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ABSTRACT

Motivation: Statistical methods for comparing relative rates of

synonymous and non-synonymous substitutions maintain a central

role in detecting positive selection. To identify selection, researchers

often estimate the ratio of these relative rates (dN=dS) at individual

alignment sites. Fitting a codon substitution model that captures het-

erogeneity in dN=dS across sites provides a reliable way to perform

such estimation, but it remains computationally prohibitive for massive

datasets. By using crude estimates of the numbers of synonymous

and non-synonymous substitutions at each site, counting approaches

scale well to large datasets, but they fail to account for ancestral state

reconstruction uncertainty and to provide site-specific dN=dS

estimates.

Results: We propose a hybrid solution that borrows the computational

strength of counting methods, but augments these methods with em-

pirical Bayes modeling to produce a relatively fast and reliable method

capable of estimating site-specific dN=dS values in large datasets.

Importantly, our hybrid approach, set in a Bayesian framework, inte-

grates over the posterior distribution of phylogenies and ancestral

reconstructions to quantify uncertainty about site-specific dN=dS esti-

mates. Simulations demonstrate that this method competes well with

more-principled statistical procedures and, in some cases, even out-

performs them. We illustrate the utility of our method using human

immunodeficiency virus, feline panleukopenia and canine parvovirus

evolution examples.

Availability: Renaissance counting is implemented in the development

branch of BEAST, freely available at http://code.google.com/p/beast-

mcmc/. The method will be made available in the next public release

of the package, including support to set up analyses in BEAUti.
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1 INTRODUCTION

Quantifying selective pressures on protein-coding genes is central

to the goal of characterizing Darwinian processes in evolutionary

biology. Among comparative and summary statistic approaches,

the relative rate of silent and replacement substitutions represents

one of the most popular measures to detect the molecular foot-

print of selection. Non-synonymous mutations that offer fitness

advantages are expected to become fixed at a higher rate than

synonymous mutations, implying that a non-synonymous/syn-

onymous substitution rate ratio ð! ¼ dN=dSÞ greater than one

provides evidence for diversifying positive selection.
Although estimation of ! has led to the identification of posi-

tive selection in several systems (e.g. Hughes and Nei, 1988;

Messier and Stewart, 1997), there are clear boundaries to the

conditions under which it can reveal an unambiguous trace of

molecular adaptation. First, an excess of non-synonymous sub-

stitutions over synonymous substitutions is almost invariably

restricted to a handful of amino acid sites responsible for adap-

tive evolution. Therefore, sensible ! estimates need to take into

account the variation in selection intensity across codon sites

(Nielsen and Yang, 1998). Moreover, although divergent

sequences can yield considerable information to estimate non-

synonymous and synonymous substitution rates, the ratio of

these rates may offer little insight when inferred from segregating

polymorphisms within a single population (Kryazhimskiy and

Plotkin, 2008). Finally, it is also important to distinguish be-

tween different selective regimes underlying molecular adapta-

tion. Diversifying selection maintains amino-acid diversity at a

given site and naturally results in elevated ! values, whereas

directional selection may operate through a restricted number

of amino-acid replacements, which has less impact on ! but

can lead to rapid fixation of a new allele in the population.

The former is ubiquitous in antagonistic systems such as

pathogen-host interactions (Yang and Bielawski, 2000). Not sur-

prisingly, dN=dS estimation methods have been frequently

applied to viral gene sequences to detect escape from host

immune responses or adaptation to novel hosts. Rapidly evol-

ving viruses benefit from the ability to generate adaptive muta-

tions de novo, whereas other organisms must rely on pre-existing*To whom correspondence should be addressed.
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variation maintained by population structure or balancing selec-
tion (Pybus and Rambaut, 2009). The impact of immune pres-
sure on the genetic diversity of viruses can be highly dependent

on how potent the immune responses are to different viral vari-
ants, a concept that has been put forward within the framework
of phylodynamics (Grenfell et al., 2004). For this reason, meth-

ods to estimate ! have become an integral part of the ‘phylody-
namic toolbox’ (Pybus and Rambaut, 2009), which generally
refers to recent statistical and computational developments to

simultaneously estimate epidemic and spatiotemporal dynamics
from viral genes sequences (Lemey et al., 2009, 2010).
In this article, we are interested in site-specific estimation of

dN=dS ratios. There are two main classes of methods designed for
this task. The first class prescribes to build a model of codon
evolution, with the dN=dS ratio as a model parameter that is

allowed to vary across sites (Nielsen and Yang, 1998; Pond
and Muse, 2005). Although we fully endorse these approaches

and use them whenever possible, codon-based models become
computationally prohibitive when analyzing large datasets that
include hundreds, if not thousands, of molecular sequences

(Lemey et al., 2007). Because of this computational limitation,
researchers often turn to a second class of methods that are based
on imputing (counting) unobserved synonymous and non-syn-

onymous substitutions (Suzuki and Gojobori, 1999). These sub-
stitution counts are then used to construct a test statistic to assess
the null hypothesis of neutrality (H0 : dN=dS ¼ 1). Such counting

methods enjoy computational efficiency and often work well in
practice (Kosakovsky Pond and Frost, 2005), but have two im-
portant shortcomings. First, counting approaches experience dif-

ficulties in handling uncertainty about the phylogenetic tree and
about other nuisance parameters that play a role in counting

unobserved synonymous and non-synonymous substitutions.
Zhai et al. (2007) propose to overcome this problem by combin-
ing stochastic mapping, introduced by Nielsen (2002), with trad-

itional counting methods’ test statistics as discrepancy measures
in a posterior predictive diagnostics framework (Gelman et al.,
1996). However, posterior predictive diagnostics, undoubtedly

useful for visual exploration of model fit, are difficult to calibrate
and to use in a semi-automatic fashion. The second limitation,
shared by all counting methods, is their inability to provide

reliable sites-specific dN=dS estimates and to quantify the relative
strengths of selection across amino acid sites.

2 APPROACH

We propose a new counting method that overcomes both of the

aforementioned shortcomings. Our solution arises in two steps.
In the first step, we follow Nielsen (2002) and Zhai et al. (2007)
and produce multiple stochastic mapping-based realizations of

synonymous and non-synonymous counts while integrating over
the posterior distribution of the nuissance parameters including
the phylogenetics tree. However, to gain computational tractabil-

ity, we exploit nucleotide-based codon partition models (Yang,
1996) in this step. These models can be fit to data in a fraction of
the time it takes to fit even the simplest codon-based evolution-

ary models first introduced by Muse and Gaut (1994) and
Goldman and Yang (1994). Although codon partition models
do not account for selective pressures at amino acid sites

(dN=dS is one for all sites under these models), emerging

probabilistic counting procedures have been shown to be

robust to such gross model misspecification (Minin and

Suchard, 2008b; Minin et al., 2011; O’Brien et al., 2009).
The second step of our approach is the main novelty of this

article. We treat each random realization of synonymous and

non-synonymous counts as pseudo-data and shrink these

site-specific counts toward their means over all sites. We accom-

plish this regularization through an empirical Bayes procedure.

We then use these regularized synonymous and non-synonymous

counts to form site-specific dN=dS estimates. The end result is a

posterior distribution of these ratios for all sites in the alignment.

This distribution can be used for estimation [e.g. we report the

posterior mean and 95% credible intervals (CIs) of site-specific

dN=dS values] and for testing diversifying positive selection (e.g. a

site is classified as positively selected if the posterior probability

of dN=dS41 at this site is at least, say, 0.95). Empirical Bayes

and, similar in spirit, full hierarchical Bayesian methods have

been developed before for site-specific dN=dS estimation and

for identifying sites under diversifying positive selection

(Huelsenbeck and Dyer, 2004; Yang et al., 2005). However, to

our knowledge, we are the first to combine empirical Bayes phil-

osophy and counting approaches, providing a revival of these

simple methods to confront a formidable inferential problem. By

performing the empirical Bayes regularization on the imputed

count data, we avoid fitting computationally expensive codon-

based models, making our ‘renaissance counting’ method prac-

tical for analyzing large datasets.
We assess our method using a simulation study almost iden-

tical to the one conducted and validated by Kosakovsky Pond

and Frost (2005). The simulations demonstrate that our meth-

od’s site-specific dN=dS estimates and positively selected site iden-

tification are remarkably comparable with the estimates

produced by the state-of-the-art codon-based models. We also

apply our new renaissance approach to two empirical datasets.

First, we reanalyze serially sampled feline panleukopenia and

canine parvovirus VP2 capsid sequences. This analysis shows

that renaissance counting produces sensible site-specific dN=dS
estimates, simultaneously accounting for uncertainty in all

model parameters, and highlights important differences between

our new and codon-based methods. We conclude by using our

method in tandem with conventional approaches to examine dif-

ferences in adaptive evolution in HIV pol genes in treated and

drug naı̈ve patient populations.

3 METHODS

3.1 Probabilistic counting under a codon partition model

Let y ¼ fyilg be a codon alignment matrix, where i spans n sequences,

l runs over L sites in the alignment and each yij is one of 64 nucleotide

triplets (codons). We assume that each site yl follows a codon partition

model, meaning that each nucleotide position s¼ 1, 2, 3 within a codon

evolves independently along a phylogenetic tree �, according to one of the

standard nucleotide substitution models (Yang, 1996). In all our examples

and without loss of generality, we use a Hasegawa, Kishino and Yano

(1985) model (HKY85) for each nucleotide position, with position-

specific transition/transversion ratio �s, substitution rate �s and station-

ary distribution ps ¼ ð�As, . . . ,�TsÞ. Position rates are normalized for

identifiability for contemporaneously sampled sequences, but remain

free parameters in the case of serially sampled data.
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We fit the above codon partition model in a Bayesian framework and

use Markov chain Monte Carlo (MCMC) integration to obtain a sample

from the posterior distribution of model parameters PrðhjyÞ, where

h ¼ ð�, �1, �2, �3,�1,�2,�3,p1, p2,p3Þ. Let hj be parameter values at

MCMC iteration j. At each iteration j, we use stochastic mapping to

impute the full evolutionary history of each nucleotide position within

each codon site in our alignment (Nielsen, 2002). We capitalize on a

uniformization method, a modification of the original approach by

Nielsen (2002), to draw realizations of the HKY continuous-time

Markov chains (CTMCs) conditional on the codon data at the tips of

the phylogeny �j (Lartillot, 2006; Rodrigue et al., 2008). See Hobolth and

Stone (2009) for an excellent review of different stochastic mapping al-

gorithms. We also use simple forward CTMC simulation to draw the full

evolutionary history of each site without conditioning on the data for

normalization. For each stochastic mapping realization, conditional

(C) and unconditional (U) on the data, we record the numbers of syn-

onymous (S) substitutions C
ðS-CÞ
jl ,C

ðS-UÞ
jl and non-synonymous (N) sub-

stitutions C
ðN-CÞ
jl ,C

ðN-UÞ
jl for each site l ¼ 1, . . . ,L. Computing the ratio

CðN-CÞ=CðS-CÞ
� �

= CðN-UÞ=CðS-UÞ
� �

yields one straightforward way of con-

verting these site-specific synonymous and non-synonymous counts into

site-specific dN=dS values. However, this naive method produces highly

unstable estimates due to the high variance of site-specific substitution

counts. Moreover, in many cases, some of the substitutions counts are

zero, resulting in a dN=dS estimate of 0 or1. To circumvent these prob-

lems, we apply an empirical Bayes regularization procedure to each of the

four substitution counts, producing regularized rate estimates �ðS-CÞjl ,

�ðS-UÞjl , �ðN-CÞjl and �ðN-UÞjl . With the regularized rate estimates at hand,

we form our dN=dS estimates

!RC
jl ¼ �ðN-CÞjl =�ðS-CÞjl

� �
= �ðN-UÞjl =�ðS-UÞjl

� �
: ð1Þ

We explain our empirical Bayes regularization procedure in detail in the

next section.

3.2 Regularized site-specific dN=dS ratios

Within eachMCMC iteration, we view the realized values of synonymous

and non-synonymous substitutions as pseudo-data. As our empirical

Bayes regularization procedure is identical for all four types of imputed

counts, we use the generic notation Cl to denote one of the four possible

count types, C
ðN-CÞ
l ,C

ðS-CÞ
l ,C

ðN-UÞ
l and C

ðS-UÞ
l , at site l. Each of these

counts represents the number of specifically labelled jumps of the

codon model CTMC. In general, such random variables follow non-

standard distributions that reduce to a Poisson distribution only in special

cases (Minin and Suchard, 2008a). However, in the phylogenetic context,

a Poisson distribution approximates these non-standard distributions

very well (Siepel et al., 2006). Therefore, we assume that

Cl � Poisson ð�lÞ for l ¼ 1, . . . ,L, ð2Þ

where �l is an unknown site-specific Poisson rate. Next, we postulate a

hierarchical model by assuming that

�l � Gammað�,�Þ, ð3Þ

where the hierarchical prior carries unknown shape � and rate �.

This second model level enables information sharing across sites so

that sites with low counts can borrow information frommore informative

sites. This hierarchical model can be fitted in a fully Bayesian framework

by approximating the posterior distribution Prð�, �, �jCÞ, where

k ¼ ð�1, . . . , �LÞ and C ¼ ðC1, . . . ,CLÞ. Alternatively, one can first

obtain estimates �̂ and �̂ from the marginal probability density

PrðCj�,�Þ and then arrive at site-specific rate estimates in the form of

the expectations Eð�ljC, �̂, �̂Þ for l ¼ 1, . . . ,L (Robbins, 1956). Maritz

(1969) explores parametric and non-parametric hierarchical Poisson

models and finds that even a simple gamma-Poisson model produces

empirical Bayes estimates that enjoy good statistical properties.

To execute our empirical Bayes approach, we start with sample means

and variances

�̂ ¼
1

L

XL
l¼1

Cl and 	̂2 ¼
1

L

XL
l¼1

Cl � �̂ð Þ
2, ð4Þ

and match these empirical quantities with the theoretical mean and vari-

ance of a gamma-Poisson distribution with parameters � and �. This

method of moments produces the following hyperparameter estimates

�̂ ¼
�̂2

	̂2 � �̂
and �̂ ¼

�̂

	̂2 � �̂
: ð5Þ

Given these estimated values, we have

�ljC � GammaðCl þ �̂, 1þ �̂Þ, ð6Þ

from which we arrive at empirical Bayes estimates

�̂l ¼ Eð�l jCÞ ¼
ðCl þ �̂Þ=ð1þ �̂Þ if 	̂24�̂ and

�̂ otherwise:

�
ð7Þ

In summary, to obtain a sample from the posterior distribution of the

dN=dS ratios, we

(1) Draw M samples from the posterior distribution of model param-

eters PrðhjyÞ under the simple nucleotide-based codon partition

model, and then

(2) Post-process the MCMC output:

(a) For each iteration j ¼ 1, . . . ,M, impute the numbers of syn-

onymous and non-synonymous substitutions,

CðS-CÞjl ,CðS-UÞjl ,CðN-CÞjl and CðN-UÞjl , with the help of stochastic

mapping,

(b) Use empirical Bayes regularization to arrive at rates of syn-

onymous and non-synonymous subsitutions, �̂ðS-CÞjl , �̂ðS-UÞjl ,

�̂ðN-CÞjl and �̂ðN-UÞjl , and finally

(c) Form site-specific dN=dS ratios !RC
jl using Equation (1).

3.3 Computational considerations

Our site-specific dN=dS estimation method has two main steps. This first

and the most time consuming step involves obtaining a posterior MCMC

sample under the nucleotide-based codon partition model. An analogous

step for the simplest codon models with no rate heterogeneity (Muse and

Gaut, 1994; Goldman and Yang, 1994) takes at best 612/42/3 � 80 times

as long, but in practice, performs worse, as the computational work of

matrix exponentiation for the codon model becomes non-negligible. In

the second step, we use stochastic mapping coupled with empirical Bayes

regularization. Our empirical Bayes regularization of the imputed substi-

tution counts is accomplished almost instantaneously because this esti-

mation procedure does not involve computationally intensive

calculations. The imputation step is potentially time consuming, but we

draw stochastic mapping realizations for a small number of saved

MCMC iterations (103 � 104), which is typically orders of magnitude

smaller than the length of the entire Markov chain (106 � 107).

Therefore, the running time of our two-step procedure is dominated by

the first step, making our approach significantly faster than Bayesian

site-specific dN=dS estimation under codon-based models.

3.4 Identifying sites under selection

To classify sites as negatively selected, neutrally evolving or positively

selected, we use for each site l the posterior sample f!RC
1l , . . . ,!RC

Ml g,

to estimate the 95% CI ð!RC
2:5%, l,!

RC
97:5%, lÞ. Alternatively, we could use

a 95% highest posterior density region. We declare site l to be under

diversifying positive selection if 15!RC
2:5%, l, neutral if
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!RC
2:5%, l515!RC

97:5%, l, and under negative selection if 14!RC
97:5%, l. Notice

that we can not say anything about frequentist properties of this classi-

fication procedure. In other words, our method is not guaranteed to

classify a site correctly 95% of the time during repeated replications of

the evolutionary process. However, we point out that our new method

offers more than merely a classification algorithm. In addition to clas-

sifying sites into the three categories above, we can assess the relative

strengths of selection at individual sites by comparing site-specific CIs,

including their relative rankings and the degree of overlap. To compare

the use of a per-site dN=dS posterior distribution with a frequentist count-

ing approach, we also explore a test procedure that only conditions on

the expectations for the conditional and unconditional counts,

CðS-CÞjl ,CðS-UÞjl ,CðN-CÞjl and CðN-UÞjl , for each site l to compute P-values

using the extended binomial (EBin) distribution, as discussed in

Kosakovsky Pond and Frost (2005).

4 RESULTS

4.1 Performance

We conduct an extended simulation study to compare the

relative performance of the renaissance approach to the

state-of-the-art random effects likelihood codon-based model

that accomodates both non-synonymous and synonymous

rate variation across sites (DUAL REL) and the fixed effects

likelihood (FEL) model approach implemented in HyPhy

(Kosakovsky Pond et al., 2005). We reanalyze the datasets simu-

lated by Kosakovsky Pond and Frost (2005). Briefly, the simu-

lation procedure considers symmetric bifurcating trees with 8, 16,

32 and 64 tips and generates alignments encompassing 375

codons with a complex distribution of non-synonymous and syn-

onymous substitution rates (resulting in 75 neutral, 335 nega-

tively selected and 75 positively selected sites) (Kosakovsky

Pond and Frost, 2005). We further extend this study to the

128-tip case and focus on the more realistic 16, 32, 64 and 128

range. Codon-based model substitution parameters were inspired

by HIV polymerase sequence data, and 50 different replicates are

generated for each collection of parameters.

We first focus on the binary classification problem of iden-

tifying sites under diversifying positive selection and map the

proportion of misidentified sites (false positive rate) to the

proportion of correctly identified sites (true positive rate) for

various nominal � levels (P-values, empirical Bayes factors

based on the ratio of posterior and prior odds of having

! 6¼ 1, or posterior quantiles) of the test procedures we com-

pare. The resulting receiver operating characteristic curves for

renaissance counting, DUAL REL and FEL are presented in

Figure 1. For renaissance counting, we focus on the results for

the CI coverage test approach (Supplementary Fig. S1 shows

the EBin test has a very similar performance). Although the

DUAL REL approach performs marginally better for a lower

number of taxa, FEL benefits more from a large number of

taxa. In general, the renaissance approach competes well with

the codon model approaches with a roughly intermediate per-

formance across the different simulation scenarios. Although

the renaissance counting receiver operating characteristic

curves are similar for CI coverage test and the EBin test

(Supplementary Fig. S1), reasonably low false positive rates

do not require very low EBin P-values, but they do require

relative high posterior quantiles in the coverage approach

(Supplementary Table S1). The EBin critical P-values also

clearly decrease with the number of taxa for the same false

positive rate, whereas a similar trend is not so obvious for the

posterior quantiles. We anticipate that cut off values sensitive

to the number of taxa will also be affected by sequence diver-

gence, and only data-specific simulation provides an objective

way to select such values.

Next, we investigate the ability of the renaissance approach

to estimate site-specific dN=dS values. In Figure 2, we compare

the mean relative errors of such site-specific estimation pro-

duced by our method, DUAL REL and FEL during the ana-

lysis of the 128-taxa simulated dataset. As the total number of

simulations is fairly small, owing to the high computational

costs of DUAL REL and FEL under phylogenetic tree uncer-

tainty, we also report 95% Monte Carlo error (grey shaded

areas). Although the renaissance approach tends to overesti-

mate small dN=dS values, our method performs remarkably

well when the true dN=dS values are above or equal to one,

the situation in which practitioners are most interested. This

error pattern is reversed for the REL method, outperforming

the renaissance method on small dN=dS values, but loses to our

approach on sites under positive selection. The relative errors of

the FEL method are difficult to quantify owing to the fact that

this method occasionally produces unreasonably high dN=dS
estimates. If we remove infinite dN=dS estimates during the rela-

tive error calculations, FEL still produces unreasonably high

dN=dS estimates on some of the remaining simulations

(bottom left plot in Fig. 2). Only when we remove dN=dS esti-

mates that are above 10 000 do we arrive at reasonable (but

now biased) relative errors for the FEL method. Although after

this filtering, the FEL approach outperforms both the renais-

sance and REL methods, the FEL approach remains problem-

atic because for some of the sites, it fails to provide reasonable

dN=dS estimates in as many as 11 simulations (22% of all

simulations).

Fig. 1. Receiver operating characteristic curves comparing classification

performance of renaissance counting (RC), DUAL REL and FEL meth-

ods in identifying sites under diversifying positive selection. The curves

plot true and false positive rates as functions of varying test-statistics.

P-values, Bayes factors and posterior quantiles were used for FEL (blue

line), DUAL REL (red line) and RC (black line), respectively
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4.2 Empirical data

We analyze a feline and carnivore parvovirus dataset to compare

renaissance counting implemented in BEAST (Drummond et al.,

2012) to REL codon-based model approaches. This dataset in-

cludes 91 VP2 capsid sequences sampled from various geograph-

ical regions for a 42-year period and was previously used to

demonstrate the rapid adaptation of feline panleukopenia parvo-

virus to canine hosts (Shackelton et al., 2005). Table 1 lists the

positively selected sites identified using renaissance counting and

REL approaches, and Supplementary Figure S2 plots the

site-specific DUAL REL dN=dS estimates against the renaissance

counting dN=dS estimates and their CIs. The REL approaches

include non-synonymous (NS REL) and both non-synonymous

and synonymous (DUAL REL) rate variation across sites. To

model this rate variation, we used generalized discrete distribu-

tions with three rate categories. The DUAL REL model provides

a significantly better fit when compared with the NS REL model

(P50.001), indicating significant variation in dS across sites.

Shackelton et al. (2005) originally use a NS REL approach as

implemented in PAML [Phylogenetic Analysis by Maximum

Likelihood, Yang, (1997)] and relied on fairly conservative cri-

teria to identify positive selected sites (underlined in Table 1). If

we use the criterion of !RC
2:5%41 for renaissance counting and a

log Bayes factor (for dN=dS4 1)44.0 for the REL models, which

is indeed the cut off that corresponds to a false positive rate of

5% according to data-specific simulations (data not shown), then

these three approaches provide support for roughly the same

sites as being positively selected with few exceptions. The FEL

approach, however, does not yield support for any site under

positive diversifying selection unless one is willing to accept

high critical P-values as evidence. In Table 1, we also report

results of a single-likelihood ancestor counting (SLAC) method

(Kosakovsky Pond and Frost, 2005), a more advanced version of
the original counting method of Suzuki and Gojobori (1999),
which performs similarly to the FEL model. The same issues

that emerged in the simulation analyses also complicate the
site-specific dN/dS estimation by FEL for this dataset, and, for
this reason, Kosakovsky Pond and Frost (2005) suggested to use

scaled dN minus dS as a measure of selection to compare FEL
with other methods. Similar to the FEL and SLAC P-values, the
EBin P-values derived from the average counts for each site are

of little use compared with a test approach that draws informa-
tion from the posterior distribution of regularized site-specific
dN=dS ratios. The poor performance of these approaches may

be attributed to the relatively low diversity in this dataset (mean
pairwise diversity of 0.0086 substitutions per site). Between the
two clear exceptions to the consistency of renaissance counting

and REL results, site 101 is only identified by NS REL to be
under positive selection. When also considering rate variation for
synonymous substitutions, this site falls under a class with high
synonymous substitution rates in DUAL REL, resulting also in a

considerably lower dN=dS. So, it appears that despite conserva-
tive assignment, site 101 may be falsely identified as being posi-
tively selected when synonymous rate variation across sites is

ignored. In this respect, renaissance counting is in better agree-
ment with DUAL REL, and, in general, the renaissance esti-
mates are in good agreement with the posterior dN=dS
expectations estimated by DUAL REL. Both REL approaches
find support for site 491 being under positive diversifying selec-
tion, despite the observation that the site also experiences a high

synonymous substitution rate (S rate class¼ 3 in DUAL REL),
whereas renaissance counting classifies the site as neutrally evol-
ving. For this site, only two unrelated sequences have a different

amino acid (histidine and arginine) compared with the wild-type
amino acid (glutamine). These amino acid substitutions on ex-
ternal branches could therefore represent (slightly) deleterious

substitutions that have subsequently experienced purifying selec-
tion (Lemey et al., 2007; Pond et al., 2006). For renaissance
counting, similar to other counting and FEL approaches, we

can restrict ourselves to summarizing the substitution history
on internal branches only to avoid the impact of such transient
mutations.

To appreciate the computational efficiency that renaissance
counting affords, we first recall that direct run-time comparison
with the existing implementation of the REL and FEL models is

flawed because these implementations condition on a fixed tree.
In this article, we overcome this implementation limitation by
averaging results over an arbitrarily sized sample of trees from

their posterior distribution, leading to almost arbitrarily long
run-times. Alternatively, a slight underestimate of the computa-
tional cost to fit a full Bayesian REL model entails a full

Bayesian fitting of the codon-basedM0 model. For this example,
the codon-based model takes 92� longer to fit than performing
renaissance counting using an Intel Xeon E5620 CPU running at

2.4GHz. Recently, Suchard and Rambaut (2009) introduce mas-
sive parallelization for fitting large state-space models through
the BEAGLE library (Ayres et al., 2012). Even when exploiting a

Tesla C2050 graphics processing unit for fitting M0, renaissance
counting still runs 3� faster on the CPU.
A second application of renaissance counting compares the

site-specific selection patterns for partial HIV pol gene sequences

Fig. 2. Relative errors of site-specific dN=dS estimation. We show mean

relative errors (solid black lines), produced by renaissance counting,

DUAL REL and FEL for each site of simulated alignments with 128

taxa. The top facing tick marks in each plot demarcate changes in the true

dN=dS value. The true values are shown above the intervals produced by

the tick marks. Gray shaded areas indicate 95% Monte Carlo error. We

do not show the Monte Carlo error in the bottom left plot because outlier

estimates, produced by the FEL method, violate normality assumptions

of the Monte Carlo error calculations. In all plots, the horizontal dashed

line corresponds to zero value of the relative error
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from treated and drug naı̈ve patients. Both the ‘treated’ and

‘untreated’ dataset encode amino acid position 1 to 220 in the

reverse transcriptase and were previously used as examples of an

intermediate size (81 taxa) and a large (297 taxa) dataset, respect-

ively, for selection analyses (Kosakovsky Pond and Frost, 2005).

In the treatment group, antiretroviral therapy consisted solely of

the zidovudine (AZT) nucleoside reverse transcription inhibitor.

Sites identified to be under positive diversifying selection by

either renaissance counting, DUAL REL and FEL are listed in

Tables 2 and 3 for the treated and untreated dataset, respectively.

Supplementary Figure S2 provides a summary of mean dN=dS
estimates with CIs for all sites in both datasets.
When considering !RC

2:5%41 for renaissance counting, a log

Bayes factor 4 4.0 for DUAL REL and a P 5 0.1 for FEL

as evidence for positive diversifying selection [cfr. (Kosakovsky

Pond et al., 2005)], all methods identify about 8 to 11 positively

selected sites in the treated dataset (Table 2). With a 5-fold higher

diversity (a mean pairwise diversity of 0.0426 and 0.0413

Table 2. Positively selected sites in HIV-1 Reverse Transcriptase of AZT-treated patients identified by at least one of three methods (renaissance

counting, DUAL REL and the two-rate FEL approach)

Renaissance counting EBin DUAL REL FEL

Site !RC (95% CPD) P-value ! MS MN log(BF) ! P-value

20 2.16 (1.37–3.36)** 0.14 8.55 1 2 3.11 1 0.07

35 1.79 (1.10–2.82)* 0.08 2.3 2 3 7.25 2.62 0.17

39 1.55 (0.99–2.43) 0.25 7.05 1 2 3.68 1 0.09

60 1.53 (0.89–2.40) 0.08 6.13 2 3 3.88 2.84 0.27

64 1.3 (0.85–1.99) 0.31 8.5 1 2 6.66 1 0.02

69 3.13 (2.05–4.71)** 0.06 34.89 1 3 10.00 1 0.01

83 1.24 (0.67–2.09) 0.18 2.02 2 3 6.02 1.58 0.55

102 0.68 (0.44–1.09) 0.56 8.28 1 2 6.12 1 0.10

123 1.97 (1.11–3.31)* 0.19 1.69 2 3 4.47 0.83 0.76

135 2.27 (1.30–3.80)* 0.11 1.88 2 3 4.39 1.48 0.61

178 2.59 (1.31–4.59)* 0.12 9.96 1 3 3.06 3.71 0.70

200 4.63 (2.92–7.27)** 0.02 34.57 1 3 11.14 1 50.01

207 1.92 (1.15–3.15)* 0.19 1.72 2 3 4.50 3.18 0.08

211 1.16 (0.72–1.85) 0.59 1.8 2 3 7.98 2.54 0.04

215 3.44 (2.17–5.32)** 0.05 39.75 1 3 15.28 1 50.01

The sites indicated in bold are identified as positively selected by all three methods. EBin P-values were computed using the EBin distribution.MS andMN represent the rate

class of the general discrete distribution with three rate classes to accommodate variation in dS and dN rates among sites, respectively.

* and ** indicate intervals correspond to the 95% and 99% highest posterior density intervals, respectively, that exclude !RC ¼ 1.

Table 1. Comparison of sites under positive diversifying selection as identified using renaissance counting, two random effects likelihood (REL) models,

the two-rate FEL approach and the SLAC method applied to the feline and carnivore parvovirus dataset

Renaissance counting EBin NS REL DUAL REL FEL SLAC

Site !RC (95% CPD) P-value ! MN log(BF) ! MS MN log(BF) ! P-value P-value

80 2.36 (1.38–4.21)* 0.54 1.35 3 3.89 2.27 1 3 4.00 1 0.44 0.52

85 2.28 (1.35–3.96)* 0.60 1.51 3 4.13 2.47 1 3 4.19 3.81E03 0.63 0.40

101 0.81 (0.41–1.52) 0.90 2.73 3 9.44 0.56 3 3 0.51 0.29 0.13 0.57

195 1.18 (0.73–1.92) 0.73 0.33 3 1.68 0.56 1 3 1.81 1 0.18 0.44

232 4.03 (2.30–6.81)** 0.32 2.52 3 6.40 4.09 1 3 6.24 1 0.40 0.54

234 2.21 (1.35–3.44)* 0.58 1.66 3 4.38 2.73 1 3 4.42 3.78E03 0.63 0.54

300 5.68 (3.36–9.19)** 0.21 2.74 3 13.26 4.36 1 3 7.22 1 0.19 0.09

305 2.22 (1.36–3.61)* 0.57 1.66 3 4.37 2.70 1 3 4.40 1 0.61 0.53

386 1.18 (0.73–1.84) 0.76 0.40 3 1.96 0.66 1 3 2.06 1 0.50 0.67

426 4.24 (2.27–7.40)** 0.34 2.72 3 9.21 4.24 1 3 6.66 1 0.50 0.16

491 0.81 (0.48–1.36) 0.83 2.11 3 5.19 2.61 3 3 4.28 0.51 0.60 0.74

545 1.18 (0.72–1.87) 0.75 0.39 3 1.92 0.61 1 3 1.96 1 0.86 0.99

One REL model incorporates non-synonymous substitution rate variation (NS) and the other includes both synonymous and non-synonymous rate variation (DUAL).

Underlined sites were identified as positively selected in the original study (Shackelton et al., 2005).MS andMN represent the rate class of the general discrete distribution

with three rate classes to accommodate variation in dS and dN rates among sites, respectively. Bayes factors (BF) are reported on a logarithmic scale.

* and ** indicate intervals correspond to the 95% and 99% cumulative posterior density (CPD) intervals, respectively, that exclude !RC ¼ 1.
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substitutions per site for the treated and untreated dataset, re-

spectively), the FEL approach does now result in convincing

P-values for a number of sites. All three methods provide signifi-

cant support for four sites under adaptation (site 69, 200, 207

and 215). Of those, amino acid substitutions at site 69 and 215

are known to confer resistance to AZT (Larder and Kemp,

1989), albeit mostly in combination with other substitutions for

site 69 (Fitzgibbon et al., 1991; Winters and Merigan, 2001). The

presence of specific substitutions at position 207 has also been

correlated with reduced AZT susceptibility in biologically cloned

HIV-1 isolates [Q207D and Q207E, (Stoeckli et al., 2002)], and

in vitro evidence confirmed decreased AZT susceptibility owing

to Q207D while this substitution also increased the relative fit-

ness of AZT-resistant HIV-1 (Lu et al., 2005). Site 200 also

undergoes adaptive evolution in the untreated dataset and

most likely reflects selection from the cellular immune response,

rather than antiviral therapy (see below). Substitutions at other

sites listed in Table 2 may also bear some relation to nucleoside

analogue resistance and AZT resistance in particular [e.g. V35M

(Cane et al., 2007), T39A (Saracino et al., 2006), V60I (Huigen

et al., 2006), R83K (Svicher et al., 2006), T200A (De Luca et al.,

2006) and R211K (Kemp et al., 1998)], but these are generally

considered to be ‘accessory’ substitutions that are supported by

indirect evidence with little or no in vitro confirmation.
Only two sites are identified as positively selected by all three

methods in the drug naı̈ve dataset using the same significance

criteria as mentioned above (site 35 and 200). Twenty-three

records can be retrieved from the Los Alamos HIV cytotoxic

T-lymphocyte (CTL)/CD8þ T-Cell epitope database for epi-

topes that span site 35. Importantly, when patients elicit CTL

responses against this epitope, they are generally directed against

amino acid variation at site 35 (Karlsson et al., 2007), which

makes this an example of virus evolution to the consensus B

sequence (35V). Site 200 is also located in five epitopes listed in

the CTL/CD8þ T-Cell epitope database, but we could not

retrieve any information concerning specific amino acid variation

at site 200 that induces different CTL responses. Without such

information, it remains difficult to establish a clear role for par-

ticular positions in immune evasion. In fact, the collection of

reported epitopes covers the majority of Reverse Transcriptase

amino acid positions, and it is therefore not surprising that many

sites listed in Table 3 can be mapped to known HIV-1 epitopes.

5 DISCUSSION

We present a novel and efficient Bayesian method for detecting

positive diversifying selection in molecular sequences. Our

method combines the computational speed of counting methods

and statistical efficiency of empirical Bayes approaches. A fur-

ther strength of the method is its simplicity of implementation,

thanks to recent algorithmic advances in stochastic mapping

(Nielsen, 2002; Lartillot, 2006). Stochastic mapping has been

used before to speed up MCMC-based Bayesian estimation of

codon-based models (Rodrigue et al., 2008), but this and subse-

quent approaches still operate within the codon-based modeling

framework. In contrast, our method uses stochastic mapping to

quickly approximate codon-based models that account for rate

variation of dN=dS over sites. Our analysis of simulated and real

data demonstrates that the proposed approach competes well

with more computationally demanding methods in recovering

site-specific dN=dS ratios and in accurately identifying sites

under positive diversifying selection.
The main distinction between renaissance counting and previ-

ous attempts to use stochastic mapping to detect diversifying

positive selection (Zhai et al., 2007) is the ability of our renais-

sance method to directly estimate dN=dS ratios and to quantify

uncertainty in these estimates. This advance is important because

all counting methods, including stochastic mapping-based ones,

can only produce site-specific P-values, resulting from testing a

null hypothesis of neutrality. However, it is well known that

using P-values has limitations. In particular, as P-values are

always calculated by conditioning on the null hypothesis, it

Table 3. Positively selected sites in HIV-1 Reverse Transcriptase of drug naı̈ve patients identified by at least one of three methods (renaissance counting,

DUAL REL and the two-rate FEL approach)

Renaissance counting EBin DUAL REL FEL

Site !RC (95% CPD) P-value ! MS MN log(BF) ! P-value

35 1.98 (1.30–3.00)** 0.06 2.94 1 3 17.28 3.49 0.03

68 1.78 (1.21–2.51)* 0.13 0.72 1 2 51 1.43 0.72

83 0.7 (0.49–0.97) 0.87 1.14 2 3 7.42 0.71 0.37

102 1.68 (1.20–2.33)* 0.14 0.75 1 2 51 1 50.01

123 0.91 (0.65–1.25) 0.68 1.11 2 3 6.34 0.88 0.70

135 2.31 (1.64–3.20)** 0.01 1.26 2 3 6.63 1.45 0.39

142 0.64 (0.47–0.86) 1 1.11 2 3 6.62 0.56 0.12

177 0.81 (0.60–1.15) 0.77 1.16 2 3 9.1 1 1.00

178 4.92 (2.79–7.63)** 50.01 2.48 1 3 9.11 1.98 0.42

200 2.64 (1.83–3.72)** 0.01 2.91 1 3 17.85 3.67 50.01

202 4.68 (3.30–6.37)** 50.01 0.72 1 2 51 1 0.13

211 1.06 (0.77–1.42) 0.47 2.48 1 3 25.83 3.63 50.01

See Table 2 for table details.
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would be inappropriate to use the magnitude of P-values as evi-
dence in favor of the null (Goodman, 1999). The task of compar-
ing P-values becomes even more challenging in the method of

Zhai et al. (2007) because these authors use notoriously hard-to-
calibrate posterior predictive P-values (Hjort et al., 2006).
Therefore, it is difficult to use previously developed counting

methods to quantify relative strength of selection at amino acid
sites. Although our method cannot possibly resolve the
long-standing statistical controversy of quantifying evidence in

hypothesis testing, renaissance counting offers a straightforward
estimation alternative by producing site-specific posterior distri-
butions of dN=dS ratios. Importantly, this uniquely positions

renaissance counting among other positive selection detection
methods as a method that also appropriately quantifies the rela-
tive strengths of selection at individual sites.
When imputing/counting the unobserved synonymous and

non-synonymous substitutions, we produce substitution counts
on each branch of the phylogenetic tree and then sum them up
for each site. If a scientifically meaningful partition of branches

into groups exists, we can easily sum the substitutions within
each group separately and apply our empirical Bayes procedure
to the site-specific counts in each group. For applications to

within-host HIV evolution for example, we can consider syn-
onymous and non-synonymous substitutions only on internal
branches of the phylogeny. This partition of branch lengths is

motivated by a widely accepted hypothesis that many terminal
branches of intrahost HIV phylogenies represent lineages that
are weeded out by selection (Pond et al., 2006). Therefore, it is

reasonable, if not advisable, to avoid the mutational load on
these branches and their impact on substitution rates (Lemey
et al., 2007) by excluding them when identifying positive diver-

sifying selection.
Concerning the identification site-specific selection patterns,

the development of renaissance counting was clearly not to

replace, but to complement existing methodology. Even after a
comprehensive evaluation of several counting-based and max-
imum likelihood methods, Kosakovsky Pond and Frost (2005)

found it difficult to make definitive recommendations on which
methods to use in particular cases. In fact, they concluded that a
consensus of several methods, but each accepting relatively high

nominal � levels, would be a reasonable approach to rule out
spurious results. In many ways, renaissance counting presents an
interesting candidate method to include in such a consensus

approach. Embedded in a Bayesian inference framework, renais-
sance counting accounts for phylogenetic error when estimating
dN=dS ratios. Perhaps more importantly, our approach uses a

test statistic that is very different from both previous counting
methods and maximum likelihood methods. For small or less
divergent datasets, for example the test used in previous counting

methods is notoriously conservative (Kosakovsky Pond and
Frost, 2005), which is also confirmed by our comparison of the
EBin test to the CI coverage test. Empirical Bayesian analysis of

random-effects models on the other hand can suffer from
large Type I error rates owing to excessive errors in the param-
eter estimates used (Kosakovsky Pond and Frost, 2005).

Renaissance counting avoids the estimation of codon model
parameters, and estimation uncertainty will be taken into ac-
count by the CI coverage test approach. The nucleotide-model

approximation also offers a significant speed-up compared with

fitting a codon model, but considerable computation time may

still need to be invested in integrating over the posterior distri-

bution of phylogenies. In this respect, we emphasize that renais-

sance counting is implemented in a Bayesian inference

framework [BEAST (Drummond et al., 2012)] that provides

access to an array of flexible models for estimating genealogical

history, divergence times, flexible semi-parametric demographic

and phylogeographic histories (Lemey et al., 2009, 2010).

Although site-specific selection patterns may not be of prime

interest when engaging in such analyses, renaissance counting

readily delivers dN=dS ratios for any coding sequence alignment,

which may offer a starting point for in-depth characterization of

selection pressures involving different methods.
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