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The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which
could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with
endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal
activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus
confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in
regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by
membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive
peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive
peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal
directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs;
lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation;
endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and
soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby
altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of
diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may
provide additional targets to modulate dysregulated GPCR signalling in disease.

Abbreviations
ADAM, a disintigrin and metallopeptidase; CGRP, calcitonin gene-related peptide; CLR, calcitonin receptor-like
receptor; CRF1 receptor, corticotropin-releasing factor 1 receptor; CXCR, C-X-C chemokine receptor; ECE-1,
endothelin-converting enzyme-1; EGF, epidermal growth factor; HB-EGF, membrane-anchored heparin-binding EGF-like
growth factor; NEP, neprilysin; NK receptor, neurokinin receptor; NTS1 receptor, neurotensin 1 receptor; PAR,
proteinase-activated receptor; PP2A, protein phosphatase 2A; RAMP, receptor activity-modifying protein; sst receptor,
somatostatin receptor; SP, substance P; USP, ubiquitin-specific peptidase; Unc1, urocortin 1

Nomenclature

For receptors, the British Journal of Pharmacology’s Guide to
Receptors and Channels was used (Alexander et al., 2011). For
peptidases, the MEROPS database was used (Rawlings et al.,
2012).

The traditional notion of proteolysis

Proteolysis is the hydrolytic breakdown of a peptide bond,
C(O)-NH found between amino acids in peptides, poly-

peptides and protein structures. Peptide bonds can spon-
taneously break in the presence of water, but do so, at
an extremely slow rate. Therefore, in biological systems,
enzymes are required to facilitate the breakage of these
bonds. These enzymes or more specifically, peptidases (also
known as proteases or proteinases) are themselves made of
amino acids and are currently classified into six groups
according to the critical residue in their catalytic site: (i)
serine peptidases; (ii) cysteine peptidases; (iii) aspartic pepti-
dases; (iv) threonine peptidases; (v) metallopeptidases; and
(vi) glutamic peptidases (Rawlings et al., 2012). Traditionally,
peptidases are mainly thought of as enzymes of digestion,
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breaking down food in the stomach and in the intestine.
However, it is now clear that peptidases can contribute to the
regulation of cell function by controlling levels of bioactive
peptides and by cleaving cell-surface receptors and ion chan-
nels to regulate signalling pathways.

Cell-surface peptidases regulate the
availability of GPCR ligands

The role of cell-surface peptides in the regulation of GPCR
signalling is well documented. These peptidases regulate
levels of circulating bioactive peptides, which function to
initiate GPCR-mediated signalling. ACE compound pepti-
dase (EC 3.4.15.1) is a zinc-dependent metallopeptidase that
converts the inactive angiotensin I to angiotensin II by
releasing the C-terminal dipeptide, His9-Leu10 (Figure 1A).
Angiotensin II is a vasoconstrictor and exerts its effect
through two types of angiotensin II receptors, AT1 and AT2.
The AT1 receptor mediates most of the physiological and
pathophysiological actions of angiotensin II and is the pre-
dominant receptor subtype expressed in the cardiovascular

system. Interaction of the AT1 receptor with angiotensin II
activates Gq/11, Gi, G12 and G13 proteins, leading to the mobi-
lization of intracellular calcium, generation of reactive
oxygen species and activation of numerous PKs and
mitogenic signalling pathways [reviewed in Mogi et al.
(2009)]. AT2 receptors couple to G proteins to activate PLC,
promoting the mobilization of intracellular calcium and
activation of PKC [reviewed in Porrello et al. (2009)]. Angi-
otensin II causes a plethora of effects, including tissue
remodelling, leukocyte infiltration, inflammation, athero-
sclerosis, endothelial dysfunction, myocardial infarction,
stroke, and heart and renal failure [reviewed in Cheng et al.
(2005)]. Similarly, endothelin-converting enzyme-1 (ECE-1,
EC 3.4.24.71) is responsible for the production of the vaso-
constrictor endothelin-1 from big endothelin. Endothelin-1
can activate both endothelin A (ETA) and ETB receptors to
elicit a broad range of signalling responses [reviewed in
Khimji and Rockey (2010)]. Activation of ETA receptors by
endothelin-1 promotes mobilization of intracellular calcium,
indicating that ETA receptors are coupled to Gq/11 proteins.
ETA receptors primarily mediate the vasoactive and prolifera-
tive effects of endothelin-1. ETB receptors have been pro-
posed to act as endothelin-1 scavengers and thus, reduce
circulating endothelin-1 levels. Thus, proteolysis acts to
promote activation of GPCRs. In contrast, proteolysis can
also act to prevent activation of GPCRs. For example, nepri-
lysin (NEP, neutral endopeptidase 24.11, EC 3.4.24.11)
cleaves and inactivates both bradykinin (Gly4↓Phe5 and
Pro7↓Phe8) and substance P (SP, Gln6↓Phe↓Phe-Gly↓Leu10)
(Matsas et al., 1984), thus preventing activation of their
respective GPCRs, the bradykinin 2 receptor (B2 receptor)
and the neurokinin 1 receptor (NK1 receptor) (Figure 1A).
Peptidases can therefore play a major role in the production
of vasoactive peptides and, therefore, regulate vascular func-
tions and dysregulation can lead to vascular diseases. A great
deal of time and effort has been spent on the development
of peptidase inhibitors for the treatment of hypertension. It
is over 30 years since the first ACE inhibitor, captopril, was
designed (Ondetti et al., 1977). Now, however, other ACE
inhibitors with improved pharmacokinetics and pharmaco-
dynamics have since been developed and include enalaprilat
(MK-421) (Gross et al., 1981) and imidaprilat (Ikeo et al.,
1992). ACE inhibitors are effective treatments for hyperten-
sion and congestive heart failure (CONSENSUS, 1987;
SOLVD, 1991) and are also beneficial for patients with
atherosclerosis (Yusuf et al., 2000). With the success of ACE
inhibitors for the treatment of hypertension, it was thought
that the development of compounds able to inhibit multiple
peptidases, thereby potentiating the effects of dilator pep-
tides such as bradykinin, while reducing the availability of
constrictors such as angiotensin II, may offer an even better
way of treating diseases such as hypertension. Indeed, dual
or triple vasoactive peptidase inhibitors have been devel-
oped. These compounds inhibit the proteolytic activities of
ACE, ECE-1 and NEP in various combinations. The first
described dual inhibitors were alatriopril and glycoprilat.
Both compounds inhibit the activities of both ACE and NEP
(Gros et al., 1991). Alatriopril was shown to be more effec-
tive than captopril alone in reducing cardiac hypertrophy in
rats with myocardial infarction (Bralet et al., 1994). Later,
omapatrilat (BMS-186716) was developed and was shown to

Figure 1
Cell-surface peptidases regulate GPCR-mediated signalling. (A) ACE
compound peptidase cleaves angiotensin I to generate angiotensin II
to promote activation of angiotensin II receptors. Conversely, NEP
hydrolyses SP to prevent activation of SP of neurokinin 1 receptors.
(B) Activation of certain GPCRs promotes the ADAMs that generate
EGF-like ligands (e.g. heparin-binding EGF-like factor, amphiregulin).
In turn, these ligands transactivate ErbB receptors to activate intrac-
ellular signalling pathways.
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be more effective in reducing blood pressure in humans
than either placebo or ACE inhibitors (Neal et al., 2002;
Regamey et al., 2002). However, omapatrilat failed in phase
III clinical trials and was discontinued due to an increased
incidence of angioedema as an unwanted side effect. CGS
35601, a triple vasopeptidase inhibitor, prevents the activi-
ties of ACE, NEP and ECE-1 (Trapani et al., 2004) and sig-
nificantly reduced both systolic and diastolic blood pressure
in a number of preclinical rodent models of hypertension
(Daull et al., 2005; 2006a). Further, a preclinical safety profile
assessment of CGS 35601 showed it to have no effect
on either hepatic or liver toxicities (Daull et al., 2006b).
Although these triple inhibitors may represent the future of
peptidase inhibitors for the treatment of disease (Table 1),
no clinical trials using triple peptidase inhibitors have yet
been conducted. So, although these dual and triple pepti-
dase inhibitor compounds are promising in humans and
animal models of hypertension, none have yet been
approved for the treatment of human disease. Thus, ACE
inhibitors remain the compounds of choice for the treat-
ment of hypertension, often in combination with angi-
otensin or b-adrenoceptor antagonists or diuretics. NEP also
plays a major role in the catabolism of endogenous opioid
peptides such as the enkephalins and dynorphins. Thus,
together with aminopeptidase N (EC 3.4.11.2), NEP repre-
sents a major target for the development of drugs for the
treatment of acute and chronic pain [reviewed in Thanawala
et al. (2008)].

GPCRs promote proteolysis to
transactivate epidermal growth
factor receptors

Certain GPCRs can activate intracellular signalling pathways
via transactivation of cell-surface receptor tyrosine kinases
such as PDGF (Linseman et al., 1995), insulin-like growth
factor-1 receptor (Rao et al., 1995), ErbB receptor (Daub et al.,
1996) and Trk neurotrophin receptors (Lee and Chao, 2001).
Interestingly, only transactivation of ErbB receptors requires
the activity of peptidases (Figure 1B). The GPCR agonists,
endothelin-1, lysophosphatic acid and thrombin, were
shown to induce phosphorylation of the ErbB receptor in
Rat-1 cells (Daub et al., 1996). Specific inhibition of ErbB
receptors using the selective tyrphostin AG1478 or expression
of a dominant-negative ErbB receptor mutant that is unable
to signal, suppressed the GPCR-induced activation of ERK1/2
(Daub et al., 1996). Later studies revealed that transactivation
of ErbB receptors, involves the processing of membrane-
anchored heparin-binding EGF-like growth factor by a met-
allopeptidase activity that is rapidly induced following GPCR
activation. Inhibition of the peptidase activity using the met-
alloproteinase inhibitor batimastat prevented ErbB receptor
transactivation and downstream signals (Prenzel et al., 1999).
Additional work, indicated that this GPCR-mediated transac-
tivation not only lead to the initiation of signalling cascades,
but also ErbB receptor dimerization, tyrosine autophosphor-

Table 1
Future and current uses for peptidase inhibitors in the treatment of disease

Peptidase Drug perspectives Targeted GPCRs References/reviews

Cell-surface

ACE, ECE-1, NEPa Hypertension AT1, AT2, ETA, ETB, B2 Dive et al. (2009)

NEP, aminopeptidase N Pain Opioid receptors Thanawala et al. (2008)

ADAMs Cancer progression GPCRs causing ErbB receptor
transactivation

Paolillo and Schinelli (2008)

Extracellular

Thrombin, Coagulation
Factor Xa

Anticoagulants, thrombosis PAR1, PAR3, PAR4 Showkathali and Natarajan (2012)

Trypsin, Tryptase Inflammatory bowel diseases PAR2 Rothmeier and Ruf (2012; Yoshida
and Yoshikawa (2008)

Lysosomal

Cathepsins B, C, D, E, G and
L, Carboxypeptidase A

No known functional
consequences of preventing
GPCR degradation

–b N/A

Endosomal

ECE-1 Modulation of GPCR trafficking
and signalling

NK1, CLR•RAMP1, sst2, NT1, CRF1 Murphy et al. (2009; 2011)

USPs Modulation of GPCR trafficking
and signalling

GPCR function affected by
de-ubiquitination of b-arrestins

Murphy et al. (2009; Shenoy et al.
(2009)

aDual and triple ACE, ECE-1 and NEP inhibitors are in development.
bToo numerous to list in table. N/A, not applicable.
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ylation and internalization (Maudsley et al., 2000). The iden-
tity of the metallopeptidase responsible for the processing of
the membrane-anchored ligand remained elusive until a
study conducted in cardiomyocytes showed that the metal-
lopeptidase inhibitor, KB-R7785 and a dominant-negative of
a disintigrin and metallopeptidase (ADAM) 12 peptidase
attenuated GPCR-induced signalling (Asakura et al., 2002).
The same study also showed that KB-R7785 inhibited the
shedding of heparin-binding EGF-like growth factor and
attenuated thoracic aortic constriction-induced thickening of
the heart muscle in intact mice. A subsequent study suggested
that ADAM10 peptidase (EC 3.4.24.81) is also implicated in
bombesin-mediated ErbB receptor transactivation (Yan et al.,
2002). As more than one peptidase is involved in ErbB recep-
tor transactivation, it came as no surprise that additional
ligands were also involved. In squamous cell carcinoma cells,
the GPCR agonists, lysophosphatic acid and carbachol, which
activate lysophospholipid and muscarinic receptors, res-
pectively, specifically activate metallopeptidase-dependent
release of amphiregulin by another ADAM peptidase,
ADAM17 peptidase (TNF-a-converting enzyme, TACE; EC
3.4.24.86) to regulate proliferation and motility (Gschwind
et al., 2003). However, in TccSup cancer cells, lysophosphatic
acid-induced transactivation is mediated by ADAM15 pepti-
dase and promotes cell survival (Schafer et al., 2004).

Following on from the fact that GPCRs can promote the
activity of many different metallopeptidases to cause ErbB
receptor transactivation, evidence exists for the involvement
of numerous GPCR-induced pathways in the generation of
EGF-like ligands [reviewed in Ohtsu et al. (2006)]. The
b2-adrenoceptor agonist, isoprenaline causes ErbB receptor
transactivation via a mechanism that requires Gbg subunits
and c-Src activity (Pierce et al., 2001). Similarly, glucagon-like
peptide-1-induced transactivation also requires c-Src activity
(Buteau et al., 2003). The involvement of G proteins has
also been observed in other studies. Lysophosphatic acid-
mediated transactivation by ADAM17 was partially blocked
by pertussis toxin in squamous cell carcinoma-9 cells
(Gschwind et al., 2003) and in MDA-MB-231 cells, lysophos-
phatic acid- and sphingosine-1 phosphate-dependent ErbB
receptor transactivation involving ADAM15, was also pre-
vented by pertussis toxin (Hart et al., 2005). A requirement
for the activity of phospholipase C has also been observed for
angiotensin II-induced, ADAM17-dependent ErbB receptor
transactivation by the AT1 receptor (Mifune et al., 2005). The
elevation of intracellular calcium levels by bradykinin (Zwick
et al., 1999) and angiotensin II (Eguchi et al., 2003) has also
been implicated in the transactivation of ErbB receptors. It is
assumed that many of these GPCR-induced pathways lead to
the phosphorylation of the metallopeptidases, enhancing
the proteolytic activity of the peptidase. Although it is well
established that numerous PKs can phosphorylate metal-
lopeptidases to promote proteolytic activity [reviewed in
Huovila et al. (2005)], none of the present studies have
presented evidence of a direct GPCR-mediated effect on
metallopeptidases.

The generation of reactive oxygen species by GPCRs has
also been proposed to play an important role in promoting
metallopeptidase activity and includes ErbB receptor transac-
tivation mediated by 5-HT2B receptors and a1D-adrenoceptors
(Pietri et al., 2005), AT1 receptor (Eguchi and Inagami, 2000)

and purine P2Y receptors (Myers et al., 2009). The reactive
oxygen species are thought to induce oxidation of a cysteine
residue that lies within an inhibitory motif, thereby activat-
ing the peptidase (Zhang et al., 2001). A more recent
development in elucidating the mechanism by which metal-
lopeptidases become active following GPCR activation to
promote ErbB receptor activation is the involvement of
integrins (Gooz et al., 2012). 5-HT induces kidney mesangial
cell proliferation through ADAM17 activation and ErbB
receptor transactivation. In unstimulated cells, ADAM17
binds to a5b1 integrin, an interaction that prevents the pro-
teolytic activity of ADAM17. However, following application
of 5-HT, this interaction is disrupted, presumably promoting
peptidase activity (Gooz et al., 2012).

A further consequence of the processing of EGF-like
ligands from cell-surface precursors, is the generation of
C-terminal fragments. It is now established that these
C-terminal fragments also have a biological role [reviewed
in Tanida et al. (2010)]. IL-8 induces cell proliferation and
migration of the colon cancer cell lines, HT-29 and Caco2
by an ADAM-dependent intranuclear translocation pathway
of HB-EGF-C-terminal fragment (Itoh et al., 2005). Thus,
understanding how GPCRs activate cell-surface peptidases
to generate the multiple ligands responsible for receptor
transactivation is essential to develop new pharmacological
interventions. The importance of metallopeptidases in gen-
erating EGF-like ligands that regulate cell proliferation and
differentiation, has lead these peptidases to be considered as
useful molecular targets in the treatment of cancer. Specific
peptidase inhibitors may also be used to modulate GPCR-
induced signalling and this may be an effective treatment for
GPCR-driven diseases.

Peptidases can act as positive or
negative regulators of GPCR signalling

It was long recognized that peptidases such as thrombin (EC
3.4.21.5) and trypsin could signal directly to cells (Burger,
1970; Sefton and Rubin, 1970; Chen and Buchanan, 1975;
Carney and Cunningham, 1977, 1978). However, the mecha-
nism through which these peptidases could activate intracel-
lular signalling cascades remained unknown until the
cloning of the thrombin receptor, now called proteinase-
activated receptor 1 (PAR1) (Vu et al., 1991). PAR1 is a GPCR
and thrombin activates PAR1 by direct cleavage of the recep-
tor in a two-step process. Firstly, thrombin binds to PAR1

either side of the proteolytic cleavage site. One of these sites
(D51KYEPF56) is similar to that of hirudin, an anticoagulant
found in the saliva of leech (Vu et al., 1991). This hirudin-like
binding domain increases the affinity of thrombin for PAR1.
Following binding, thrombin cleaves between Arg41 and Ser42

to expose the new N-terminus starting with S42FLLRN47 (Vu
et al., 1991). This tethered ligand domain then interacts with
residues on the second extracellular loop of the receptor and
presumably induces a conformational change, which acti-
vates the receptor. PAR1 activation by thrombin is the most
potent known trigger for platelet aggregation (Sambrano
et al., 2001) and as such, thrombin signalling and PAR1 are
key targets for the prevention of thrombosis.
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PAR2 is the second member of this receptor family and is
activated by trypsin (Figure 2A) (Nystedt et al., 1994; 1995a,b;
Bohm et al., 1996). Cleavage of PAR2 occurs between Arg36

and Ser37 to reveal the tethered ligand and new amino termi-

nus of S37LIGKV42. The use of PAR2-specific agonistic and
antagonistic peptides and studies in PAR2-deficient mice,
have helped to identify critical roles for PAR2 in inflamma-
tion, development, angiogenesis and immune responses
[reviewed in Rothmeier and Ruf (2012)]. Subsequently, two
other members of this subfamily of GPCRs have been cloned,
PAR3 (Ishihara et al., 1997; Scase et al., 1997) and PAR4 (Kahn
et al., 1998; Xu et al., 1998), both of which are activated by
thrombin. PAR4 can also be activated by trypsin (Xu et al.,
1998). Due to their sensitivity to thrombin, both PAR3 and
PAR4 are important in platelet function (Ishihara et al., 1998;
Kahn et al., 1998).

PARs are promiscuous receptors and may be activated by
multiple peptidases. For example, PAR1 can also be activated
by coagulation factor Xa (EC 3.4.21.6) (Camerer et al., 2000),
activated protein C (EC 3.4.21.69) (Riewald et al., 2002),
matrix metallopeptidase-1 (EC 3.4.24.7) (Boire et al., 2005)
and plasmin (EC 3.4.21.7) (Mannaioni et al., 2008). Similarly,
PAR2 is also cleaved by multiple peptidases, including mast
cell tryptases (Molino et al., 1997), coagulation factor VIIa
(EC 3.4.21.21) in complex with tissue factor and coagulation
factor Xa (Camerer et al., 2000), matriptase-1 (membrane-
type serine peptidase 1) (Takeuchi et al., 2000) and trypsin IV
(Cottrell et al., 2004). PAR4 is cleaved and activated by trypsin
(Xu et al., 1998), cathepsin G (Sambrano et al., 2000), trypsin
IV (Cottrell et al., 2004) and plasmin (Quinton et al., 2004).
Peptidases that cleave PARs to disarm the receptor and
prevent subsequent activation by removing the tethered
ligand have also been identified. For example, cathepsin
G (EC 3.4.21.20) (Dulon et al., 2003), pseudolysin (EC
3.4.24.26) (Dulon et al., 2005) and myeloblastin (neutrophil
leukocyte proteinase 3, EC 3.4.21.76) (Ramachandran et al.,
2011) cleave PAR2 downstream of the tryptic cleavage site
inactivating the receptor (Figure 2B). Cathepsin G and
elastase-2 (neutrophil elastase, EC 3.4.21.37) abolish signal-
ling by thrombin in PAR3-transfected cells, and thus disarm
PAR3 (Cumashi et al., 2001).

The concept of biased agonism at GPCRs is not a new one
[reviewed in Urban et al. (2007)]. Given that PARs are acti-
vated by many different peptidases, it is not surprising that
the generation of different N-termini can result in peptidase-
specific signalling. It is these unique N-termini that act as
intramolecular ligands causing specific GPCR conformations
to elicit biased signalling responses. The earliest indications
that PARs could be selectively activated came from observa-
tions comparing activation by synthetic ligands to pepti-
dases. For PAR1, mutations in the extracellular regions
resulted in differential signalling between synthetic peptide
agonists and thrombin (Blackhart et al., 2000). For example,
a PAR1 deletion mutant lacking amino acids 68–93 of
the N-terminus, failed to mobilize intracellular calcium in
response to the synthetic peptide, but retained the ability to
respond to thrombin (Blackhart et al., 2000). A subsequent
study using human endothelial cells showed that thrombin
favours G12/13 signalling and induction of endothelial barrier
permeability rather than intracellular calcium mobilization,
whereas synthetic peptides preferentially caused intracellular
calcium mobilization by triggering Gq signalling (McLaughlin
et al., 2005). Studies have also shown that activation of PAR1

by different peptidases can have different functional conse-
quences for endothelial barrier permeability (Feistritzer and

Figure 2
Peptidases act as biased agonists at GPCRs. (A) Trypsin cleaves PAR2

to create a new N-terminus that activates PAR2 mobilizing intra-
cellular calcium and promoting phosphorylation (p) of ERK1/2.
(B) Cathepsin G cleaves PAR2, but does not elicit any known signal-
ling and prevents activation by other peptidases such as trypsin.
(C) Other peptidases such as elastase-2, cleave PAR2 at a site distinct
from trypsin. The action of this peptidase does not mobilize intrac-
ellular calcium, but does activate ERK1/2.
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Riewald, 2005; Finigan et al., 2005). Whereas thrombin-
dependent cleavage of PAR1 disrupts endothelial barrier
integrity, activated protein C-dependent activation of
PAR1 enhances endothelial barrier function (Feistritzer and
Riewald, 2005; Finigan et al., 2005). Challenging human lung
epithelial cells with elastase-2 leads to PAR1-mediated apop-
tosis, similar to that observed with thrombin and a synthetic-
activating peptide, but modified kinetics (Suzuki et al., 2005;
2009). Matrix metallopeptidase-1 cleaves PAR1 at a distinct
site to thrombin and activates Rho-GTP and mitogenic path-
ways in a biased mechanism, to promote cell shape change
and motility (Trivedi et al., 2009).

Agonist-biased signalling has also been observed for PAR2.
Certain synthetic peptide agonists fail to cause PAR2-
mediated calcium signalling, while still activating ERK1/2,
whereas SLIGRL-NH2, which mimics the naturally unmasked
tethered ligand, triggers both calcium and MAP kinase signal-
ling (Ramachandran et al., 2009). Further evidence came
from the observation that a novel peptidomimetic PAR2

antagonist, K-14585 activated ERK1/2 signalling, but failed to
elicit and calcium responses (Goh et al., 2009). It was initially
thought that elastase-2 also disarmed PAR2 (Dulon et al.,
2003). However, recent evidence suggests that elastase-2 is in
fact a biased agonist of PAR2 (Ramachandran et al., 2011)
(Figure 2C). Although elastase-2 does not cause internaliza-
tion of PAR2 or mobilization of intracellular calcium, it does
initiate activation of the ERK1/2 pathway (Ramachandran
et al., 2011). The exact mechanism by which peptidases can
act as biased agonists has not yet been fully established.
However, in the case of PAR2 it is known that trypsin and
elastase-2 cleave PAR2 at different positions within the
N-terminus. Therefore, it is highly probable that the different
cleavages result in different conformations of PAR2, which
leads to biased activation of signalling pathways. With regard
to PAR1, although the peptidases may cleave at the same sites,
the fact that thrombin actually binds to PAR1 may lead to
slight conformation changes, which also lead to biased acti-
vation of signalling cascades. However, until the crystal
structures of the activated GPCRs are solved, this is pure
conjecture. It is not yet known if biased agonism of PAR3 and
PAR4 occurs. However, with numerous peptidases able to
cleave members of this subfamily of GPCRs and perhaps each
with different functional consequences, there is still much to
discover about how peptidases signal through GPCRs.

Lysosomal peptidases degrade
GPCRs to irrevocably terminate
GPCR signalling

Once activation of a GPCR has occurred, many GPCRs are
removed from the cell-surface to prevent uncontrolled signal-
ling. The receptors are then either recycled back to the cell-
surface mediating resensitization to allow cells to respond to
the same stimulus again, or they are trafficked to intracellular
compartments, such as lysosomes for degradation, which
results in permanent signal arrest. The peptidases present in
lysosomes mainly belong to the aspartic, cysteine and serine
peptidase classes, with few metallo- and threonine peptidases
residing in lysosomes. They are also mainly endopeptidases,

cleaving within polypeptide chains and not at the end or
beginning of chains. Examples of peptidases localized to lyso-
somes include the serine peptidases, serine carboxypeptidase
A (EC 3.4.16.5) and cathepsin G, aspartic peptidases, cathep-
sin D (EC 3.4.23.5) and E (EC 3.4.23.24) and cysteine pepti-
dases, cathepsin B (EC 3.4.22.1) and L (EC 3.4.22.15). One
mechanism by which many GPCRs are targeted for degrada-
tion is by the post-translational modification of ubiquitina-
tion, although this is not an absolute requirement for all
GPCRs. Once activated, ubiquitin moieties are added to intra-
cellular facing lysine residues by a process requiring three
enzymes, an ubiquitin-activating enzyme (E1), an ubiquitin-
conjugating enzyme (E2) and an ubiquitin ligase (E3). Before
the GPCR is degraded by peptidases present in the lysosomes,
the ubiquitin molecules are removed by metallo- or cysteine
peptidases, referred to as de-ubiquitinating enzymes or
ubiquitin-specific peptidases (USPs). In fact it is an absolute
requirement that the ubiquitin molecules are removed before
the GPCR can enter the lysosome. The first identified GPCR
to be regulated by ubiquitination was the yeast GPCR,
Ste2p. Ubiquitination of Ste2p is a requirement for internali-
zation (Hicke and Riezman, 1996). Prolonged exposure of
b2-adrenoceptors to agonists promotes sorting of receptors
to lysosomes and degradation by lysosomal peptidases
(Moore et al., 1999). A combination of the aspartic peptidase
inhibitor, pepstatin A and the serine peptidase inhibitor,
leupeptin prevented degradation (Moore et al., 1999). The
b2-adrenoceptor was the first identified mammalian GPCR
shown to be directed to lysosomes for degradation by ubiq-
uitination (Shenoy et al., 2001), an observation closely fol-
lowed by that for the C-X-C chemokine receptor type 4
(CXCR4) (Marchese and Benovic, 2001). PARs are sometimes
termed one-shot receptors, because of the proteolytic nature
of their activation. PAR2 is also targeted for degradation by
lysosomal peptidases by ubiquitination (Jacob et al., 2005).
N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone, an in-
hibitor of lysosomal cysteine peptidases, cathepsins B and L
prevents degradation of PAR2. However, there are GPCRs that
are trafficked to lysosomes without the need for modification
by ubiquitin moieties. Although, agonists induce ubiquitina-
tion of the d-opioid receptor, this ubiquitination is not an
absolute requirement for lysosomal targeting, as a lysine-less
mutant of the d-opioid receptor is still efficiently trafficked to
lysosomes and degraded by lysosomal serine peptidases (Tsao
and von Zastrow, 2000; Tanowitz and Von Zastrow, 2002).
However, further studies have indicated that ubiquitination
does have a subtle role in the regulation of d-opioid receptors.
Ubiquitination, although not affecting trafficking to lyso-
somes does alter the rate at which the d-opioid receptor is
degraded in lysosomes (Hislop et al., 2009). A similar role for
ubiquitination is observed for the m-opioid receptor. It is
sequences in the C-terminal tail of the m-opioid receptor that
direct its trafficking to lysosomes, whereas ubiquitination of
lysine residues in the first intracellular loop promote transfer
of internalized m-opioid receptors from the limiting endo-
some membrane to lumen thereby facilitating degradation
(Hislop et al., 2011). The receptor for calcitonin gene-related
peptide (CGRP) is an unusual heterodimeric GPCR, compris-
ing the GPCR, calcitonin receptor-like receptor (CLR) and a
single transmembrane protein, receptor activity-modifying
protein 1 (RAMP1) (McLatchie et al., 1998). Following sus-
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tained activation with CGRP, CLR•RAMP1 traffics to lyso-
somes and is degraded by lysosomal peptidases (Kuwasako
et al., 2000; Cottrell et al., 2007). The identity of the lyso-
somal peptidases degrading CLR and RAMP1 is less clear, as
an inhibitor cocktail blocking serine, aspartic and cysteine
peptidases was used. However, CGRP does not induce ubiq-
uitination of CLR or RAMP1 (Cottrell et al., 2007). Although
there are known roles for lysosomal peptidases in the
immune system, in generating or destroying antigenic pep-
tides and in trafficking of growth factor receptors [reviewed in
Muller et al. (2012)], the functional consequences of prevent-
ing the degradation of GPCRs in lysosomes remain to be
determined.

Proteolytic removal of ubiquitin
regulates GPCR-dependent trafficking
and signalling

The identity of many of the E3 ligases responsible for facili-
tating the addition of ubiquitin moieties to GPCRs are now
known and are summarized elsewhere (Hislop and von
Zastrow, 2011). However, unlike the E3 ligases, fewer USPs
responsible for the de-ubiquitination of GPCRs have been
identified. USPs play an important role in the regulation of
GPCRs by ubiquitination, opposing the action of E3 ligases
by removing ubiquitin molecules. This proteolysis is not only
important for regulating GPCR signalling, but is also critical
for maintaining the cellular pools of ubiquitin, which is
critical for many other processes including regulation of tran-
scription, cell-cycle control, DNA damage responses, apopto-
sis and the immune response [reviewed in Malynn and Ma
(2010); Ramaekers and Wouters (2011); Vucic et al. (2011);
Hammond-Martel et al. (2012); Starostina and Kipreos
(2012)]. Studies have shown that under basal conditions PAR1

is ubiquitinated at the cell-surface and that this ubiquitina-
tion promotes cell-surface retention (Wolfe et al., 2007).
Following proteolytic activation by thrombin, PAR1 is
de-ubiquitinated by unidentified USPs, a process that facili-
tates internalization to endosomes (Wolfe et al., 2007).
CXCR7, a recycling GPCR is also ubiquitinated under basal
conditions. After activation induced by the stromal-derived
factor CXCL12, CXCR7 is reversibly de-ubiquitinated by an
unidentified USP, before trafficking back to the cell-surface
(Canals et al., 2012). Unusually, k-opioid receptors are polyu-
biquitinated following agonist stimulation. These polyubiq-
uitin chains are subsequently removed by CylD protein, a
USP that specifically cleaves Lys-63 ubiquitin chains. After
removal of the ubiquitin chains, k-opioid receptors are
degraded in lysosomes (Li et al., 2008). However, other than
down-regulation of the k-opioid receptor, the functional
consequences of this polyubiquitination have yet to be
elucidated. b2-Adrenoceptors are regulated by USP33 and
USP20, which act in a coordinated fashion to regulate the
b2-adrenoceptor recycling and resensitization (Berthouze
et al., 2009). Similarly, ubiquitinated adenosine A2A receptors
are de-ubiquitinated by USP4, promoting trafficking back
to the cell-surface (Milojevic et al., 2006). In contrast, the
proteolytic activities of associated molecule with the
SH3 domain of signal-transducing adaptor molecule de-

ubiquitinating peptidase (AMSH) and USP8 are required to
promote entry of PAR2 to lysosomes (Hasdemir et al., 2009).
AMSH and USP8 also regulate the proteolytic down-
regulation of the d-opioid receptor, but in contrast to PAR2,
their activities do not affect the trafficking d-opioid receptors
to lysosomes (Hislop et al., 2009). Expression of dominant
negative mutants of AMSH and USP8 caused accumulation
of PAR2 in endosomes, but had no effect on endosomal
mitogenic signalling, indicating that de-ubiquitination does
not regulate association with b-arrestins (Hasdemir et al.,
2009). The effect of deubiquitination on the mitogenic sig-
nalling of other GPCRs has not been examined. However,
ubiquitination of CXCR4 by atrophin-interacting protein 4 is
reported to enhance CXCR4-mediated ERK1/2 activation
(Malik et al., 2012). Although only a few USPs that regulate
ubiquitin dynamics for GPCRs have been identified to date, it
is clear that de-ubiquitination by peptidases plays a different
role for each GPCR, in regulating trafficking and signalling.

The cytosolic proteins, b-arrestin 1 and 2 are key regula-
tors of GPCR signalling and internalization [reviewed in
Moore et al. (2007); Shenoy and Lefkowitz (2011)] and may
be ubiquitinated following agonist stimulation. The first
observation of b-arrestin ubiquitination occurred following
activation of the b2-adrenoceptor and is regulated by the E3
ligase, murine double minute 2 (Mdm2) (Shenoy et al., 2001).
A later study showed that de-ubiquitination of b-arrestin trig-
gers its release from b2-adrenoceptors and the V2 vasopressin
receptors (Shenoy and Lefkowitz, 2003). GPCRs may be
classed on their association with b-arrestins. Class A receptors
bind only b-arrestin 2 and with low affinity, whereas class B
receptors bind both b-arrestin 1 and 2 with similar affinities
and for prolonged periods (Oakley et al., 2000). When a
b-arrestin-ubiquitin fusion protein was overexpressed in cells
expressing the b2-adrenoceptor, the receptor associated with
the b-arrestin–ubiquitin fusion protein for prolonged periods,
changing the b2-adrenoceptor from a class A to a class B GPCR
(Shenoy and Lefkowitz, 2003). Consistent with this observa-
tion and the fact that b-arrestins can mediate GPCR-induced
ERK1/2 activation (Luttrell et al., 1999), sustained ubiquitina-
tion of b-arrestins results in prolonged activation of ERK1/2
by agonists of b2-adrenoceptors and V2 vasopressin receptors
(Shenoy et al., 2007) (Figure 3, panel B). The ubiquitination
state of b-arrestins is reciprocally regulated by Mdm2 and
USP33, with the actions of USP33 promoting the disassembly
of endosomal signalling complexes terminating ERK signal-
ling (Shenoy et al., 2009).

There are additional ubiquitin-like modifying proteins,
such as small ubiquitin-like modifier 1 (SUMO-1). Upon acti-
vation of the b2-adrenoceptor, b-arrestins are modified by the
E2-modifying enzyme Ubc9, in a process termed sumoylation
(Wyatt et al., 2011). Although it is known that this sumoyla-
tion promotes the internalization of the b2-adrenoceptor, the
identity of the SUMO-specific peptidase and the functional
consequences of the desumoylation are not yet known.

Endosomal proteolysis regulates the
recycling and resensitization of GPCRs

SP and CGRP are neuropeptides expressed by primary sensory
neurons (Lundberg et al., 1985). Noxious stimuli and trauma
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can lead to release of CGRP and SP from primary sensory
neurons. The central release of CGRP and SP facilitates noci-
ceptive transmission (Kuraishi et al., 1988; Kawamura et al.,
1989; Pedersen-Bjergaard et al., 1991), whereas peripheral
release mediates neurogenic inflammation, which is charac-
terized by neutrophil infiltration, oedema and vasodilatation
(McDonald, 1988; McDonald et al., 1988). CGRP, a potent
vasodilator (Brain et al., 1985) is also implicated in the patho-
genesis of migraine [reviewed in Raddant and Russo, (2011);
Moore and Salvatore (2012)].

Following activation, many GPCRs internalize with
b-arrestins to early endosomes. In order for a GPCR to recycle
back to the cell-surface, b-arrestins must be released. Until
recently, the molecular mechanisms that initiate the release
of b-arrestins from neuropeptide GPCRs, such as the NK1

receptor and CLR•RAMP1 were poorly defined. NK1 receptors
and CLR•RAMP1 are both class B GPCRs, having sustained
interactions with b-arrestins (Oakley et al., 2000; Hilairet

et al., 2001). Similar to the mechanisms that operate at the
cell-surface, NK1 receptors and CLR•RAMP1 are regulated by
the membrane-anchored peptidase, ECE-1 present in endo-
somes (Figure 4) (Padilla et al., 2007; Roosterman et al., 2007).
SP and CGRP are substrates for the endosomal peptidase,
ECE-1, but only at endosomal pH (Johnson et al., 1999;
Padilla et al., 2007; Roosterman et al., 2007). As NK1 receptors
and CLR•RAMP1 are trafficked through the endosomal
system, vacuolar type H+-ATPases pump protons inside the
vesicles lowering the pH of endosomes (Forgac et al., 1983;
Cain et al., 1989). Acidification has two effects: firstly, the
affinity of SP and CGRP for their respective receptors is
lowered, and secondly, SP and CGRP become substrates for
ECE-1 (Padilla et al., 2007; Roosterman et al., 2007). ECE-1
cleaves SP and CGRP into inactive metabolites that can
no longer interact with their GPCRs. b-Arrestins are then
released and NK1 receptors and CLR•RAMP1 are free to
recycle back to the cell-surface (Padilla et al., 2007; Rooster-
man et al., 2007). Initial experiments were carried out using
transfected cell lines, but further studies have shown that
ECE-1-dependent cleavage of these neuropeptides regulates
GPCR trafficking both in cells that endogenously express
these receptors and in in vivo models. For example, ECE-1
regulates the resensitization of SP-induced plasma extravasa-
tion both in mice and rats, indicating the ECE-1 regulates NK1

receptors in endothelial cells (Roosterman et al., 2007; Catta-
ruzza et al., 2009). ECE-1 also regulates the trafficking of NK1

receptors in primary myenteric neurons (Pelayo et al., 2011).
More recently, we have shown that ECE-1 regulates resensi-
tization of CGRP-induced cAMP generation in primary
mesenteric artery smooth muscle cells (McNeish et al., 2012).
We also demonstrated that ECE-1 inhibition prevents the
resensitization of CGRP-induced relaxation in rat mesenteric
resistance arteries (McNeish et al., 2012). This ECE–1-
dependent regulation is not confined to NK1 receptors and
CLR•RAMP1, as other GPCRs are also regulated by this
mechanism. Somatostatin-14 and -28 are inhibitory pep-
tides exhibiting broad endocrine, exocrine and neuronal
functions, such as the suppression of growth hormone
secretion and the inhibition of pancreatic and gastro-
intestinal hormone release [reviewed in Olias et al. (2004)].
Somatostatin-14 and -28 exert their biological effects via
activation of somatostatin receptors (sst receptors), which are
expressed throughout the CNS and endocrine and immune
systems. Sst receptors are also found at particularly high den-
sities in many neuroendocrine tumours (Reubi et al., 1987a;
1987b; 1987c). This high density of sst receptors allows
imaging of tumours using a radiolabelled analogue of soma-
tostatin called octreotide, a process termed sst scintigraphy
(Lamberts et al., 1990). The sst2 receptor is regulated by ECE-1
following stimulation with somatostatin-14, but not by octre-
otide, reflecting the ability of ECE-1 to cleave somatostatin-
14, but not octreotide (Roosterman et al., 2008). A similar
agonist-dependent trafficking was observed in studies with
the corticotropin-releasing factor receptor 1 (CRF1). CRF1

receptors have two known agonists, corticotropin-releasing
factor (CRF) and urocortin 1 (Ucn1). ECE-1 cleaves both pep-
tides at endosonal pH, but only cleaves Unc1 at a residue
critical for receptor binding (Hasdemir et al., 2012). At low
agonist concentrations (30 nM), both Ucn1- and CRF-
mediated intracellular calcium mobilization are dependent

Figure 3
USPs promote lysosomal degradation and recycling of GPCRs. (A) (1)
USPs cleave ubiquitin molecules from GPCRs to (2) promote entry in
lysosomes and degradation by lysosomal peptidases or (3) recycling
of GPCRs to the cell-surface mediating resensitization of signalling.
(B) Ubiquitination of b-arrestins promotes GPCR-mediated phospho-
rylation of extracellular-regulated PK 1 and 2. (2) De-ubiquitination
of b-arrestins by USPs destabilizes the GPCR•b-arrestin complex to
terminate ERK1/2 activation.
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on ECE-1 activity; however, at high concentrations (100 nM),
CRF-mediated intracellular calcium mobilization and CRF1

receptor recycling and resensitization cease to be ECE-1-
dependent. This loss of ECE–1-dependent trafficking perhaps
reflects a mechanism to mediate distinct CRF1 receptor traf-
ficking and signalling, at higher concentrations of agonist
(Hasdemir et al., 2012). Neurotensin is also a substrate for
ECE-1 at endosomal pH (Johnson et al., 1999) and mediates
intestinal inflammation and cell proliferation through acti-
vation of the neurotensin 1 receptor (NTS1) (Castagliuolo
et al., 1999; Brun et al., 2005). Endosomal ECE-1 activity pro-
motes degradation of neurotensin and recycling of NTS1

receptors (Law et al., 2012).
Not all peptide-activated GPCRs are regulated by ECE-1.

Studies have shown that although ECE-1 degrades bradyki-
nin, ECE-1 does not regulate the recycling and resensitization
of B2 receptors (Padilla et al., 2007). This is because of the
nature of the interaction of B2 receptors with b-arrestins, B2

receptors only exhibit a transient interact with b-arrestins
(Simaan et al., 2005). Thus, it is not only whether ECE-1
cleaves the agonist at endosomal pH that determines if ECE-1
regulates the GPCR, but also the duration of the association
of the GPCR with b-arrestins. Moreover, agonists must be
substrates for ECE-1 at endosomal pH in order for the GPCR
to be regulated by ECE-1. Although angiotensin I is a sub-
strate for ECE-1, angiotensin II is not (Johnson et al., 1999;

Padilla et al., 2007) and ECE-1 does not regulate the recycling
and resensitization of the AT2 receptors (Padilla et al., 2007).

An additional role for ECE-1-mediated cleavage of SP
emerged following the observation that resensitization of
SP-induced intracellular calcium mobilization precedes recy-
cling of the NK1 receptor (Bennett et al., 2002; 2005; Murphy
et al., 2011). It is known that agonist-unoccupied GPCRs are
desensitized by phosphorylation of serine and threonine resi-
dues by the second messenger kinases, PKA and PKC (Roth
et al., 1991; Pitcher et al., 1992; Dery et al., 2001). This second
messenger kinase-dependent phosphorylation desensitizes
the GPCR without causing internalization. In the case of the
NK1 receptor, it is the dephosphorylation of cell-surface
located, desensitized receptors that mediates resensitization
of SP-induced signalling (Figure 4) (Murphy et al., 2011).
ECE-1-dependent cleavage of SP releases b-arrestins from the
endosomal GPCR complex. b-Arrestins then facilitate the
recruitment of protein phosphatase 2A (PP2A), a known regu-
lator of GPCRs (Pitcher et al., 1995) to the cell-surface, where
PP2A dephosphorylates NK1 receptors to promote resensitiza-
tion (Murphy et al., 2011). It is not currently known if the
same or a similar mechanism controls the resensitization of
other ECE-1-regulated GPCRs. Further, it is not yet known
whether other endosomal peptidases regulate the trafficking
of other peptide-activated GPCRs. Peptidases may represent a
therapeutic target, whereby inhibitors of peptidases would

Figure 4
Endosomal peptidases promote GPCR recycling and resensitization. (1) Vacuolar-type H+-ATPases pump protons (H+) into vesicles, acidifying early
endosomes. (2) Peptide agonists such as SP and CGRP have reduced affinity for their respective GPCRs. SP and CGRP become substrates for the
endosomal peptidase, ECE-1 at low pH and are hydrolysed to inactive metabolites. (3) b-Arrestins dissociate from the GPCR, returning to the
cytosol. (4) The GPCR, free from b-arrestins then recycles back to the cell-surface to mediate resensitization. (5) Certain GPCRs (e.g. neurokinin-1
receptor) signal from endosomes in a b-arrestin-dependent mechanism, phosphorylating extracellular-regulated PKs 1 and 2 (pERK1/2). ECE-1
promoted dissociation of b-arrestins terminates ERK1/2 activation. (6) b-Arrestins can recruit protein phosphatases such as protein phosphatase
2A (PP2A) to desensitized GPCRs at the cell-surface. (7) PP2A activity dephosphorylates cell-surface located GPCRs promoting resensitization.
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prevent recycling and resensitization of GPCRs to prevent
uncontrolled GPCR-mediated signalling that contributes to
disease.

Proteolysis regulates endosomal
signalling of GPCRs

In contrast to their role at the cell-surface in terminating
G protein-dependent signalling, an additional function of
b-arrestins is the recruitment of the signalling molecules
to GPCRs in early endosomes. The signalling apparatus
recruited to GPCRs by b-arrestins, serves to initiate a second
wave of signalling that is distinct from that initiated at the
cell-surface (Luttrell et al., 1999). This endosome-based sig-
nalling is a relatively new area of investigation and has been
recently reviewed (von Zastrow and Sorkin, 2007; Murphy
et al., 2009). For certain GPCRs, proteolysis of ligands by
peptidases located in endosomes, serves as the molecular
switch that determines the duration of this b–arrestin-
dependent signalling. At the endosome surface, b-arrestins
act as a scaffold to aid formation of mitogenic signalling
complexes that include signalling proteins, such as Raf-1,
MAPK kinases and ERK (Daaka et al., 1998; DeFea et al., 2000).
The stability of these so-called signalosomes is dependent on
the sustained interaction of b-arrestins with GPCRs in endo-
somes. Thus, for NK1 receptors, ECE–1-dependent hydrolysis
of SP regulates the stability of the NK1 receptor•b-arrestin
interaction and thus, the duration of SP-induced b–arrestin-
dependent ERK activity (Cottrell et al., 2009). This endosome-
derived ERK1/2 activation up-regulates and phosphorylates
the nuclear death receptor, Nur77 via a mechanism that
requires b-arrestins, Raf-1, MAPK kinase 2 and ERK2 (Castro-
Obregon et al., 2004). Inhibition of ECE-1, which prevents
the dissociation of NK1 receptors and b-arrestins (Roosterman
et al., 2007), causes a sustained activation of ERK1/2,
increased phosphorylation of Nur77, promoting cell death
(Cottrell et al., 2009). This mechanism also operates in cul-
tured primary myenteric neurons and in intact animals (Cot-
trell et al., 2009; Pelayo et al., 2011). In mice, intraplantar
injection of capsaicin, an activator of transient receptor
potential vanilloid ion channel 1, promotes the release of SP
in the dorsal horn to cause internalization of NK1 receptors
and activation of ERK1/2 (Mantyh et al., 1995; Kawasaki
et al., 2004). An intrathecal injection of the highly selective
ECE-1 inhibitor SM-19712 (Umekawa et al., 2000) promoted a
more sustained ERK1/2 activation following injection of cap-
saicin (Cottrell et al., 2009). In contrast to SP-induced ERK1/2
activation, neurotensin-induced ERK1/2 activation is attenu-
ated by ECE-1 inhibition, indicating that the recycling of
NTS1 receptors promotes ERK1/2 activation (Law et al., 2012).
ECE-1 inhibition similarly attenuated JNK activation, but
promoted NF-kB activation and IL-8 secretion (Law et al.,
2012).

Concluding remarks

It has long been known that peptidases present on the cell-
surface regulate GPCR activation by generating or destroying

bioactive peptides, and that many GPCRs are ultimately
degraded by peptidases present in lysosomes. However, it is
now apparent that proteolysis also regulates other aspects of
GPCRs, including trafficking through the endocytic system
and signalling from endosomes. Intracellular proteolysis of
peptidic agonists by peptidases present in endosomes, not
only controls the recycling and resensitization of GPCRs, but
also regulates the signalling from internalized GPCRs in
endosomes. Ubiquitination of GPCRs targets certain GPCRs
to lysosomes, but de-ubiquitination performed by USPs is
required for efficient delivery of GPCRs to lysosomes, promot-
ing GPCR down-regulation. For other GPCRs, USPs regulate
the recycling to the cell-surface and thus, resensitization of
signalling. Finally, USPs act to regulate the ubiquitination of
b-arrestins and downstream mitogenic signalling cascades.
ACE inhibitors, such as captopril have been successfully used
to treat hypertension for many years and offer hope that
other peptidase inhibitors could also be used to treat disease.
Inhibitors of endosomal peptidases, such as ECE-1 could be
used to regulate the trafficking of CGRP and SP receptors.
ECE-1 inhibitors, by preventing the recycling of CGRP recep-
tors, could prevent sustained CGRP signalling implicated in
migraine. Inhibitors of ADAM peptidases, responsible for the
generation of ligands causing transactivation of ErbB recep-
tors, may represent a new therapy to prevent proliferation of
cells and thereby attenuate cancer growth. The signalling
pathways arising from internalized GPCRs are distinct from
pathways initiated at the cell-surface and have unique cellu-
lar consequences. Inhibitors of USPs and endosomal pepti-
dases have been shown to regulate this signalling and thus
inhibitors of these peptidases may be useful tools to regulate
the signalling of internalized GPCRs. Thus, the discovery of
these new peptidase-driven mechanisms of GPCR regulation
opens up a new line of potential peptidase inhibitor therapies
to treat GPCR-mediated diseases. A key factor in the design of
these peptidase inhibitors will be targeting them to the cel-
lular compartments where they will have the required effects.
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