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Chronic drug exposure alters gene expression in the brain and produces long-term changes
in neural networks that underlie compulsive drug taking and seeking. Exactly how drug-
induced changes in synaptic plasticity and subsequent gene expression are translated into
persistent neuroadaptations remains unclear. Emerging evidence suggests that complex
drug-induced neuroadaptations in the brain are mediated by highly synchronized and
dynamic patterns of gene regulation. Recently, it has become clear that epigenetic mecha-
nisms contribute to drug-induced structural, synaptic, and behavioral plasticity by regulating
expression of gene networks. Here we review how alterations in histone modifications, DNA
methylation, and microRNAs regulate gene expression and contribute to psychostimulant
addiction with a focus on the epigenetic mechanisms that regulate brain-derived neuro-
trophic factor (BDNF) expression following chronic cocaine exposure. Identifying epigenetic
signatures that define psychostimulant addiction may lead to novel, efficacious treatments for
drug craving and relapse.

Drug addiction is a chronic, relapsing disor-
der that is characterized by compulsive

drug seeking and taking despite adverse conse-
quences (Mendelson and Mello 1996). The tran-
sition from recreational to chronic drug taking
and the persistence of drug addiction are medi-
ated, in part, by drug-induced alterations in
gene expression profiles within the reward cir-
cuitry of the brain (Nestler 2001; Koob and Vol-
kow 2010; Maze and Nestler 2011). Therefore,
elucidating the molecular mechanisms by which
chronic drug exposure promotes stable changes
in gene expression and ultimately drug-seeking

behavior may aid in the development of novel
pharmacotherapies for drug addiction. Recent
studies indicate that epigenetic mechanisms
contribute to drug-induced structural, synap-
tic, and behavioral plasticity by orchestrating
expression of gene networks in discrete brain
nuclei (Renthal and Nestler 2008; Russo et al.
2010). In this article, we review how chromatin
remodeling, DNA methylation, and microRNAs
regulate gene networks and contribute to co-
caine addiction. A particular emphasis is placed
on the epigenetic mechanisms regulating ex-
pression of brain-derived neurotrophic factor
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(BDNF) in the mesocorticolimbic dopamine
system following chronic cocaine exposure as
a specific example of the general principles
by which chromatin-dependent transcriptional
regulation may contribute to drug addiction.

EPIGENETIC MECHANISMS OF
CHROMATIN REGULATION

The definition of epigenetics has evolved to in-
clude not only heritable changes in gene expres-
sion but also stable changes in gene expression
within mature, postmitotic neurons that do not
include changes in DNA sequence (Bird 2007;
Siegmund et al. 2007; Tsankova et al. 2007). Epi-
genetic mechanisms transduce environmental
stimuli to promote stable alterations in chroma-
tin structure that function to activate or repress
gene transcription (Jaenisch and Bird 2003).
Posttranslational modifications to histones and
chromatin remodeling are dynamic epigenetic
mechanisms that alter access of transcriptional
machinery to promoter regions thereby regulat-
ing patterns of gene expression (Cheung et al.
2000; Strahl and Allis 2000; Berger 2007). A
growing body of evidence indicates that chro-
matin remodeling, including stable enzymatic
modifications to DNA and histone proteins,
is associated with persistent changes in gene
expression that may underlie drug addiction
(Renthal and Nestler 2008; Maze and Nestler
2011).

Chromatin Structure, Histone Modifications,
and Gene Transcription

Chromatin is a highly compact structure that
consists of DNA wrapped around octamers of
histone proteins. Access of transcription factors
and basal transcriptional machinery to DNA
sequences including promoter regions is reg-
ulated by chromatin structure (Berger 2007;
Li et al. 2007a). Chromatin exists in two basic
states that are characterized by different levels
of condensation. In general, heterochromatin
(condensed chromatin) is associated with inac-
tive gene transcription owing to tight packaging
of DNA around histone cores, whereas euchro-
matin (open chromatin) is associated with ac-

tive gene transcription owing to a more re-
laxed chromatin structure and accessible DNA
sequences (Berger 2007). Complex combina-
tions of posttranslational modifications of his-
tones alter the affinity of DNA sequences for
histone proteins, thereby positively or nega-
tively regulating gene transcription (Strahl and
Allis 2000). Therefore, chromatin remodeling
through covalent modifications of histone pro-
teins is a requisite mechanism of gene transcrip-
tion.

The amino-terminal tails of histones contain
specific amino acid residues that are sites for
several posttranslational modifications such as
acetylation and methylation. In general, acetyla-
tion of lysine residues corresponds with tran-
scriptionally active chromatin, whereas methyl-
ation of lysine and arginine residues is associated
with transcriptional repression (Strahl and Allis
2000). Other histone modifications that increase
gene transcription include phosphorylation and
ubiquitination (Renthal and Nestler 2008). In
addition, SUMOylation of histone residues has
been shown to be associated with decreased gene
transcription (Gareau and Lima 2010). Specific
enzymes function to add or remove associated
histone marks, indicating that these modifica-
tions are potentially reversible (Kouzarides
2007). The summation of dynamic histone sig-
natures at single genes and across the genome
forms a “Histone Code” that regulates gene ex-
pression (Strahl and Allis 2000). Thus, one epi-
genetic mechanism is the regulation of gene
transcription by posttranslational modifications
of histones that alter the affinity of DNA se-
quences for histone residues.

Histone Acetylation and Psychostimulant-
Induced Changes in Gene Transcription

Acetylation of basic lysine residues in histone
tails decreases the electrostatic interactions be-
tween histone proteins and negatively charged
DNA (Kouzarides 2007). Hyperacetylation of
promoter regions is associated with increased
gene expression, whereas hypoacetylation is cor-
related with decreased gene expression (Kur-
distani et al. 2004). Histone acetyltransferases
(HATs) are enzymes that catalyze the addition
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of acetyl moieties to histone proteins creating
a more open chromatin configuration that is
conducive to gene activation. In contrast, his-
tone deacetylases (HDACs) function to remove
acetyl moieties from histone proteins, there-
by promoting condensation of chromatin and
inactivation of gene transcription (Marks et
al. 2003). It should also be noted that specific
transcription factors have also been shown to
have HAT activity (Doi et al. 2006). Together,
HATs and HDACs function in concert to modi-
fy chromatin structure and regulate gene tran-
scription.

Increased expression of the immediate early
genes Fos and Fosb in the nucleus accumbens
following acute cocaine administration is asso-
ciated with increased histone H4 acetylation
at their promoter regions (Kumar et al. 2005;
Levine et al. 2005). In addition, global histone
H4 acetylation and H3 phosphoacetylation are
transiently increased in the striatum follow-
ing acute cocaine exposure (Brami-Cherrier et
al. 2005; Kumar et al. 2005). Furthermore, the
time course of histone acetylation following
acute cocaine is consistent with the induction
kinetics of Fos and Fosb genes (Renthal and
Nestler 2008). Chronic cocaine exposure also
is associated with increased histone acetylation
at distinct promoter regions. For example, re-
peated cocaine administration produces stable
changes in Cdk5 and Bdnf messenger RNA
(mRNA) expression as well as increased histone
H3 acetylation at their promoters (Kumar et al.
2005). Chronic cocaine exposure also decreases
HDAC5 function in the accumbens promoting
histone acetylation and increased expression of
HDAC5 targeted genes (Renthal et al. 2007).
Interestingly, chronic cocaine exposure induces
differential epigenetic regulation of Bdnf tran-
scription and these effects are region specific.
Recent studies indicate that cocaine-induced in-
creases in BDNF expression are associated with
increased acetylation of histone H3 at the pro-
moter encoding Bdnf exon I-containing tran-
scripts in the accumbens (Cleck et al. 2008)
and VTA (Schmidt et al. 2011). However, his-
tone H3 acetylation at Bdnf promoter IV, but
not promoter I, is preferentially increased in
the medial prefrontal cortex (mPFC) following

chronic cocaine (Sadri-Vakili et al. 2010). Co-
caine-induced alterations in histone H3 acety-
lation and corresponding changes in gene ex-
pression are stable during periods of drug
abstinence (Freeman et al. 2008), which sug-
gests that cocaine-induced chromatin remodel-
ing produces persistent changes in gene expres-
sion that may underlie drug craving and relapse.

Global histone H3 acetylation levels are
significantly enhanced in mice that develop con-
ditioned place preference following repeated
methamphetamine administration (Shibasaki
et al. 2011). Increased acetylation of histone
H3 proteins is associated with genes that regu-
late synaptic plasticity in the forebrain (Shi-
basaki et al. 2011). Withdrawal from chronic
amphetamine exposure also decreases transcrip-
tion of the immediate early gene Fos, in part,
through mechanisms that recruit HDAC1 to
the Fos promoter (Renthal et al. 2008). Future
studies are needed to determine the functional
significance of amphetamine-induced changes
in chromatin structure at gene promoters in
the striatum and limbic forebrain.

Histone Acetylation and Psychostimulant-
Induced Behavioral Responses

Histone acetylation and chromatin remodeling
are functionally relevant as both pharmaco-
logical inhibition and genetic manipulation of
HDACs alter behavioral responses to cocaine.
Systemic and intraaccumbens administration
of HDAC inhibitors significantly enhances
cocaine-induced locomotor activity and con-
ditioned place preference (Kumar et al. 2005;
Renthal et al. 2007). Consistent with these re-
sults, viral-mediated overexpression of HDACs
in the nucleus accumbens decreases histone
acetylation and attenuates cocaine-induced con-
ditioned place preference (Renthal et al. 2007).
Mice deficient in the HAT cAMP response
element binding (CREB) protein (CBP) have
decreased histone H4 acetylation and display
reduced sensitivity to cocaine (Levine et al.
2005). Taken together, these results indicate
that cocaine-induced behavioral plasticity is me-
diated, in part, by increased acetylation of gene
networks.
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Recent studies indicate that the role of
histone acetylation in cocaine-taking behavior
is complex. Inhibition of HDACs promotes dif-
ferential behavioral responses in animals self-
administering cocaine and these effects are
critically dependent on the timing of HDAC
inhibitor administration. Systemic administra-
tion of an HDAC inhibitor before the initiation
of daily cocaine self-administration sessions de-
creased the number of cocaine infusions self-
administered, suggesting that histone acetyla-
tion decreases the reinforcing efficacy of cocaine
(Romieu et al. 2008). In contrast, cocaine taking
increases when animals that are stably self-ad-
ministering cocaine are pretreated with a HDAC
inhibitor, which suggests that histone acetyla-
tion in these animals, increases the reinforcing
efficacy of cocaine (Sun et al. 2008). Adminis-
tration of a HDAC inhibitor directly into the
accumbens increases an animal’s motivation
to self-administer cocaine as measured by a
progressive-ratio (PR) schedule of reinforce-
ment and is associated with increased histone
H3 acetylation in the accumbens (Wang et al.
2010). Furthermore, overexpressing HDAC4 in
the nucleus accumbens shell decreases cocaine
self-administration on a PR schedule (Wang
et al. 2010). Although these results indicate
that increased histone acetylation is one epige-
netic mechanism that underlies cocaine-taking
behavior, the exact temporal sequence of his-
tone acetylation and gene transcription in rela-
tion to cocaine exposure and subsequent behav-
ioral outcomes remains to be determined.

Histone acetylation also plays a critical role
in the reinstatement of cocaine-seeking behav-
ior. Administration of HDAC inhibitors facili-
tates extinction of cocaine-conditioned place
preference and attenuates reinstatement of co-
caine-seeking behavior (Malvaez et al. 2010; Ro-
mieu et al. 2011). These behavioral effects coin-
cide with increased acetylation of histone H3
and suggest that chromatin remodeling and
altered gene transcription during drug with-
drawal may prevent drug craving and relapse
(Malvaez et al. 2010).

Recent studies also show a role for histone
acetylation in amphetamine-induced behavio-
ral responses. Histone acetylation plays a critical

role in behavioral sensitization to the locomo-
tor-activating effects of amphetamine (Kalda
et al. 2007; Shen et al. 2008). Chronic amphet-
amine exposure is associated with increased
striatal histone H4 acetylation at the level of
the Fosb promoter and increased phosphoryla-
tion of CREB (Shen et al. 2008). Furthermore,
repeated methamphetamine administration in-
creases histone H3 acetylation at unique gene
promoters in the limbic forebrain (Shibasaki
et al. 2011). Taken together, these results suggest
that amphetamine-induced behavioral plastici-
ty is regulated, in part, by changes in chromatin
structure within the striatum that facilitate bind-
ing of transcription factors including CREB to
promoter sequences to facilitate gene transcrip-
tion.

Histone Methylation and
Psychostimulant-Induced Changes
in Gene Transcription

Addition of methyl groups to histone proteins
does not change the charge of targeted amino
acid residues and these modifications are rela-
tively stable compared to histone acetylation
(Rice and Allis 2001). Methylation of lysine
and arginine residues on histone tails is com-
plex and can occur in mono-(me), di-(me2),
or trimethylated (me3) states with each meth-
ylation event having distinct, and often oppo-
site, effects on gene transcription (Rice and Allis
2001). Histone methylation at gene promoters
either promotes or represses gene transcrip-
tion depending on the exact amino acid res-
idues that are methylated and the valence of
methylation at these residues (Maze and Nes-
tler 2011); for example, di- and trimethylation
of histone H3 lysine residues 9 (H3K9me2/3)
and 27 (H3K27me2/3) recruit corepressor pro-
teins that may function to increase chromatin
condensation and thereby decrease gene tran-
scription (Rice and Allis 2001). In contrast,
trimethylation of histone H3 lysine residues 4
(H3K4me3) and 36 (H3K36me3) correlate with
increased levels of gene transcription (Rice and
Allis 2001).

Recent evidence indicates that psychostimu-
lant exposure alters gene expression, in part,
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through changes in histone methylation. His-
tone H3 methylation is decreased in the mPFC
of adult rats that were exposed to cocaine during
adolescence and these epigenetic marks coin-
cide with altered gene expression in adulthood
(Black et al. 2006). These findings suggest that
cocaine exposure during adolescence produces
long-lasting changes in gene expression that are
mediated by chromatin remodeling. Repeated
administration of cocaine in adult mice also
reduces histone methylation in the brain and
this epigenetic mechanism is associated with
decreased expression of the methyltransferase
G9a (Maze et al. 2010). Consistent with these
findings, expression of G9a target genes is in-
creased in the nucleus accumbens following re-
peated cocaine administration and viral-me-
diated knockdown of G9a expression, which
mimics the effects of chronic cocaine exposure
and facilitates cocaine-induced synaptic and
behavioral plasticity (Maze et al. 2010). More-
over, repeated cocaine alters heterochromatic
histone H3 methylation in the accumbens and
produces long-lasting decreases in heterochro-
matin, which suggests that cocaine-induced al-
terations in histone methylation and hetero-
chromatin formation are also an important
mechanism in the long-term actions of cocaine
(Maze et al. 2011). Amphetamine abstinence is
also associated with changes in histone H3
methylation. Histone H3 methylation is in-
creased at the Fos promoter in the striatum fol-
lowing repeated amphetamine exposure and is
associated with decreased transcription of this
immediate early gene (Renthal et al. 2008).
Consistent with these results, expression of the
histone H3 methyltransferase KMT1A is in-
creased in the striatum following chronic am-
phetamine exposure (Renthal et al. 2008).

Histone Methylation and Psychostimulant-
Induced Behavioral Responses

Adolescent rats exposed to chronic cocaine de-
velop cognitive impairments in adulthood that
are associated with altered histone methylation
and gene transcription in the mPFC (Black et al.
2006). Chronic cocaine exposure in adult rats
represses G9a expression thereby decreasing

global histone methylation in the nucleus ac-
cumbens and enhancing cocaine-induced be-
havioral responses (Maze et al. 2010). The in-
ability of G9a to regulate gene transcription
following repeated cocaine results in aberrant
synaptic plasticity in the accumbens (Maze
et al. 2010) and may correlate with long-term
psychostimulant-induced changes in structural
plasticity (Robinson and Kolb 1997). G9a reg-
ulation of histone methylation in the accum-
bens also plays a critical role in drug-induced
vulnerability to stress (Covington et al. 2011).
Taken together, these results suggest that chron-
ic cocaine exposure in adolescence and adult-
hood regulates expression of gene networks to
alter structural plasticity in the brain that, in
turn, may contribute to drug-induced behav-
ioral plasticity. The role of histone methylation
in regulating distinct gene networks to promote
amphetamine-induced behavioral plasticity re-
mains to be determined.

Histone Phosphorylation and
Psychostimulant-Induced Changes
in Gene Transcription

Histone phosphorylation is another posttrans-
lational modification that is associated with
increased gene transcription (Brami-Cherrier
et al. 2009). Phosphorylation of serine 10 on
histone H3 promotes HAT activity, phosphoa-
cetylation of neighboring amino acid residues,
and inhibits repressive methylation marks on
H3 (Kouzarides 2007). Acute amphetamine ad-
ministration transiently increases histone H3
phosphorylation (Rotllant and Armario 2012).
Moreover, cocaine administration increases his-
tone H3 phosphorylation and phosphoacetyla-
tion at the Fos promoter in the striatum, effects
that are mediated by mitogen- and stress-acti-
vated protein kinase 1 (MSK1) (Brami-Cherrier
et al. 2005; Brami-Cherrier et al. 2009). Consti-
tutive knockdown of MSK1 blocks cocaine-
induced increases in histone H3 phosphoryl-
ation and Fos expression and alters cocaine-
induced behavioral plasticity (Brami-Cherr-
ier et al. 2005). Although histone acetylation
and phosphorylation are both associated with
increased gene transcription, these epigenetic
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mechanisms can act in concert or independent-
ly to regulate gene expression (Brami-Cherrier
et al. 2007). The role of histone phosphoryla-
tion in psychostimulant-induced behavioral re-
sponses remains to be determined.

DNA Methylation and Psychostimulant-
Induced Changes in Gene Transcription

In addition to posttranslational histone modi-
fications, enzymatic modifications to DNA se-
quences also translate environmental stimuli
such as drug exposure into altered patterns of
gene expression and enduring behavioral phe-
notypes. DNA methylation involves the addi-
tion of methyl groups to cytosine-guanine di-
nucleotides (CpG) in the genome by DNA
methyltransferases (DNMTs) (Suzuki and Bird
2008). Methylation of CpG islands interferes
with transcription factor binding to target
DNA sequences through the recruitment of co-
repressor complexes (Jaenisch and Bird 2003).
Methyl-binding domain-containing proteins
bind methylated DNA regions and recruit core-
pressors such as HDACs and methyltransferases
to gene promoters. Therefore, it is important to
note that DNA methylation and histone modi-
fications are not mutually exclusive. Although
originally thought to repress or inhibit gene
transcription, DNA methylation is a dynamic
process that functions to either promote or re-
press gene expression (Suzuki and Bird 2008).

Emerging evidence suggests that psycho-
stimulant-induced changes in gene expression
are regulated by DNA methylation. The hippo-
campi of rats exposed to cocaine in utero are
characterized by altered global patterns of DNA
methylation and corresponding changes in gene
transcription (Novikova et al. 2008). Changes
in gene expression following cocaine self-ad-
ministration also correlate with increased ex-
pression of the methyl-CpG-binding protein
MeCP2 (Host et al. 2011). Further evidence
for a role of DNA methylation in cocaine-in-
duced synaptic and behavioral plasticity comes
from studies of DNMTs. Acute cocaine admin-
istration increases DNA methylation as well as
the expression of DNMT3A and DNMT3B in
the nucleus accumbens (Anier et al. 2010). In-

creased DNA methylation following acute co-
caine is associated with enhanced binding of
MeCP2 to specific gene promoters and corre-
sponding decreases in gene transcription (Anier
et al. 2010). Furthermore, pharmacological in-
hibition of DNMT decreases cocaine-induced
DNA hypermethylation and attenuates drug-in-
duced down-regulation of gene expression in
the accumbens (Carouge et al. 2010). DNMT3a
expression is increased during protracted pe-
riods of drug abstinence in cocaine-experienced
animals (LaPlant et al. 2010). DNMT3a also
plays a critical role in cocaine-induced in-
creases in dendritic spine density, which suggests
that DNA methylation is an important epigenet-
ic mechanism in regulating cocaine-induced
structural plasticity (LaPlant et al. 2010). Acute
and subchronic methamphetamine administra-
tion has differential effects on DNMT1 mRNA
expression that are brain region specific, suggest-
ing that drug-induced changes in gene transcrip-
tion are mediated, in part, by DNA methylation
(Numachi et al. 2007). However, future studies
are required to determine whether chronic
methamphetamine increases DNMT1 protein
and the functional significance of altered DNA
methylation on drug-induced behavioral re-
sponses.

DNA Methylation and Psychostimulant-
Induced Behavioral Responses

Dynamic changes in DNA methylation may un-
derlie cocaine-induced behavioral responses.
Sensitization to the locomotor-activating ef-
fects of cocaine is delayed in animals treated
with a DNMT inhibitor and coincides with al-
tered DNA methylation at gene promoters
(Anier et al. 2010). Decreased DNMT3a func-
tion enhances the behavioral response to co-
caine supporting the hypothesis that decreased
DNA methylation promotes increased gene
transcription following repeated cocaine expo-
sure and contributes to drug-induced behav-
ioral plasticity (LaPlant et al. 2010). Together,
these results suggest that dynamic changes of
DNA methylation may be an important epige-
netic mechanism underlying cocaine-induced
behavioral effects.

H.D. Schmidt et al.

6 Cite this article as Cold Spring Harb Perspect Med 2013;3:a012047

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



GENOME-WIDE STUDIES OF COCAINE-
INDUCED CHANGES IN CHROMATIN
REGULATION

Drug-induced histone modifications can be
identified and characterized across the genome
using microarrays and next-generation sequenc-
ing methods. Precise genomic loci that are
associated with histones modified by drug ex-
posure are identified using genome-wide pro-
moter arrays (ChIP-chip) or massively parallel
DNA sequencing platforms (ChIP-Seq) (Rent-
hal et al. 2009; Maze et al. 2011; Zhou et al.
2011). These high-throughput methods charac-
terize complex drug-induced signatures of epi-
genetic regulation including multifaceted his-
tone modifications that regulate transcription
of gene networks and may underlie drug-in-
duced behavioral plasticity. ChIP-chip analyses
of nucleus accumbens lysates reveals that chron-
ic cocaine exposure regulates gene transcription
by either increasing histone H3 or H4 acetyla-
tion (to elevate mRNA levels), or by increasing
histone H3 dimethyl-K9/27 (to reduce mRNA
expression) (Renthal et al. 2009). Chronic co-
caine exposure also decreases repressive his-
tone methylation (H3K9me3) in the accumbens
and ChIP-Seq reveals that these histone marks
are associated with intergenic genomic regions
(Maze et al. 2011). These results suggest that
cocaine-induced histone methylation produces
heterochromatic derepression and increases
expression of retrotransposable elements that
in turn regulate gene transcription (Maze et al.
2011). A recent study used whole genome se-
quencing of mRNA transcripts (RNA-Seq) and
ChIP-Seq to characterize histone methylation
and gene expression in postmortem hippo-
campal tissue from cocaine-dependent subjects
(Zhou et al. 2011). Interestingly, cocaine-in-
duced changes in histone methylation did not
correlate with corresponding changes in gene
expression in the hippocampus, which suggests
that complex epigenetic pathways act in concert
to regulate gene transcription (Zhou et al. 2011).
Taken together, these studies show that cocaine
acts to alter patterns of gene expression in the
nucleus accumbens and hippocampus through
epigenetic mechanisms (i.e., histone acetylation

and methylation) that promote stable, persistent
changes in gene expression. Thus, genome-wide
studies identify dynamic chromatin signatures
following chronic cocaine exposure and reveal
novel gene targets and molecular regulatory
pathways that may play critical roles in drug tak-
ing and seeking. It is not clear whether other
psychostimulants and drugs of abuse exert their
behavioral effects through similar or divergent
epigenetic regulation of gene networks.

MicroRNAs

Posttranscriptional regulation of gene expres-
sion following chronic drug exposure has also
been shown to influence drug taking and seek-
ing in laboratory animals (Pietrzykowski 2010;
Li and van der Vaart 2011). Specifically, micro-
RNAs (miRNAs) have emerged as a new class of
epigenetic regulators that are capable of altering
synaptic plasticity and behavior (Guarnieri and
DiLeone 2008). miRNAs are a class of nonpro-
tein coding RNA transcripts (�19–24 nucleo-
tides) that regulate gene expression at the post-
transcriptional level (Ambros 2004). It is
predicted that there are .800 unique miRNA
species in humans (Bentwich et al. 2005; Berezi-
kov et al. 2006), many of which are highly ex-
pressed in the brain (Sempere et al. 2004; Lugli
et al. 2008). More than 33% of the mammalian
genome is subject to miRNA regulation and each
miRNA targets on average 200 mRNA transcripts
(Lewis et al. 2005; Friedman et al. 2009b). A
growing literature indicates that miRNAs have
diverse effects on gene expression including
mRNA degradation, increased mRNA transla-
tion, chromatin remodeling, and DNA methyla-
tion.

Initially, miRNAs were thought to be locat-
ed within intergenic clusters within the genome
and regulated by their own promoter regions
(Lagos-Quintana et al. 2001; Lau et al. 2001).
However, it was determined recently that at least
50% of mammalian miRNAs are located within
introns of protein-coding genes, which suggests
that concurrent expression of miRNAs and their
host genes is regulated by common promoter
regions and transcriptional machinery (Rodri-
guez et al. 2004; Ason et al. 2006; Berezikov et al.
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2007; Li et al. 2007b; Okamura et al. 2007; Saini
et al. 2007). miRNA genes are transcribed by
RNA polymerases to produce immature tran-
scripts (Lee et al. 2002; Lee et al. 2004; Borchert
et al. 2006). These immature transcripts are
spliced, similar to mRNA, to produce double-
stranded, hairpin-loop structures that are sever-
al hundred base pairs in length called primary
miRNAs (pri-miRNAs) (Lee et al. 2002). Pri-
miRNAs are further cleaved in the nucleus
by the enzyme Drosha, as part of a protein com-
plex called the microProcessor (Lee et al. 2003;
Denli et al. 2004; Gregory et al. 2004; Yeom et al.
2006). The cleaved product is a double-stranded
RNA fragment, called precursor miRNA (pre-
miRNA), which is �70 nucleotides in length
and contains a two-nucleotide overhang at
the 30 end. The nuclear membrane protein
Exportin 5 binds to the 30 overhang of pre-
miRNAs and transports them from the nucleus
into the cytoplasm (Yi et al. 2003; Bohnsack
et al. 2004; Lund et al. 2004). Following its trans-
location into the cytoplasm, pre-miRNA is
cleaved by the enzyme Dicer to form an �20–
25 nucleotide duplex consisting of a mature
miRNA strand and its opposite, complementa-
ry (“passenger”) strand, miRNA� (Bernstein
et al. 2001; Hutvagner et al. 2001). Dicer-medi-
ated cleavage of pre-miRNAs is thought to co-
incide with unwinding of the duplex to produce
single-stranded, active miRNAs (MacRae et al.
2008). Single-stranded miRNAs are preferen-
tially loaded into the microRNA-induced si-
lencing complex (miRISC) (Hutvagner and Za-
more 2002). The main protein constituents
associated with miRISC complexes are Argo-
naute (AGO) proteins that bind miRNAs and
facilitate cleavage of targeted mRNA transcripts
(Baumberger and Baulcombe 2005; Peters and
Meister 2007). It is thought that one miRNA is
sufficient to direct miRISC to target mRNAs to
cleave or silence these transcripts.

miRNAs regulate gene expression by de-
grading mRNA transcripts, repressing mRNA
translation, or both (Jackson and Standart
2007; Pillai et al. 2007). Target specificity is
imparted through miRNA recognition and
binding to complementary sequences (�2–7
nucleotides), or “seed regions,” in the 30-UTR

(untranslated region) of mRNA (Lewis et al.
2003; Grimson et al. 2007; Bartel 2009). Origi-
nally thought to be nonfunctional by-products
of pre-miRNA cleavage (Matranga et al. 2005),
miRNA� strands also act at distinct binding sites
to regulate gene expression (Tyler et al. 2008;
Okamura et al. 2009; Ghildiyal et al. 2010).
Emerging evidence indicates that molecular reg-
ulation of gene expression by miRNAs is more
complex than originally thought. In addition to
repressing protein synthesis and directing se-
quence-specific degradation of complementary
mRNA, the miRNA/miRISC complex has also
been shown to induce gene expression by acti-
vating mRNA translation (Vasudevan et al.
2007; Place et al. 2008; Steitz and Vasudevan
2009). miRNAs also remodel chromatin struc-
ture and increase DNA methylation thereby al-
tering expression of target genes (Tan et al.
2009) and, in some cases, inducing gene activa-
tion (Place et al. 2008).

MicroRNAs and Psychostimulant Addiction

miRNAs coordinate the expression of networks
of related genes involved in synaptic plasticity
(Kosik 2006; Schratt et al. 2006). Furthermore,
miRNAs have been identified in dendrites,
which suggests that miRNAs function, in part,
to rapidly translate cellular signals into regula-
tion of local mRNA transcripts (Ashraf and
Kunes 2006; Hobert 2008). Chronic drug expo-
sure induces maladaptive changes in neural net-
works including aberrant synaptic plasticity in
the mesocorticolimbic dopamine system (Kali-
vas et al. 2005; Kauerand Malenka 2007; Thomas
et al. 2008; Russo et al. 2010). Given the potential
role of drug-evoked synaptic plasticity in the de-
velopment and persistence of compulsive drug-
taking behavior (Hyman et al. 2006; Luscher and
Malenka 2011; Mameli and Luscher 2011), it is
not surprising that miRNAs play a critical role in
drug addiction (Dreyer 2010; Pietrzykowski
2010; Li and van der Vaart 2011).

Recent studies indicate that compulsive co-
caine consumption is mediated, in part, by
miRNAs. Cocaine self-administration increases
expression of miR-212 in the dorsal striatum
(Hollander et al. 2010). Furthermore, increased
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miR-212 expression in the striatum is associated
with decreased cocaine self-administration and
suggests that up-regulation of striatal miR-212
is a compensatory mechanism that decrease’s
the motivational properties of cocaine (Hol-
lander et al. 2010). In contrast, the transcrip-
tional repressor MeCP2 plays a critical role
in regulating increased cocaine consumption
(Im et al. 2010). MeCP2 attenuates cocaine-in-
duced up-regulation of miR-212 expression in
the striatum, whereas miR-212 inhibits MeCP2
expression (Im et al. 2010). Thus, a pivotal bal-
ance between MeCP2 and miR-212 levels in the
striatum regulates compulsive drug-taking be-
havior.

Chronic cocaine exposure also increases ex-
pression of miR-181a and decreases expression
of miR-124 and let-7d in the mesocorticolimbic
dopamine system (Chandrasekar and Dreyer
2009). Although increased expression of miR-
124 and let-7d in the nucleus accumbens atten-
uates cocaine-induced conditioned place pref-
erence (CPP), increased expression of miR-181a
in the accumbens enhances cocaine CPP (Chan-
drasekar and Dreyer 2011). Differential behav-
ioral effects of miR-124, let-7d, and miR-181a
are associated with distinct changes in gene ex-
pression in the nucleus accumbens (Chandra-
sekar and Dreyer 2011). Taken together, these
results suggest that complex miRNA regulatory
pathways modulate cocaine-induced behavioral
plasticity by directing expression of gene net-
works. It remains to be determined whether
other psychostimulants exert similar effects on
miRNA expression.

Thus, miRNAs are epigenetic regulators that
play a critical role in translating drug-induced
changes in synaptic plasticity into persistent
neuroadaptations associated with drug addic-
tion. By targeting hundreds of mRNA tran-
scripts, a single miRNA coordinates expression
of gene networks that regulate neuronal plastic-
ity and behavior. Although miRNAs may rep-
resent promising new targets in the develop-
ment of novel therapies to treat drug craving
and relapse, future studies are needed to deter-
mine the precise role of miRNAs and their tar-
gets in the molecular mechanisms underlying
drug addiction.

BDNF AND COCAINE ADDICTION

BDNF is a member of the neurotrophin fami-
ly that includes nerve growth factor, neuro-
trophin-3, and neurotrophin 4/5 (Thoenen
1995). BDNF is synthesized as a propeptide
(32 KDa) that is proteolytically processed into
a smaller (13 KDa), mature form that binds
to and activates tropomyosin receptor kinase
B (TrkB) receptors (Bibel and Barde 2000).
TrkB stimulation results in receptor dimeriza-
tion and tyrosine phosphorylation that provides
docking sites for adapter molecules, interna-
lization, and intracellular signaling leading to
changes in gene expression and synaptic plas-
ticity (Sommerfeld et al. 2000; Patapoutian
and Reichardt 2001; Lu 2003; Nagappan and
Lu 2005). Stimuli that induce neuronal activity
in a calcium-dependent manner increase Bdnf
mRNA and BDNF protein expression (Shieh et
al. 1998). Following transcription, Bdnf mRNA
is trafficked to active synapses (Tongiorgi et al.
1997) where long 30 UTR mRNA transcripts are
preferentially localized and translated (An et al.
2008). Synaptic secretion of BDNF and subse-
quent TrkB receptor activation are associated
with increased glutamatergic activity (Jovanovic
et al. 2000; Hartmann et al. 2001; Balkowiec and
Katz 2002). Furthermore, BDNF promotes both
early and late-phase long-term potentiation
(LTP), dendritic protein synthesis, and dendritic
spine formation (Bramham et al. 1996). BDNF
regulates dendritic spine formation and synap-
tic plasticity by inhibiting miR-134, a miRNA
that negatively regulates dendritic spine devel-
opment and maturation (Schratt et al. 2006).
BDNF-mediated inhibition of miR-134 pro-
motes translation of Lim kinase 1, an enzyme
that regulates actin filament activity and synap-
tic plasticity (Schratt et al. 2006).

Many cocaine-induced neuroadaptations
that are thought to underlie cocaine seeking
are manifested by alterations in the plasticity
of mesocorticolimbic circuitry (Schmidt and
Pierce 2010). Bdnf mRNA is expressed abun-
dantly in cortical as well as midbrain dopamine
neurons and at much lower levels in striatal
neurons (Altar et al. 1997; Lipska et al. 2001).
In fact, cortical pyramidal neurons are thought
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to supply �80% and dopamine neurons �20%
of BDNF protein within the striatum (Altar
et al. 1997). Endogenous Bdnf mRNA and pro-
tein are differentially regulated in mesolimbic
and cortical neurons in response to acute and
repeated administration of psychostimulants
or during extended periods of drug abstinence
(Meredith et al. 2002; Le Foll et al. 2005; Filip
et al. 2006; Liu et al. 2006; Fumagalli et al. 2007;
Saylor and McGinty 2008; Fumagalli et al.
2009). In addition, a persistent BDNF protein
response develops in mesolimbic, striatal, and
cortical structures and lasts for extended du-
rations during abstinence from cocaine self-
administration (Grimm et al. 2003; Im et al.
2010; McGinty et al. 2010). Altered expression
of BDNF in this network of reciprocally in-
terconnected structures following cocaine ex-
posure and/or drug abstinence suggests that
BDNF may constitute a critical component of
cocaine-induced plasticity.

The effects of exogenous BDNF infusion on
cocaine seeking are brain region specific and
time dependent. Infusion of BDNF into sub-
cortical structures, like the nucleus accumbens
and VTA, enhances cocaine-seeking behavior
(Lu et al. 2004; Graham et al. 2007). These stud-
ies implicate VTA and nucleus accumbens
BDNF activity in long-term modulation of co-
caine-induced behavior. In contrast, BDNF in-
fusion into the dorsomedial PFC immediately
following a final session of cocaine self-admin-
istration attenuates the reinstatement of cocaine
seeking by normalizing cocaine-induced alter-
ations in phospho-ERK and phospho-CREB ex-
pression in the PFC and glutamate transmission
in the nucleus accumbens (Berglind et al. 2007;
Berglind et al. 2009; Whitfield et al. 2011). In
support of the cocaine-suppressing effects of
BDNF, knockdown of BDNF in the mPFC aug-
ments the intake of cocaine in rats self-admin-
istering cocaine (Sadri-Vakili et al. 2010). In
contrast, overexpression of BDNF in the dorsal
striatum has been implicated in the acceleration
of, and loss of control over, compulsive cocaine
taking (Im et al. 2010). Moreover, suppression
of endogenous BDNF signaling, by infusing a
neutralizing antibody to BDNF in the dorsal
striatum, decreases cocaine intake (Im et al.

2010). Thus, exogenous infusion or manipula-
tion of endogenous BDNF levels has a selective
functional impact in different target areas that
are critical to mediating or preventing cocaine-
induced dysfunctional neuroadaptations.

EPIGENETIC REGULATION OF BDNF
EXPRESSION IN RESPONSE TO COCAINE

A growing body of evidence suggests that epige-
netic mechanisms of regulation are important
for the modulation of drug-induced Bdnf tran-
scription (Fig. 1). The Bdnf gene is comprised
of nine exons with at least eight alternative
promoters that are differentially responsive to
cocaine-activated signaling cascades (Liu et al.
2006; Aid et al. 2007). Cocaine-induced in-
creases in Bdnf transcription are associated
with increased histone acetylation at several
Bdnf promoters (Kumar et al. 2005; Schroeder
et al. 2008; Sadri-Vakili et al. 2010; Schmidt et al.
2011). Histone acetylation at specific Bdnf pro-
moters is associated with binding of the histone
acetyltransferase CBP (Schmidt et al. 2011), and
the histone deacetylases HDAC1 and HDAC2
(Guan et al. 2009) to these promoter regions.

Reduced DNA methylation of various re-
gions across the Bdnf locus has been detected
following many stimuli that increase BDNF
expression (Lubin et al. 2008; Ma et al. 2009).
However, it remains to be determined whether
cocaine modulates DNA methylation of the
Bdnf gene. Induction of Bdnf transcription
in the PFC is correlated with the dissociation
of MeCP2 from BDNF promoter IV, consistent
with a potential reduction in DNA methyla-
tion under these conditions (Sadri-Vakili et al.
2010). Evidence for the functional importance
of DNA methylation in the regulation of Bdnf
transcription comes largely from studies in
which MeCP2 expression has been disrupted.
Although MeCP2 is bound widely to DNA
across the genome (Skene et al. 2010), decreased
MeCP2 expression is associated with surpris-
ingly subtle changes in the expression of a subset
of genes (Tudor et al. 2002; Chahrour et al. 2008;
Skene et al. 2010). Nonetheless, levels of Bdnf
are consistently reduced in the brains of Mecp2
knockout mice (Chang et al. 2006; Fyffe et al.
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2008). Interestingly, MeCP2 is a target of regu-
lation by psychostimulant-activated signaling
cascades (Deng et al. 2010; Im et al. 2010). Phos-
phorylation of MeCP2 at Ser421 is induced rap-
idly and robustly by acute and repeated admin-
istration of cocaine or amphetamine, and this
phosphorylation is selective for specific popula-
tions of neurons in the PFC and nucleus accum-
bens (Deng et al. 2010). Although the conse-
quences of Ser421 phosphorylation for MeCP2
function are not known, this regulation sug-
gests a mechanism to couple MeCP2-dependent
transcription of Bdnf and other genes with psy-

chostimulant exposure. In addition, expression
of MeCP2 is up-regulated following chronic co-
caine self-administration in the dorsal striatum
of rats where knockdown of MeCP2 expression
is associated with impaired cocaine-dependent
up-regulation of BDNF protein (Im et al. 2010;
Host et al. 2011). However, it is unclear whether
increased MeCP2 expression is directly acting
under these conditions to alter transcriptional
regulation of Bdnf.

miRNAs represent a third epigenetic mech-
anism that may contribute to psychostimu-
lant-induced expression of BDNF. Although a
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Figure 1. Differential cocaine-induced effects at specific Bdnf promoters are mediated by distinct epigenetic
mechanisms in the mPFC and VTA. (A) Cocaine selectively increases Bdnf exon IV–containing transcript levels
in the mPFC. Cocaine-induced increases in mPFC Bdnf transcription are associated with increased CREB
phosphorylation and histone H3 acetylation at Bdnf exon IV promoters. Furthermore, MeCP2 binding to
Bdnf exon IV promoter regions is decreased following cocaine self-administration. (B) In contrast, cocaine
selectively increases Bdnf exon I–containing transcript levels in the VTA. Cocaine-induced increases in VTA
Bdnf transcription are associated with recruitment of CBP, an enzyme that catalyzes the addition of acetyl groups
to histone proteins, and increased histone H3 acetylation at exon I–containing promoter regions. AC, acetyl
group; Bdnf, brain-derived neurotrophic factor; CBP, CREB-binding protein; CRE, cAMP response element;
CREB, cAMP response element binding protein; Ex IV, exon IV; Ex I, exon I; HAT, histone acetyltransferase; Me,
methyl group; MeCP2: methyl-CpG-binding protein 2; P, phosphate group.
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number of miRNAs can bind directly to the 30-
UTR of Bdnf (Mellios et al. 2008; Friedman et al.
2009a; Muinos-Gimeno et al. 2011), the rele-
vance of this epigenetic mechanism for the in
vivo regulation of BDNF levels remains to be
determined. However, miRNAs may impact co-
caine-induced BDNF expression indirectly via
regulation of MeCP2 expression and CREB ac-
tivation. Cocaine self-administration is associ-
ated with increased expression of miR-132 and
miR-212 in the dorsal striatum, both of which
can repress the expression of MeCP2 (Klein et al.
2007; Hollander et al. 2010; Im et al. 2010).
MeCP2 appears to exert a complementary re-
pression of miR-132 and miR-212, suggesting
that these transcriptional regulators are engaged
in a homeostatic feedback loop (Klein et al.
2007; Im et al. 2010). Overexpression of miR-
212 in the dorsal striatum attenuates cocaine-
induced up-regulation of MeCP2 expression
and inhibits cocaine-induced up-regulation of
BDNF protein (Im et al. 2010). Interestingly,
in addition to its effects on MeCP2 expression,
miR-212 has been shown to amplify CREB
signaling and to increase cocaine-induced ex-
pression of CREB-target genes including Fos
(Hollander et al. 2010; Im et al. 2010). Bdnf
transcription is also regulated by CREB as well
as MeCP2 (Shieh et al. 1998; Tao et al. 1998) and
it remains to be determined why the effects
of miR-212 overexpression on MeCP2 appear
to dominate with respect to BDNF regulation
over the effects on CREB. These observations
highlight the challenges of interpreting the ef-
fects of disrupting single regulatory factors
within the context of an interconnected tran-
scriptional network, and suggest that there is a
rich world of complexity contributing to the
tight spatial and temporal control of BDNF ex-
pression that remains to be explored.

CONCLUDING REMARKS

Increasing evidence suggests that epigenetic
mechanisms including histone modifications,
DNA methylation, and miRNAs regulate psy-
chostimulant-induced gene expression profiles
in discrete brain regions. Many changes in chro-
matin regulation following chronic psycho-

stimulant exposure correlate in time with the
expression of maladaptive behaviors including
drug taking and seeking. However, molecular
genetic studies have also implicated some of
the transcriptional regulatory factors discussed
in this review (i.e., miR-212, MeCP2, HDAC5,
and BDNF in the mPFC) in the induction of
adaptive forms of neuroplasticity that appear
to repress or inhibit drug self-administration.
Further characterizing the molecular substrates
that regulate chromatin remodeling and gene
transcription following chronic drug exposure
may identify novel drug targets for drug crav-
ing and relapse. Given the evidence that BDNF
expression in different brain regions has both
essential and distinct effects on drug-taking be-
havior, understanding the transcriptional regu-
lation of this single gene offers an opportunity
to discover insights into the role of epigenetic
mechanisms of chromatin regulation in drug
addiction. However, future studies that more
broadly elucidate the epigenetic processes that
mediate long-lasting changes in gene expression
networks throughout the brain will substan-
tially enhance our understanding of how persis-
tent changes in gene transcription contribute to
the development and expression of compulsive
drug-taking behaviors.
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