h i
zc3 1zb3 sin

ffiffiffiffiffiffiffiffiffi
2=t3

p
W3(t)

� �h i
c1 1zb1 sin

ffiffiffiffiffiffiffiffiffi
2=t1

p
W1(t)

� �h i :

Notice that the nonlinear approximated propensity a1(t) is now

time-dependent, and, moreover, it depends nonlinearly on the

noises affecting the system.

Thus condition (31) becomes time-dependent and we rephrase it

to be

ET%S0zSK�M (t)T : ð32Þ

Note that if b1w0 then SK�M (t)T=KM , whereas if b1~0 then

SK�M (t)T~KM .

Each of the shown figures is the result of 1000 simulations for

model configuration where the simulation times, which span from

few seconds to few minutes, depend on the noise correlation.

When the same system of Figure 1 (i) is extended with these noises

the approximation is still valid, as shown in the top panels of

Figure 2. In addition, the approximation is not valid when

condition (32) does not hold, as shown in the bottom panels of

Figure 2, as it was in Figure 1 (ii). Notice that in there we use two

different noise correlations, i.e. ti~1 in the left and ti~5 for

i~1,2,3 in the right column panels, thus mimicking noise sources

with quite different characteristic kinetics. Also, we set two

different noise intensities, i.e. bi~0:5 in top panels and bi~1
(maximum intensity) in bottom panels, whereas all the other

parameters are as in Figure 1. Summarizing, we get a complete

agreement between enzymatic reactions with/without noise,

independently on the noise characteristics when it affects all of

the reactions.

To strengthen this conclusion it becomes important to

investigate whether it still holds when noises affects only a portion

of the network and, also, whether it holds on the fast time-scale.

As far as the number of noises is concerned, we investigated

various single-noise configurations in Figure 3. In there we used a

single noise, i.e. two out of the three noises have 0 intensity, with

both low and high intensities, i.e. 0:5 and 1. Also, in that figure we

vary the noise correlation time as t[½1,5�. As hoped, the

simulations show that the approximation is legitimate in the slow

time-scale for all the various parameter configurations, thus

independently on the presence of single or multiple noises.

Finally, as far as the legitimacy of the approximation in the fast

time-scale is concerned, i.e. t[½0,5�, our simulations show a result

of interest: if the noise correlation is small compared to the

reference fast time-scale and if single noises are considered the

noisy Michaelis-Menten approximation performs well also on the

fast time-scale. We remark that this was not the case for the

analogous noise-free scenario in Figure 1 (i). In support of this we

plot in Figure 4 the fast time-scale for ti~1 and ti~5 for the

single noise model with a noise in the enzyme-substrate complex

formation, i.e. b2~b3~0. Similar evidences were found in the

configurations plotted in Figure 3 (not shown).

Table 4. Enzyme-Substrate-Product model.

{1 1 1

{1 1 0

1 {1 {1

0 0 1

0
BBB@

1
CCCA

a1 ~ c1E:S

a2 ~ c2ES

a3 ~ c3ES

0

{1

0

1

0
BBB@

1
CCCA a1 ~

VmaxS

KMzS

Exact model (left) and Michaelis-Menten approximation (right) of enzymatic
reactions: the stoichiometry matrixes (rows in order E, S, ES, P) and the
propensity functions.
doi:10.1371/journal.pone.0051174.t004

Figure 1. Noise-free Enzyme-Substrate-Product system. Product formation (averages of 1000 simulations, plotted with dotted standard
deviation) for both exact and approximated Michaelis-Menten kinetics. We have set c1~c3~1 and c2~10; the initial configuration is
(E,S,ES,P)~(1,10,0,0) in A and (E,S,ES,P)~(100,10,0,0) in B.
doi:10.1371/journal.pone.0051174.g001
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Futile cycles
In this section we consider a model of futile cycle, as the one

computationally studied in [33]. The model consists of the

following mass-action reactions

EzS0 .
k1

ES0 ES0 .
k{1

EzS0 ES0 .
k2

EzS1

FzS1 .
k3

FS1 FS1 .
k{3

FzS1 FS1 .
k4

FzS0

where E and F are enzymes, S0 and S1 substrate molecules, and

ES0 and FS1 the complexes enzyme-substrate. Futile cycles are an

unbiquitous class of biochemical reactions, acing as a motif in

many signal transduction pathways [81].

Experimental evidences related the presence of enzymatic cycles

with bimodalities in stochastic chemical activities [82]. As already

seen in the previous section, Michaelis-Menten kinetics is not

sufficient to describe such complex behaviors, and further

enzymatic processes are often introduced to induce more complex

behaviors. For instance, in deterministic models of enzymatic

reactions feedbacks are necessary to induce bifurcations and

oscillations. Instead, in [33] it is shown that, although the

deterministic version of the model has a unique and attractive

equilibrium state, stochastic fluctuations in the total number of E
molecules may induce a transition from a unimodal to a bimodal

behavior of the chemicals. This phenomenon was shown both by

the analytical study of a continuous SDE model where the random

fluctuations in the total number of enzyme E (both free and as a

complex with S) is modeled by means of a white gaussian noise on

the one hand, and in a totally stochastic setting on the other hand.

In the latter case it was assumed the presence of a third molecule

N interacting with enzyme E according to the following reactions

NzN .
k5

EzN EzN .
k{5

NzN

N .
k6

E E .
k{6

N :

By using N the stochastic model results to be both quantitatively

and qualitatively different from the deterministic equivalent. These

differences serve to confer additional functional modalities on the

enzymatic futile cycle mechanism that include stochastic amplifi-

cation and signaling, the characteristics of which depend on the

noise.

Our aim here is to investigate whether bounded noises affecting

the kinetic constant, and thus not modifying the topology of the

Figure 2. Stochastically perturbed Enzyme-Substrate-Product system. Product formation (averages of 1000 simulations, plotted with dotted
standard deviation) for both exact and approximated Michaelis-Menten kinetics. In A, B, C and D the initial configuration is (E,S,ES,P)~(1,10,0,0),
in all other panels is (E,S,ES,P)~(100,10,0,0). Independent Sine-Wiener noises are present in all the reactions. For i~1,2,3, ti~1 in A, B, E and F,
and ti~5 in all other panels. Also, bi~0:5 in A, C, E and G, and bi~1 in all other panels.
doi:10.1371/journal.pone.0051174.g002
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futile cycle network, may as well induce transition to bimodality in

the system behavior. To this aim, here we analyze three model

configurations: (i) the noise-free futile cycle, namely only the first

six reactions, (ii) the futile cycle with the external noise as given by

N and (iii) the futile cycle with a bounded noise on the binding of

E and S0, i.e. the formation of ES0, and N is absent.

In Table 5 the noise-free futile cycle is given as a stoichiometry

matrix and 6 mass-action reactions. The model simulated in [33] is

obtained by extending the model in the table with a stoichiometry

matrix containing N and four more mass-action reactions. For the

sake of shortening the presentation we omit to show them here.

The model with a bounded noise in a1 is obtained by defining

Figure 3. Stochastically perturbed Enzyme-Substrate-Product system. Product formation (averages of 1000 simulations, plotted with dotted
standard deviation) for both exact and approximated Michaelis-Menten kinetics. In all panels the initial configuration is (E,S,ES,P)~(1,10,0,0). Here
single Sine-Wiener noises various intensities and autocorrelations are used. In A t1~1 and b1~0:5, in B t1~1 and b1~1, in C t3~1 and b3~0:5, in
D t3~1 and b3~1, in E t2~5 and b2~0:5, in F t2~5 and b2~1, in G t2~1 and b2~0:5, in H t2~1 and b2~1, in I t1~5 and b1~0:5, in J t1~5 and
b1~1, in K t3~5 and b3~0:5 and in L t3~5 and b3~1. All other parameters are 0.
doi:10.1371/journal.pone.0051174.g003
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a1(t)~k1E:S0 1zb sin

ffiffiffi
2

t

r
W (t)

 !" #
:

We simulated the above three models according to the initial

condition used in [33] (S0,E,ES0,S1,F ,FS1)~(0,20,0,2000,50,0)
which is extended to account for 10 initial molecules of N, when

necessary. The kinetic parameters are dimensionless and defined

as k1~40, k{1~k2~10000, k3~200, k{3~100, k4~5000 for

the noise-free and the bounded noise case, and k5~k6~10,

k{5~5 and k{6~0:2 when the unimodal noise is considered

[33]. Furthermore, when the bounded noise is considered the

autocorrelation is chosen as t[½k{1
5 ,1�~½0:1,1� according to the

highest rate of the reactions generating the unimodal noise.

In Figure 5 a single run and averages of 1000 simulations for the

futile cycle models are shown. In this case the simulation times

span in range from ½20,30� min to ½60,80� min, thus making the

choice of good parameters more crucial than in the other cases. In

Figure 5 the substrate S0 is plotted, and S1 behaves complemen-

tarily. In top panels the noise-free (top) and the cycle unimodal

noise as N (bottom). In bottom panels the cycle with bounded

noise and autocorrelation t~0:1 in (left) and t~1 in (right). In

both cases in the top panel the noise intensity is b~0:5 (top) and

b~1 (bottom). The initial configuration is always

(S0,E,ES0,S1,F ,FS1,N)~(0,20,0,2000,50,0,10) and the kinetic

parameters are k1~40, k{1~k2~10000, k3~200, k{3~100,

k4~5000 for the noise-free and the bounded noise case, and

k5~k6~10, k{5~5 and k{6~0:2 [33]. We also show in Figure 6

the empirical probability density function for the concentration of

S0, i.e. P(X(t)~x) given the considered initial configuration, at

t[f2,5,7,10g after 1000 simulations for the futile cycle models with

the parameter configurations considered in Figure 5. The analysis

of such distributions outline that for the noise-free system the

distributions are clearly unimodal, whereas for noisy futile cycle, in

both cases, they are bi-modal. Moreover, it is important to notice

that the smallest peak of the distribution, i.e. the rightmost, has a

bigger variance when N is considered, rather than when a

bounded noise is considered.

Bistable kinetics of gene expression
Let us consider a model by Zhdanov [24,86] where two genes

G1 and G2, two RNAs R1 and R2 and two proteins P1 and P2 are

considered. In such a model synthesis and degradation correspond

to

G1.G1zR1 R1.R1zP1 R1. � P1. �

G2.G2zR2 R2.R2zP2 R2. � P2. � :

Such a reaction scheme is a genetic toggle switch if the

formation of R1 and R2 is suppressed by P2 and P1, respectively

[18,25,83–85]. Zhdanov further simplifies the schema by consid-

ering kinetically equivalent genes, and by assuming that the

mRNA synthesis occurs only if 2 regulatory sites of either P1 or P2

are free. The deterministic model of the simplified switch when

synthesis is perturbed is

R
0
1~j(t)

K

KzP2

� �2

{dRR1 R
0
2~j(t)

K

KzP1

� �2

{dRR2 ð33Þ

Figure 4. Stochastically perturbed Enzyme-Substrate-Product system. Product formation (averages of 1000 simulations, plotted with dotted
standard deviation) for both exact and approximated Michaelis-Menten kinetics in the fast time-scale 0ƒtƒ5. In all panels the initial configuration is
(E,S,ES,P)~(1,10,0,0). Here a single Sine-Wiener noise affects complex formation. In A t1~1 and b1~0:5, in B t1~1 and b1~1, in C t1~5 and
b1~0:5, in D t1~5 and b1~1.
doi:10.1371/journal.pone.0051174.g004

Table 5. Futile cycle model.

{1 1 0 0 0 1

1 {1 1 0 0 0

1 {1 {1 0 0 {1

0 0 1 {1 1 0

0 0 0 {1 1 1

0 0 0 1 {1 {1

0
BBBBBBBB@

1
CCCCCCCCA

a1~k1E:S0 a2~k{1ES0

a3~k2ES0 a4~k3ES1

a5~k3ES1 a6~k4ES1

The noise-free enzymatic futile cycle [33]: the stoichiometry matrix (rows in
order S0 , E, ES0 , S1 , F , FS1) and the propensity functions.
doi:10.1371/journal.pone.0051174.t005
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P
0
1~aPR1{dPP1 P

0
2~aPR2{dPP2

where the perturbation is

j(t)~aR 1za sin
2pt

t

� �� �
:

Here aR, dR, aP and dP are the rate constants of the reactions

involved, term ½K=(KzPi)�2 is the probability that 2 regulatory

sites are free and K is the association constant for protein P.

Notice that here perturbations are given in terms of a time-

dependent kinetic function for synthesis, rather than a stochastic

differential equation. Before introducing a realistic noise in spite of

a perturbation we perform some analysis of this model. As in [86]

we re-setted model (33) in a stochastic framework by defining the

reactions described in Table 6. Notice that in there two reactions

have a time-dependent propensity function, i.e. a1(t) and a3(t)
modeling synthesis.

In the top panels of Figure 7 we show single runs for Zhdanov

model where simulations are performed with the exact SSA with

time-dependent propensity function. In [86] an exact SSA [39] is

used to simulated the model under the assumption that variations

in the propensity functions are slow between two stochastic jumps.

This is true for t~100 as in [86], but not true in general for small

values of t. We considered an initial configuration with only 10

RNAs R1. As in [86] we set aR~100min{1, aP~10min{1,

dR~dP~1min{1, K~100 and t~100min{1; notice that this

parameters are realistic since, for instance, protein and mRNA

degradation usually occur on the minute time-scale [87]. We

considered two possible noise intensities, i.e. a~0:5 in left and

a~1 in right and, as expected, when a increases the number of

switches increases. To investigate more in-depth this model we

performed 1000 simulations for both the configurations. In the

bottom panels of Figure 7 the averages of the simulations are

shown. The average of our simulations evidences a major

expression of protein P2 against P1, for both values of a, with

dumped oscillations for a~0:5 and almost persistent oscillations

for a~1.

In Figure 8 we plot the empirical probability density function of

the species concentrations, i.e. P(X(t)~x) given the considered

initial configuration, at t[f900,950,1000gmin as obtained by 1000
simulations. Interestingly, these bi-modal probability distributions

immediately evidence the presence of stochastic bifurcations in the

more expressed populations R2 and P2. In addition, the

distributions for the protein seem to oscillate with period around

100, i.e. for a~1 they are unimodal at t[f900,1000g and bi-

modal at t~950.

For the sake of confirming this hypothesis in Figure 9 the

probability density function of P2 is plotted against time, i.e. the

probability of being in state x at time t, for any reachable state x
and time 900ƒtƒ1000. In there we plot a heatmap with time on

the y-axis and protein concentration on the x-axis; in the figure

the lighter gradient denotes higher probability values. Clearly, this

figure shows the oscillatory behavior of the probability distribu-

tions for both value of a and, more important, explains the uni-

modality of the distribution at t~900 and t~1000 with a~1, i.e.

the higher variance of the rightmost peak at a~1 makes the two

modes collapse. Finally, we omit to show but, as one should

Figure 5. Stochastic models of futile cycles. Single run and averages of 1000 simulations for substrate S0 of the futile cycle models. In panel A
the noise-free futile cycle and in panel D the extended noise-free model including the additional species N . In bottom plots the cycle affected by
bounded Sine-Wiener noise with: in B t~0:1 and b~0:5, in C t~0:1 and b~1, in E t~1 and b~0:5, in F t~1 and b~1. The initial configuration is
always (S0,E,ES0,S1,F ,FS1,N)~(0,20,0,2000,50,0,10); the kinetic parameters are k1~40, k{1~k2~10000, k3~200, k{3~100 and k4~5000 (noise-
free and the bounded noise case), and k5~k6~10, k{5~5 and k{6~0:2 [33].
doi:10.1371/journal.pone.0051174.g005
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expect, the oscillations of the probability distribution, which are

caused by the presence of a sinusoidal perturbation in the

parameters, are present and periodic over all the time window

0ƒtƒ1000.

Bounded noises. We investigated the effect of a Sine-Wiener

noise affecting protein synthesis rather than a perturbation, i.e. a

new j(t) is considered

jsw(t)~aR 1za sin

ffiffiffi
2

t

r
W (t)

 !" #

with W a Wiener process. One the one hand we compared the

periodic perturbation proposed by Zhdanov with the sine-Wiener

noise because they share three important features: (i) the finite

amplitude of the perturbation, (ii) a well-defined time-scale (the

period for the sinusoidal perturbation, and the autocorrelation

time for the bounded noise), (iii) the sinusoidal nature (in one case

the sinus is applied to a linear function of time, in the other case is

applied to a random walk). On the other hand, especially in

control and radio engineering, sinusoidal perturbations are a

classical mean to represent external bounded disturbances.

Here simulations are performed by using the SSAn where the

reactions in Table 6 are left unchanged, and the propensity

functions a1(t) and a3(t) are modified to

a1(t)~jsw(t)½K=(KzP2)�2 a3(t)~jsw(t)½K=(KzP1)�2 :

For the sake of comparing the simulations with those in

Figures 7, 8, 9, we used the same initial condition and the same

values for aR, aP, dR, dP and K . To make reasonable to compare

the effect of a realistic noise against the original perturbation we

simulated the system with the same values as required, i.e. the

noise intensity a~0:5 in left and a~1 in right of the top panels in

Figure 10, and in both cases t~100. As expected, in this case the

trajectories are more scattered than those in Figure 7, and the

switches are still present. However, for maximum noise intensity

a~1 time-slots emerge where the stochastic systems predicts a

more complex outcome of the interaction. In fact, for

t[½0,200�|½800,900� neither protein P1 nor P2 seem to be as

expressed as in the other portions of the simulation, thus

Figure 6. Stochastic models of futile cycles. Empirical probability density function for S0 at t~10 after 1000 simulations for the futile cycle
models with the parameter configurations considered in Figure 5. In panel A the noise-free cycle, in B the cycle affected by sine-Wiener noise with
t~10: and b~1, in C the noise-free modified cycle including the additional species N . In bottom panels the cycle affected by sine-Wiener noise with:
in D t~1 and b~0:5, in E t~0:1 and b~0:5 and in F t~1 and b~1.
doi:10.1371/journal.pone.0051174.g006

Table 6. Toggle switch model.

1 {1 0 0 0 0 0 0

0 0 1 {1 0 0 0 0

0 0 0 0 1 {1 0 0

0 0 0 0 0 0 1 {1

0
BBB@

1
CCCA

a1 tð Þ~j tð Þ K= KzP2ð Þ½ �2 a2~dRR1

a3 tð Þ~j tð Þ K= KzP1ð Þ½ �2 a4~dRR2

a5~apR1 a6~dpP1

a7~apR2 a8~dpP2

The bistable model of gene expression in [86]: the stoichiometry matrix (rows in
order R1 , R2 , P1 , P2) and the propensity functions.
doi:10.1371/journal.pone.0051174.t006
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suggesting the presence of noise-induced equilibria absent when

periodic perturbations are present.

To investigate more in-depth this hypothesis we again

performed 1000 simulations for both the configurations, the

averages of which are shown in the bottom panels of Figure 10. In

this case, the simulation times, which again depend on the noise

correlation, span in range from ½3,5�min to ½30,40�min, thus

making the choice of good parameters crucial. Differently from the

case in which a sinusoidal perturbation is considered, i.e. Figure 7,

in this case the averages are not oscillatory, but instead show a

stable convergence. Also, the final outcome seems again to predict

the expression of P2 inhibiting P1. To understand better this point

we plotted in Figure 11 the probability density of reachable states

at t~1000min, i.e. P(X(t)~x) given the considered initial

configuration, and in Figure 12 we plotted that distribution

against time for R2. It is worth noting that we also ranged t over

½900,1000� but since P(X(t)~x) did not change we omitted to plot

it here. Again, Figure 12 is a heatmap where on the y-axis time in

minutes is given, on the x-axis the possible concentration for R2

and the lighter gradient denotes higher probability values. Notice

that in this case Figure 12 represents an empirical evaluation of the

solution the DCKE for this system, i.e. equation (14). Both

graphics are obtained by 1000 simulations with a~0:5 (left panels)

and a~1 (right panels). These figures show that a low-intensity

noise makes the probability distribution become three-modal, i.e.

notice the two rightmost peaks in Figure 11 and the white/light-

blue gradients in Figure 12. Differently, when the noise intensity is

higher, the two rightmost peaks almost merge, thus forming a bi-

modal distribution where the smaller peak almost spreads

uniformly on the state space for the variables. Notice that, in

this case, the amplitude of such a peak is higher than for a~0:5,

i.e. notice the intensity of the blue gradient in Figure 12. For

a~0:5 it is possible to notice two red gradients: one approxima-

tively for x?200 and one for x[(10,30). The major peaks in the

distribution for R2 are for xv10, for x[(50,100) and for

x[½130,180�. The probability of each of these peaks is decreasing

as x increases, thus confirming the intuition of Figure 11. Similar

considerations can be done when a~1 where, as shown by

Figure 11, the first dark-red area separating the first two peaks in

a~0:5 is vanished, thus forming a bi-modal instead that a three-

modal probability distribution.

Finally, for the sake of considering a wide range of biologically

meaningful values for t, which we recall it represents a measure of

the speed of noise variation, we evaluated the solution of the

DCKE for R2 for the same configuration used in Figure 12 and

t[f1,10,25,100gmin. We performed 1000 simulations of the

model for each value of t with a~0:5, the value showing a more

interesting behavior. In Figure 13 the probability of the reachable

Figure 7. Periodically perturbed toggle switch. In the top panels a single run for Zhdanov model (33) with a~0:5 (A) and a~1 (C). In bottom

plots averages of 1000 simulations are shown with a~0:5 (B) and a~1 (D). In all cases aR~100min{1 , aP~10min{1 , dR~dP~1min{1 , K~100 and

t~100min{1 and the initial configuration is (R1,P1,R2,P2)~(10,0,0,0). The noise realization is plotted for the single runs.
doi:10.1371/journal.pone.0051174.g007
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states at t~1000min is plotted. If is immediate to notice that the

height of the first peak increases as t decreases, and more precisely

the distribution seems to switch from a three-modal one to a bi-

modal when tƒ25. In each panel of Figure 14 we plot the

variation of such probability distribution for 900ƒtƒ1000. By

that figure it is possible to observe that by ranging t the dark-red

gradient increases in size as far as t decreases. This means that the

amplitude between the peaks of the density strictly depends on the

value of t, thus suggesting a strong role for extrinsic noise in

determining the network functionalities.

Figure 8. Periodically perturbed toggle switch. Empirical probability density function at various times, after 1000 simulations for Zhdanov
model with the parameter configurations considered in Figure 7. In A t~900 and a~0:5, in B t~900 and a~1, in C t~950 and a~0:5, in D t~950
and a~1, in E t~1000 and a~0:5 and in F t~1000 and a~1.
doi:10.1371/journal.pone.0051174.g008
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Discussion

In this paper we investigated the effects of joint extrinsic and

intrinsic randomness in nonlinear genetic and other biomolecular

networks, under the assumption of non-Gaussian bounded

external perturbations. As we briefly mentioned in the introduc-

tion, the possible impact of bounded extrinsic noise on stochastic

biomolecular networks might be manifold, so that this work has to

be understood as a first step in this field of investigation. Our

applications have shown that the combination of both intrinsic and

extrinsic noise-related phenomena may have a constructive

functional role also when the extrinsic noise is bounded. This is

in line with other researches – only focusing on either intrinsic or

extrinsic noise – recasting the classical interpretation of noise as a

disturbance more or less obfuscating the real behavior of a

network.

This work required the combination of two well-known

frameworks, often used to separately describe biological systems.

We combined the theory of stochastic chemically reacting systems

developed by Gillespie with Langevin systems describing the

bounded variations of kinetic parameters. The former shall allow

considering the inherent stochastic fluctuations of small numbers

of interacting entities, often called intrinsic noise, and clearly

opposed to classical deterministic models based on differential

equations. The latter permits to consider the influence of bounded

extrinsic noises. These noises are modeled as stochastic differential

equations. For these kind of systems, although an analytical

characterization is unlikely to be feasible, we were able to derive a

differential Chapman-Kolgomorov equation (DCKE) describing

the probability of the system to occupy each one of a set of states.

Then, in order to analyze these models by sampling from this

equation we defined an extension of the Gillespie’s Stochastic

Simulation Algorithm (SSA) with a state-dependent Langevin

system affecting the model jump rates. This algorithm, despite

being more costly than the classical Gillespie’s SSA, allows for the

exact simulation of these doubly stochastic systems.

We outlined the role of bounded extrinsic noise for some

biological networks of interest. In particular, we were able to

extend classical results on the validity of the Michaelis-Menten

approximation to the prototypical Enzyme-Substrate-Product

enzymatic reaction by drawing a Stochastic Quasi Steady State

Assumption (SQSSA) for noisy reactions. Along the line of the

classical deterministic or stochastic uses of the Michaelis-Menten

approximation, this should permit to reduce the size of more

general enzymatic networks even in presence of extrinsic bounded

noises.

Moreover, we showed that in a recurrent pattern of genetic and

enzymatic networks, i.e. the futile cycle, the presence of extrinsic

noises induces the switching from a unimodal probability density

(in absence of external perturbations) to a multimodal density.

Similarly, in the case of the toggle switch, which is inherently

multistable, the presence of extrinsic noise significantly modulates

the probability density of the genes concentration. In this

important network motif we also investigated the role of periodic

perturbations against a realistic noise.

Thus in general the co-presence of both intrinsic stochasticity

and bounded extrinsic random perturbations might suggest the

presence of possibly unknown functional roles for noise for these

and other networks. The described noise-induced phenomena are

shown to be strongly related to physical characteristics of the

extrinsic noise such as the noise amplitude and its autocorrelation

time.

A relevant issue that we are going to investigate in the next

future is the role of the specific extrinsic bounded perturbations.

Indeed, in other biological and non-biological systems affected by

bounded noises it has been shown that the effects of the

perturbations depend not only on the above general characteristics

of the noise, but also on its whole model [51,52,54,88]. In other

Figure 9. Periodically perturbed toggle switch. Empirical probability density function for R2 plotted against time, i.e. the probability of being in
any reachable state x for 900ƒtƒ1000. Lighter gradient denotes higher probability values. We used data collected with 1000 simulations of model
(33) where t~100 and two perturbation intensities are used, a~0:5 in A and a~1 in B. In the x-axis the species amount is represented, in the y-axis
the time (in minutes) is given.
doi:10.1371/journal.pone.0051174.g009
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Figure 10. Stochastically perturbed toggle switch. In top plots, single runs for Zhdanov model with Sine-Wiener bounded noise: a~0:5 in A

and a~1 in C. In bottom panels the averages of 1000 simulations: a~0:5 in C and a~1 in D. In all cases aR~100min{1 , aP~10min{1,

dR~dP~1min{1 , K~100 and t~100min{1 and the initial configuration is (R1,P2,R2,P2)~(10,0,0,0). We remark that noise parameters are
equivalent to the perturbation of Figure 7; noise realization is plotted for the single runs.
doi:10.1371/journal.pone.0051174.g010

Figure 11. Stochastically perturbed toggle switch. Empirical probability density function at t~1000, after 1000 simulations for Zhdanov model
with Sine-Wiener noise. Parameters are as in Figure 10 and two perturbation intensities are used: a~0:5 in A and a~1 in B.
doi:10.1371/journal.pone.0051174.g011
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words the transitions of a system perturbed by a sine-Wiener noise

might be quite different from those induced by another bounded

perturbation, for example the Cai-Lin noise [89] or the Tsallis

noise [55], also when their amplitude and autocorrelation times

are equal. Thus, a single biomolecular network in two different

environments might show two different behaviors depending of

fine details of the kind of perturbations that are present. This

might also suggest that a same network might exhibit many

different functions depending on its ‘‘locations’’.

Concerning these points, we stress that these peculiar properties

of bounded extrinsic perturbations make it even more important

the investigations, such as those of [48], aimed at inferring by

deconvolution the external noise from the experimental data, in

order to infer which kind of noise affect a given network in a well

determined environment.

An explicit formalization of biomolecular networks by means of

graph-theory and network topology-based analysis of response is

outside of our scope and it is not strictly needed for the description

and application of our algorithms. However, we want to outline

here two important problems in this area, recently considered

[90,91] in the framework of traditional approaches to unbounded

extrinsic noises, that deserve future investigations. The first [90] is

the evaluation of the relationships between network topologies and

robustness to bounded stochastic perturbations or, conversely,

ability of exploiting them. The second one [91] is even more

important: given a large biomolecular network endowed by

nontrivial emergent properties, can the presence of bounded

extrinsic noise ‘‘constructively’’ induce new emergent properties?

Finally, note that the methodologies introduced in this work can

be applied, virtually without any formal modifications, to a wide

range of problems in computational biology of human, animal and

cellular populations. Indeed – since the Ross model of malaria

spread in 1911 [92,93], and the prey-predators models by Volterra

[94] and Lotka [95] (himself a chemical physicist) – theoretical

population biology has successfully adopted the paradigm of the

law of mass-action to describe the interplays between subjects in a

population [57]. Thus, we are also working in this direction.
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Figure 12. Stochastically perturbed toggle switch. Empirical probability density function for R2 plotted against time, i.e. the DCKE solution for
R2 in 900ƒtƒ1000. Lighter gradient denotes higher probability values. We used data collected with 1000 simulations of Zhdanov model with Sine-
Wiener noise where t~100 and two perturbation intensities are used: a~0:5 in A and a~1 in B. In the x-axis the species concentration is
represented, in the y-axis minutes are given.
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Figure 13. Stochastically perturbed toggle switch. Empirical probability density function at t~1000 for R2, after 1000 simulations for Zhdanov
model with Sine-Wiener noise. In A t~1, in B t~10, in C t~25 and in D t~100. In all cases a~0:5 and other parameters are as in Figure 10.
doi:10.1371/journal.pone.0051174.g013
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