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Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic
and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms
to defend against the deleterious effects of DNA damage. Among these diverse repair path-
ways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse
covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA
repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes.
We present specific examples to describe new findings of known enzymes and appealing
discoveries of new proteins. At the end of this article, we also briefly discuss the influence of
direct DNA repair on other fields of biology and its implication on the discovery of new
biology.

Endogenous and environmental agents con-
tinuously threaten the genomic integrity of

all living organisms. Replication of damaged
DNA can lead to mutations that are tumorigen-
ic, whereas DNA lesions that block replication
or transcription can result in senescence and cell
death. Therefore, cellular DNA must be prompt-
ly repaired. Well-known mechanisms include
base-excision repair, nucleotide excision repair,
mismatch repair, homologous recombination,
and nonhomologous end joining. In addition,
nature has also evolved several mechanisms in
which the damage is directly reversed most often
by a single repair protein without the incision of
DNA backbone. Although such “direct repair”

processes mediate the reversal of a relatively
small set of DNA lesions, the simplicity and
essentially error-free propertyof the direct rever-
sal processes make them particularly attractive
for a cell. Three major mechanisms of direct
DNA repair have been identified to date: (i)
photolyases reverse UV light-induced photole-
sions; (ii) O6-alkylguanine-DNA alkyltransfer-
ases (AGTs) reverse a set of O-alkylated DNA
damage; and (iii) the AlkB family dioxygenases
reverse N-alkylated base adducts (Fig. 1). This
concise article intends to update knowledge
since the publication of the second edition of
DNA Repair and Mutagenesis (ASM) (Friedberg
et al. 2006).
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PHOTOINDUCED REVERSAL OF UV
RADIATION-CAUSED DNA DAMAGE
BY PHOTOLYASES

UV radiation produces mainly two types of le-
sions in DNA: the cyclobutane pyrimidine di-
mers (CPDs) and the pyrimidine pyrimidones
(6–4) photoproducts (6–4 PPs). Photolyases
are specific to either CPD or 6–4 PP lesion

(thus CPD photolyases and [6–4] photolyases,
respectively) and use blue and near-UV light to
reverse the UV-light-induced DNA damage. All
photolyases bind the essential cofactor flavin
adenine dinucleotide (FAD), and only the fully
reduced FADH2 is catalytically competent. Pro-
posed mechanisms of photolyases involve an ini-
tial electron-transfer step from FADH2 to the
UV-induced lesions, a dimer-splitting process,
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Figure 1. Direct DNA-repair pathways: representative substrates, repair proteins and cofactors, and correspond-
ing repair products.
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and a final electron-transfer step from the py-
rimidine monomer radical back to FADH�,
thus regenerating FADH2 (Fig. 2) (Muller and
Carell 2009; Brettel and Byrdin 2010).

ADVANCES IN REACTION MECHANISMS
OF CPD PHOTOLYASES

The advancing studies of the CPD repair mech-
anism that are based on direct measurements
of Class I CPD photolyases have seen further
development with ultrafast spectroscopy. For
instance, using an Escherichia coli CPD photo-
lyase, Zhong, Sancar, and colleagues observed
electron transfer from the excited flavin cofactor
to the CPD dimer in 170 ps and back electron
transfer from the repaired thymines in 560 ps
(Kao et al. 2005); further study by the investi-

gators revealed that the CPD splits in two se-
quential steps within 90 ps (Liu et al. 2011). In
another example by Brettel, Byrdin, and col-
leagues, splitting rates of the intradimer bond
and electron return process of Aspergillus nidu-
lans photolyase were estimated to be 0.2 and
1.5 ns, respectively (Thiagarajan et al. 2011). In
both examples, the technology advance signifi-
cantly enhanced our understanding of the spa-
tiotemporal picture of CPD repair.

Class II photolyases have different amino
acid sequences compared to those from Class I
enzymes and are expected to differ in the path-
way of electron transfer and the DNA-repair ac-
tive site (Fig. 2A,C). The first crystal structure of
a Class II photolyase (from Methanosarcina ma-
zei), alone and in complex with CPD lesion-con-
taining duplex DNA, revealed a larger lesion-
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Figure 2. Mechanisms and structures of representative photolyases from different classes. (A) Mechanisms of
photorepair for CPD photolyases. The generation of fully reduced, active FADH2� species is different for Class I
and Class II CPD photolyases. (B) Repair mechanism of (6–4) photolyases. (C) Representative complex
structures of photolyases bound to double-stranded DNA (dsDNA) (PDB accession code: 1TEZ, 2XRZ, and
3CVU).
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binding site and an unusual (different from that
of Class I) tryptophane dyad as the electron-
transfer pathway to FAD (Kiontke et al. 2011).
In addition, a distinct electron-transfer pathway
(three Trp residues in this case) from the Class I
pathway was also observed in Oriza sativa pho-
tolyase (Hitomi et al. 2012). Nevertheless, spec-
troscopic results for Arabidopsis thaliana and
O. sativa photolyases showed photoreduction
kinetics resembling those of Class I enzymes
(Okafuji et al. 2010), indicating functional sub-
stitution between these different electron-trans-
fer pathways.

ADVANCES IN THE STRUCTURAL AND
FUNCTIONAL RELATIONSHIP OF (6–4)
PHOTOLYASE

The reversal of 6–4 PP is thought to be more
complex than that of CPD because 6–4 photo-
lyase must catalyze not only covalent bond cleav-
age between two pyrmidine bases but also un-
dergo a hydroxyl group transfer from the 50 to the
30 pyrimidine base. For this reason, an oxetane
intermediate was assumed. However, Schlicht-
ing, Carell, and colleagues proposed a modified
repair mechanism that lacked the strained oxe-
tane intermediate (Maul et al. 2008). They crys-
tallized Drosophila melanogaster (6–4) photo-
lyase containing a 6–4 PP and initiated in situ
photo repair (Fig. 2C). In the resulting struc-
tures, the positions of two conserved histidine
residues essential for catalysis (His365 and
His369) do not support a mechanism involv-
ing an oxetane structure. Instead, a mechanism
that involves a water molecule formed in situ,
which then attacks the acylimine, was postulated
(Maul et al. 2008). More recent structural evi-
dence from A. thaliana (6–4) photolyase re-
vealed a narrower and deeper cavity for binding
of 6–4 PP, also suggesting a different reaction
mechanism compared to that of CPD photo-
lyase (Fig. 2B) (Hitomi et al. 2009).

Zhong et al. used femtosecond spectroscopy
to study the dynamics and mechanism of (624)
photolyase from A. thaliana. The investigators
observed a key cyclic proton transfer step be-
tween an active-site histidine residue and the
substrate, which occurs in 425 ps and leads to

6–4 PP repair in tens of nanoseconds (Li et
al. 2010). In addition, time-resolved experi-
ments of Xenopus laevis (624) photolyase un-
covered a drastic diffusion change, which was
assigned to the rapid dissociation (time con-
stant of �50 ms) of the protein from the re-
paired DNA product (Kondoh et al. 2011). Later
on, 6–4 PP repair mediated by the same enzyme
was investigated using Fourier transform infra-
red (FTIR) spectroscopy (Zhang et al. 2011).
Differences in FTIR spectra revealed structural
changes in the protein and DNA from binding
to catalysis. Together, these data depict a general
picture of how light is harvested and used to
efficiently reverse 6–4 PP by (624) photolyase.

CRYPTOCHROME-DASH MEMBERS
SHOW DNA-REPAIR ACTIVITY

The cryptochrome-DASH (CRY-DASH) sub-
family is relatively closer to the animal cryp-
tochrome subfamily, rather than the plant cryp-
tochrome subfamily and the CPD photolyase
subfamilies (Hitomi et al. 2000; Brudler et al.
2003). Therefore, CRY-DASH proteins were
considered at first to be novel cryptochromes,
rather than DNA-repair photolyases. However,
weak CPD photorepair activities were detected
for the Synechocystis protein and two vertebrate
CRY-DASHs (Hitomi et al. 2000; Daiyasu et al.
2004). Crystal structure of the Synechocystis
CRY-DASH further revealed high similarity to
the structures of Class I CPD photolyases (Brud-
ler et al. 2003). In 2008, progress from the Sancar
laboratory provided an explanation of the ob-
served weak DNA-repair activity. In actuali-
ty, CRY-DASH members robustly bind to and
repair CPD in the context of single-stranded
DNA (ssDNA), but not in double-stranded
DNA (dsDNA) (Selby and Sancar 2006). Crystal
structures of Arabidopsis cryptochrome 3 fur-
ther indicate that the protein most likely lacks an
efficient flipping mechanism to access CPD le-
sions within duplex DNA (Pokorny et al. 2008),
and that the CPD-binding cavity in Arabidopsis
cryptochrome 3 is less hydrophobic and thus
less energetically favorable compared to that of
Class I CPD photolyases (Huang et al. 2006).
Together, this data reveals that CRY-DASH
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proteins are indeed light-driven DNA-repair en-
zymes, only less competent in base flipping and
CPD binding.

DIRECT REVERSAL OF ALKYLATION
DAMAGE BY ALKYLTRANSFERASES

Alkylating agents react with the hetereoatoms
of DNA bases to generate a variety of cytotoxic
and mutagenic covalent adducts ranging from
simple methyl groups to bulky alkyl additions,
thereby posing substantial threats to human
health (Drablos et al. 2004; Shrivastav et al.
2010). On the other hand, certain alkylating
agents are commonly used as chemotherapeutic
drugs in cancer patients, with the goal of killing
cancer cells. Such double-edged properties of
alkylating agents thus impart great biological
significance to the studies of the cellular path-
ways that determine the biological outcome of
alkylating agents (Fu et al. 2012). In addition to
the base-excision repair pathway that corrects
many N-alkylated lesions, two direct DNA-re-
pair pathways exist to combat the deleterious
effects of alkylating agents: AGTs reverse O6-
alkylated guanines and AlkB family dioxyge-
nases reverse mainly N-alkylated lesions that
block Watson–Crick pairings. Recent progress
with regard to these two direct repair pathways
is detailed below.

SUICIDAL REVERSAL OF ALKYLATION
DAMAGE BY O6-ALKYLGUANINE-DNA
ALKYLTRANSFERASES

O6-methyl guanine (6-meG) is mutagenic and
carcinogenic as a result of its ability to cause
G:C to A:T transitions during DNA replication.
The first 6-meG alkyltransferse, identified in
E. coli (named C-Ada), is the carboxy-terminal
domain of a multifunctional repair protein
(Demple et al. 1985; Sedgwick et al. 1988).
The amino-terminal domain of E. coli Ada pro-
tein (N-Ada) mediates a direct removal of the
methyl group from Sp-methylphosphotriester
DNA backbone damage (Sedgwick et al. 1988;
Myers et al. 1993; He et al. 2005). It uses a zinc-
mediated thiol alkylation mechanism and sig-
nals the activation of the ada operon, which

includes ada, alkA, alkB, and aidB (Teo et al.
1986; Lindahl et al. 1988; Sakumi and Sekiguchi
1989). Both Ada and AlkB are direct repair pro-
teins. AlkA is a glycosylase conserved from bac-
terium to human (Wyatt et al. 1999; Hollis et al.
2000). The exact functional role of AidB is still
unknown (Rohankhedkar et al. 2006; Bowles
et al. 2008; Rippa et al. 2011).

The human homolog of C-Ada (hAGT)
contains two domains, a zinc-bound amino-ter-
minal domain and a carboxy-terminal domain
that harbors the methyl recipient Cys145. The S-
alkylated AGT cannot be restored and under-
goes ubiquitin-mediated degradation (Srivenu-
gopal et al. 1996). A recent discoveryshowed that
the AGT homolog in Saccharomyces cerevisiae
(Mgt1) is cotargeted for degradation by both
the Ubr1/Rad6-dependent N-end rule path-
way and the Ufd4/Ubc4-dependent ubiquitin-
fusion degradation pathway, through a degron
near its amino terminus (Hwang et al. 2009).
Because Mgt1 and mammalian AGTs share
high sequence homology, the next obvious
question to be addressed is whether such a
mechanism also applies to mammalian AGTs.

AGTs can recognize diverse O6-modified al-
kyl adducts. For instance, hAGTrepairs not only
6-meG, but also many other bigger adducts in-
cluding ethyl, 2-chloroethyl, and other aliphatic
groups, and benzyl and pyridyloxobutyl ad-
ducts as well (Tubbs et al. 2007; Pegg 2011).
Even O6-G-alkyl-O6-G interstrand cross-links
could be repaired (Fang et al. 2008). As a result,
hundreds of hAGT pseudosubstrates have been
synthesized as inhibitors of hAGT, which are
used in combination with therapeutic alkylating
agents to improve the efficacy of cancer chemo-
therapy (Tubbs et al. 2007). One example is the
clinical trial of O6-benzyl guanine (6-bzG) and
temozolomide. Some responses were observed
from patients with refractory central nervous
system (CNS) tumors (Hammond et al. 2004;
Warren et al. 2005; Quinn et al. 2009a,b). An-
other example is the combined use of O6-(4-
bromothenyl) guanine (or PaTrin-2) and temo-
zolomide in the treatment of refractory acute
leukemia. Preclinical in vitro studies have
shown that PaTrin-2 increases the inhibitory
activity of temozolomide against human acute
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leukemia cells (Turriziani et al. 2006). Despite
these initial positive feedbacks, it is clear that
inhibitors with greater potency and higher tu-
mor specificity are still needed (Zang et al. 2005;
Guza et al. 2006; Pegg 2011).

Several structures of hAGT/DNA complex
are available for detailed examinations of sub-
strate binding and nucleotide flipping. Tainer
and colleagues reported the first structures of
hAGT in complex with dsDNA, which revealed
that hAGT uses a helix-turn-helix motif to me-
diate an unusual minor groove DNA binding
(Fig. 3A,B) (Daniels et al. 2004). Our group
also solved the structure of hAGT bound to a
duplex DNA containing N4-p-xylylenediamine
cytosine. The protein binds at two different
sites: the modified cytosine and a partially
flipped overhanging thymidine at the sticky
ended DNA junction (Fig. 3A) (Duguid et al.
2005). The two different hAGT/DNA interac-
tions suggest that hAGT may search for weak-

ened and/or distorted base pairs to locate the
lesion. Results from computational approaches
have suggested a two-step base-flipping mech-
anism of hAGT, in which the existence of an
extra-helical intermediate was postulated (Hu
et al. 2008). It has also been revealed that while
searching along a duplex DNA, hAGT shows 50

to 30 preference and binds DNA cooperatively
(Daniels et al. 2004; Rasimas et al. 2007; Adams
et al. 2009). Last, single-molecule spatial track-
ing measurements of C-Ada, the E. coli equiva-
lence of hAGT, showed that sliding, with essen-
tially no hopping, is the mechanism of C-Ada
motion along stretched DNA (Lin et al. 2009).

REPAIR OF ALKYLATION DAMAGE BY
ALKYLTRANSFERASE-LIKE PROTEINS (ATLs)

In silico analysis of genomic sequences sug-
gests the presence of a family of AGT homologs
(ATLs) with sequence similarity to the AGT
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Figure 3. Overall structures and damage-binding pockets of hAGT and Schizosaccharomyces pombe Atl1. (A)
Structures of hAGT/DNA bound to a 6-meG (1T38), an N4-p-xylylenediamine cytosine, and a partially flipped
thymine (1YFH). (B) Active site of hAGT C145S with a bound 6-meG. (C) Overall and binding-site structure of
Atl1 (3GYH).
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catalytic domain, with the exception that the
active cysteine residue is replaced by trypto-
phan, alanine, or other residues, all of which
are not capable of nucleophilic attack (Margi-
son et al. 2003, 2007). ATLs tightly bind ss/
dsDNA that contain O6-alkyl guanine, but
they display no alkyltransferase, demethylase,
glycosylase, or endonuclease activity (Pearson
et al. 2005, 2006; Chen et al. 2008; Morita
et al. 2008). In fact, preincubation of alkylated
oligonucleotides inhibits the repair activity of
hAGT (Pearson et al. 2005, 2006). Yet it was
clear that ATL must be playing a role in alkyl-
ation damage protection in vivo, because
S. pombe and Thermus thermophilus were ren-
dered more sensitive to alkylating reagents on
inactivation of their ATL genes (Pearson et al.
2006; Morita et al. 2008). Through a series of
genetic and biochemical experiments, ATL was
discovered to be linked to the nucleotide excision
repair (NER) pathway (Mazon et al. 2009; Tubbs
et al. 2009). In a proposed model, ATLs first rec-
ognize the often bulky O6-alkyl lesion, then in-
duce extensive DNA bending and switch from an
open conformation to a closed state that is not
seen in AGTs (Tubbs and Tainer 2010). Large
DNA distortions are known to initiate NER rec-
ognition, and ATL in the closed state is also be-
lieved to facilitate recruitment of NER proteins.
Crystal structures of ATLs from Vibrio parahae-
molyticus and S. pombe are also in good agree-
ment with the working model (Fig. 3C) (Tubbs
et al. 2009; Aramini et al. 2010).

OXIDATIVE REVERSAL OF ALKYLATION
DAMAGE BY AlkB FAMILY DIOXYGENASES

Oxidative DNA repair mediated by the AlkB
family demethylases is one of the most exciting
and rapidly growing areas in the field of DNA
repair during the past decade since the initial
ground-breaking discovery made independent-
ly by two groups in 2002 (Falnes et al. 2002;
Trewick et al. 2002). Later on, AlkB was shown
to repair RNA lesions as well (Aas et al. 2003;
Ougland et al. 2004). So far, nine human homo-
logs of E. coli AlkB have been identified (termed
ALKBH1-8, plus FTO), representing a major
class of DNA/RNA demethylases in human

cells (Kurowski et al. 2003; Gerken et al. 2007;
Sanchez-Pulido and Andrade-Navarro 2007).
In the event of oxidative demethylation, the
AlkB family proteins use an iron(II) site to ac-
tivate the dioxygen molecule for oxidation of
the aberrant alkyl groups. The hydroxylated al-
kyl groups, which are attached to the N1 posi-
tion of adenine or N3 position of cytosine, then
undergo facile C–N bond cleavage to yield the
unmodified base and formaldehyde (Drablos
et al. 2004; Sedgwick 2004; Falnes et al. 2007;
Yi et al. 2009). Such an oxidation mechanism is
shared by a variety of enzymes within the non-
heme iron-containing protein family, which
has also inspired the discovery of the JmjC-do-
main-containing histone demethylases that me-
diate epigenetic histone demethylation (Tsu-
kada et al. 2006).

E. coli AlkB: UNIQUE BASE-FLIPPING,
DIVERSE SUBSTRATES, AND OXIDATIVE
DEMETHYLATION

Like photolyases and alkyltransferases, AlkB
and related dioxygenases also need to flip the
damaged base out of duplex DNA for repair
reactions. AlkB has been shown to repair alkyl-
ation lesions in both ssDNA and dsDNA, with
a preference toward single-stranded substrates.
Structures of AlkB bound to a trimer d(T-1-
meA-T) DNA provided the first glance of the
folding and substrate binding of AlkB (Fig. 4A)
(Yu et al. 2006); yet the characterization of
the AlkB/dsDNA complex structure had been
hampered by AlkB’s weak and nonsequence-
specific binding property (Dinglay et al. 2000;
Mishina et al. 2004a). Utilizing a disulfide
cross-linking technique pioneered by Verdine
et al. to capture transient protein/DNA interac-
tions (Huang et al. 1998; Verdine and Norman
2003), we stabilized the complex formed be-
tween AlkB and dsDNA (Fig. 4B) (Mishina
and He 2003; Mishina et al. 2004b). We first
engineered the cross-link into the active site
of AlkB and determined the structure of the
resulting complex (Yang et al. 2008). With the
information revealed from the “active-site
cross-linked” structure, a distal cross-link was
designed to obtain a complex with an intact
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enzymatic pocket. Both of these structures
show an unprecedented base-flipping mecha-
nism. AlkB squeezes together the two bases
flanking the flipped-out one to access the dam-
aged base (Fig. 4B). In contrast to DNA dis-
tortion in the lesion-containing strand, AlkB
has few interactions with the complementary

strand, which merely accommodates DNA dis-
tortion of the lesion-containing strand through
spontaneous conformational rearrangements.
Thus, the complementary strand acts as a non-
competitive inhibitor, which explains the ob-
served preference of AlkB toward ssDNA (Yang
et al. 2008).
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AlkB recognizes diverse substrates: N1-meth-
yl adenine (1-meA) and N3-methyl cytosine (3-
meC) are the best substrates (Falnes et al. 2002;
Trewick et al. 2002); N1-methyl guanine and
N3-methyl thymine (3-meT) are repaired at
lower rates (Delaney and Essigmann 2004;
Falnes 2004; Koivisto et al. 2004). Furthermore,
exocyclic DNA adducts such as 1,N6-etheno-
adenine (1A), 1,N6-ethano adenine, and 3,N4-
ethenocytosine are also substrates of AlkB (De-
laney et al. 2005; Mishina et al. 2005; Frick et al.
2007). Mechanistically, such promiscuous sub-
strate recognition has been extensively investi-
gated with AlkB crystal structures containing
different substrates (Yu et al. 2006; Yang et al.
2008; Yu and Hunt 2009; Holland and Hol-
lis 2010; Yi et al. 2010). A “pinch” sequence
(Thr51 to Tyr55) and a flexible loop (His72 to
Tyr76) anchor the phosphate backbone; His131
and Trp69 stack against the base plane; Tyr78
and a “substrate recognition” loop (Lys134 to
Glu136) form specific hydrogen bonds with the
flipped bases (Yu and Hunt 2009; Yi et al. 2010).
Overall, AlkB strictly controls the final location
of substrates in the binding pocket so that the
aberrant alkyl group is positioned precisely for
efficient oxidative dealkylation.

Knowing how AlkB recognizes and accom-
modates different lesions, the next question con-
cerns the mechanism of the oxidative repair. It
was proposed that oxidative demethylation pro-
ceeds through hydroxylation at the aberrant
methyl group followed by heterocleavage of the
C–N bond; yet direct evidence supporting the
process is lacking. To address this question, we
took an in crystallo oxidation approach and cap-
tured different reaction intermediates (a zwitter-
ionic structure, a hemiaminal, and a glycol) in
the demethylation processes of 3-meC, 3-meT,
and 1A, respectively (Fig. 4C) (Yi et al. 2010).
Essigmann and coworkers have also observed
an epoxide intermediate in AlkB-mediated 1A
repair using mass spectrometry (Delaney et al.
2005). These observations provide direct support
of the oxidative-demethylation mechanism. To-
gether with solution observations (Bleijlevens
et al. 2008, 2012), a more complete picture of
cofactor binding, substrate flipping and process-
ing, and product release is now emerging.

ALKBH1: AP LYASE OR DEMETHYLASE?

Among the nine homolog proteins, ALKBH1
displays the strongest homology with AlkB, al-
though early studies failed to detect any deme-
thylation activities (Duncan et al. 2002; Aas et
al. 2003). A later study showed that, as a mito-
chondrial protein, ALKBH1is able to demethy-
late 3-meC in vitro (Westbye et al. 2008). Yet this
is just the beginning of the enigma of ALKBH1.
Two groups then independently showed that
both human ALKBH1 and the S. pombe homo-
log Abh1 show AP-lyase activity (Muller et al.
2010; Korvald et al. 2012). The lyase activity of
human ALKBH1 and Abh1 is not dependent
on iron(II) or 2KG and is not affected by mu-
tation of the putative metal-binding residues;
furthermore, Abh1 failed to show demethylase
activity against methylated DNA or etheno ad-
ducts, nor was the yeast abh12 mutant sensitive
toward alkylating agents. But if the in vitro AP-
lyase activity has any biological significance,
it remains elusive. What does seem clear, how-
ever, is that ALKBH1 plays a role in placental
trophoblast lineage differentiation and partici-
pates in transcriptional regulation (Pan et al.
2008; Nordstrand et al. 2010).

ALKBH2: A BONA FIDE HOUSEKEEPING
DNA-REPAIR ENZYME

ALKBH2 demethylates both 1-meA and 3-meC
in vitro (Duncan et al. 2002; Aas et al. 2003);
mouse experiments have also established
mAlkbh2 as the primary repair enzyme guard-
ing the mammalian genome against these
two lesions (Ringvoll et al. 2006). Moreover,
ALKBH2 was shown to be the principle enzyme
for 1A repair in vivo as well (Duncan et al. 2002).
Very recent data suggests that ALKBH2 protects
against lethalityand mutation in primary mouse
embryonic fibroblasts (Nay et al. 2012), and
that ALKBH2 may be involved in the molecular
mechanism of gastric cancer through the inhi-
bition of the proliferating gastric cancer cells
(Gao et al. 2011). ALKBH2 ortholog in A. thali-
ana has also been shown to protect Arabidopsis
against methylation DNA damage (Meza et al.
2012). Thus, unlike ALKBH1, ALKBH2 has

DNA Repair by Reversal of DNA Damage

Cite this article as Cold Spring Harb Perspect Biol 2013;5:a012575 9



been convincingly established as a bona fide
DNA-repair enzyme that protects the genome
against alkylation damage.

Crystallographic evidence has provided in-
sights into the lesion-recognition mode and
damage-searching mechanism of ALKBH2
(Fig. 5A). Using a disulfide cross-linking tech-
nique, we have succeeded in the structural char-
acterization of ALKBH2 bound to duplex DNA
containing different base lesions (Yang et al.
2008; Yi et al. 2012). ALKBH2 uses several ac-
tive-site residues to recognize 1-meA and uses
an aromatic finger residue Phe102 to facilitate
base flipping (Yang et al. 2008). In addition,
Phe102 can also probe the stability of base pairs
when ALKBH2 is interrogating DNA for dam-
age; the unique oxidation chemistry of ALKBH2
then ensures that only a cognate substrate will
be modified (Yi et al. 2012). It remains to be
seen if ALKBH2 could signal or recruit addi-
tional repair factors when it encounters non-
cognate damage (Gilljam et al. 2009).

ALKBH3: A DNA-REPAIR ENZYME
THAT TARGETS 3-meC WITH ssDNA
PREFERENCE

ALKBH3 demethylates both 1-meA and 3-meC
in vitro, with a preference toward single-strand-
ed nucleic acids (Duncan et al. 2002; Aas et al.
2003). Inside cells, ALKBH3 has significant roles
in both prostate cancers and lung cancers (Liu
et al. 2007; Tasaki et al. 2011), and it contributes
to cell survival and invasion through discoidin
receptor 1 (Shimada et al. 2008). In fact, studies
have suggested ALKBH3 as a promising target
molecule for developing therapeutic agents to
treat castrate-resistant prostate cancer (Koike
et al. 2012). To address the relevance of ALKBH3
in mammalian cells, Shi and colleagues revealed
that ALKBH3 physically associates with ASCC3,
a 30 to 50 DNA helicase (Dango et al. 2011). Such
an association is critical to the ALKBH3-medi-
ated repair process because ASCC3’s DNA-un-
winding activity presents the 3-meC substrate
in ssDNA context, allowing ALKBH3 to access
3-meC within the double-stranded region of
DNA. Thus, for tumors showing ALKBH3 and
ASCC3 overexpression, therapeutic approaches

that can couple 3-meC cytotoxicity to the dis-
turbance of the activities, or association of
these two proteins, may have therapeutic effects
against these tumors.

Slupphaug, Tainer, and colleagues solved the
crystal structure of the catalytic core of ALKBH3
and identified aflexible hairpin involved in base-
flipping and ss/dsDNA discrimination (Fig. 5B)
(Sundheim et al. 2006). Sequence alignments of
ALKBH2 and ALKBH3 reveal a very hydropho-
bic Val101-Phe102-Gly103 motif for ALKBH2
and a heavily charged Arg122-Glu123-Asp124
sequence for ALKBH3 at the nucleotide-flip-
ping region (Yi et al. 2009). Swapping the two
sequences surprisingly switches the ss/dsDNA
preference of the two proteins (Chen et al. 2010;
Monsen et al. 2010). Yet a complex structure of
ALKBH3/DNA would still be highly desirable
to address the exact protein/DNA interactions
in ALKBH3.

ALKBH5: AN OXYGENASE TARGETED BY
HYPOXIA-INDUCING FACTOR 1a

Like other members of the ALKB family,
ALKBH5 possesses the metal- and 2KG-binding
motif. Pollard et al. showed that ALKBH5 is
largely localized to the nucleus and is a 2KG oxy-
genase; however, the decarboxylation of 2KG
by ALKBH5 is not stimulated by known AlkB
substrates, hinting that ALKBH5 does not act
on 1-meA-type DNA damage (Thalhammer et
al. 2011). What makes ALKBH5 unique among
the ALKBH genes is probably that it is a direct
transcriptional target of hypoxia-inducible fac-
tor-1 and is induced by hypoxia in a range of cell
types. Yet the biological function of ALKBH5 is
currently unknown.

ALKBH8: A tRNA MODIFICATION ENZYME
RATHER THAN A DNA-REPAIR PROTEIN

ALKBH8 is a multidomain protein that possess-
es an amino-terminal RNA recognition do-
main, the AlkB domain, and a carboxy-terminal
methyltransferase domain. The methyltransfer-
ase domain has sequence homology with the S.
cerevisiae tRNA methyltransferase Trm9, which
catalyzes the methyl esterification of U34 of
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tRNAArg and tRNAGlu, forming 5-methoxycar-
bonylmethyluridine (mcm5U) and 5-methoxy-
carbonylmethyl-2-thiouridine, respectively. Two
reports independently showed that ALKBH8
is a tRNA methyltransferase required for the
biogenesis of mcm5U (Fu et al. 2010a; Songe-
Moller et al. 2010). Soon after, we and others
showed that the AlkB domain of ALKBH8 cat-
alyzes the hydroxylation of mcm5U into (S)-5-
methoxycarbonylhydroxymethyluridine, there-
by firmly establishing ALKBH8 as a tRNA
hypermodification enzyme (Fig. 5D) (Fu et al.
2010b; van den Born et al. 2011). The recently
solved structure of ALKBH8, comprising the
RNA recognition and AlkB domains, shows dis-
ordered loops flanking the active site in the AlkB
domain, providing insights into the evolution-
ary diversification of AlkB domains (Pastore
et al. 2012). Interestingly, ALKBH8 was shown
to contribute to the progression of human blad-
der cancer; and silencing of ALKBH8 signifi-
cantly suppressed invasion, angiogenesis, and
growth of bladder cancers in vivo (Shimada
et al. 2009). How the tRNA modification activ-
ity can attribute to this observed phenotype re-
mains to be established.

FTO: LINKING OBESITY TO RNA
DEMETHYLAION

A genome-wide association study found the
FTO (fat-mass and obesity-associated) gene to
be associated with body mass index (BMI)
(Frayling et al. 2007). In this study, the authors
found that a common variant in the FTO gene
predisposes a person to diabetes through an ef-
fect on BMI. Adults who are homozygous for
the risk allele weighed about 3 kg more com-
pared to those without a risk allele. Two inde-
pendent studies in close succession reported
other intron 1 FTO single-nucleotide polymor-
phisms (SNPs) and extended the association to
other obesity-related traits (Dina et al. 2007;
Scuteri et al. 2007). Numerous subsequent stud-
ies also confirmed the association among 22
distinct populations, which have been summa-
rized elsewhere (Tung and Yeo 2011).

In the mouse, FTO null individuals
(FTO2/2) displayed decreased fat and lean

body mass, increased metabolic rate, and elevat-
ed food intake, which shows that FTO is in-
volved in energy homeostasis through control
of energy expenditure (Fischer et al. 2009; Gao
et al. 2010). Consistent with this, FTO was found
to be highly expressed in the brain, particularly
in the hypothalamus. Furthermore, nutritional
status directly regulates the expression of FTO
in a bidirectional manner. Food intake can also
be bidirectionally influenced through manipu-
lation of the FTO level in the arcuate nucleus
of hypothalamus (Gerken et al. 2007; Tung et al.
2010). In humans, a catalytic incompetent mu-
tation Arg316Gln renders the affected individ-
uals a polymalformation syndrome (Boissel et
al. 2009). Other loss-of-function mutations of
FTO have also been identified, which appear to
influence BMI as well (Meyre et al. 2010).

Shortly after FTO was reported, bioinfor-
matics analysis revealed that FTO encodes
an iron(II)- and 2KG-dependent dioxygenase,
which is closely related to E. coli AlkB (Gerken
et al. 2007; Sanchez-Pulido and Andrade-Na-
varro 2007). Crystal structure of FTO did show
an AlkB-like domain and a unique carboxy-ter-
minal domain (Fig. 5C) (Han et al. 2010). Bio-
chemically, FTO was first shown to demethylate
3-meT in ssDNA and later 3-meU in ssRNA in
vitro (Gerken et al. 2007; Jia et al. 2008). How-
ever, such demethylation activity is exceedingly
low compared to other AlkB-family proteins.
We discovered in 2011 that FTO shows efficient
demethylation activity toward the abundant
N6-methyl adenine (6-meA) residues in RNA,
both in vitro and in vivo (Fig. 5E) (Jia et al.
2011). In addition, FTO partially colocalizes
with nuclear speckles, which supports the no-
tion that 6-meA in nuclear RNA is a physiolog-
ical substrate. Future experiments demonstrat-
ing the specific messenger RNA (mRNA) targets
of FTO is expected to link the demethylation
activity to the observed phenotype of FTO.

CONCLUDING REMARKS AND OUTLOOK

The last decade has witnessed exciting advances
and rapid growth in the field of direct DNA
repair. Such rapid expansion of knowledge has
not only enabled us to understand DNA-repair
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pathways in general and for therapeutic pur-
poses (Rabik et al. 2006; Tubbs et al. 2007),
but has also accelerated new discoveries in biol-
ogy (Wu and Zhang 2011). For instance, the
oxidative-demethylation mechanism of the
AlkB family dioxygenases has inspired the dis-
covery of histone lysine demethylases (Tsukada
et al. 2006). The recently identified TET family
proteins also share oxidative hydroxylation
chemistry with AlkB. These proteins consecu-
tively convert 5-methylcytosine, a hallmark of
DNA epigenetics, to 5-hydroxymethylcytosine,
5-formylcytosine, and 5-carboxylcytosine (Ta-
hiliani et al. 2009; Ito et al. 2010, 2011; He et al.
2011). Interestingly, the enzyme that recognizes
and excises the oxidation end products of 5-for-
mylcytosine and 5-carboxylcytosine is a DNA-
repair glycosylase, thymine DNA glycosylase or
TDG, which is a DNA mismatch repair protein
(He et al. 2011; Maiti and Drohat 2011; Zhang
et al. 2012). These advances are among the most
exciting breakthroughs in the field of DNA epi-
genetics. In addition, the discovery that RNA
methylation is reversed by FTO also brought
up the notion of reversible RNA modification
in biological regulation (Fig. 5E) (He 2010).
Nevertheless, many puzzling questions remain.
For example, what are enzymatic activities of
ALKBH1, 4, 5, 6, and 7 and what are their bio-
logical roles? How is the demethylation activity
of FTO related to its phenotypic observations?
Hopefully, continued investigations will shine
light on such questions that are related to or
go beyond the field of DNA repair in the future.
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