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To cause infection, avirus enters a host cell, replicates, and assembles, with the resulting new
viral progeny typically released into the extracellular environment to initiate a new infection
round. Virus entry, replication, and assembly are dynamic and coordinated processes that
require precise interactions with host components, often within and surrounding a defined
subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER)
as a crucial organelle supporting viral entry, replication, and assembly. This review focuses
on the molecular mechanism by which different viruses co-opt the ER to accomplish these
crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplin-
ary approach, using rigorous biochemical and cell biological assays coupled with advanced
microscopy strategies, will push to the next level our understanding of the virus-ER interac-
tion during infection.

To trigger infection, a virus binds to receptors
on a host cell’s plasma membrane. This in-

teraction induces virus internalization, and ini-
tiates a complex journey of the viral particle into
the host’s interior that leads to either nonpro-
ductive or productive infection (Mercer et al.
2010). In nonproductive infection, the virus
may be targeted to and trapped in organelles
unsupportive of viral membrane fusion or pen-
etration, events which normally enable the viral
nucleic acid access to the host cytosol or nucle-
us. Alternatively, the virus could be transported
to a degradative intracellular compartment in
which it is destroyed. In contrast, for productive
infection, a viral particle must avoid these non-
productive routes and traffic along a pathway
that allows it to reach the appropriate replica-

tion and assembly site. Successful infection is
usually completed when the newly assembled
particle is released into the extracellular mi-
lieu, in which it can promote another infection
round. Thus, the ability to co-opt a host cell
entry pathway leading to efficient replication
and assembly ultimately dictates the fate of an
incoming virus.

For proper entry, replication, and assembly,
viruses often rely on the complex membran-
ous network surrounding and residing within
the host cell, such as the plasma, endolysosomal,
and endoplasmic reticulum (ER) membranes.
Selecting the suitable membrane system requires
several considerations. To support entry, the
membranous system must possess triggers capa-
ble of inducing the necessary conformational
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changes that facilitate viral membrane fusion or
penetration (Inoue et al. 2011). Examples of cel-
lular triggers include receptors, low pH, prote-
ases, chaperones, and reductases. Additionally,
because viral replication and assembly often oc-
cur in the context of virus-induced membranous
structures derived from host membranes, the
membranous network of choice should accom-
modate these remodeling reactions (Miller and
Krijnse-Locker 2008). Moreover, as a virus com-
monly manipulates the host immune system to
sustain infection, a membrane’s ability to pro-
vide the virus with such an opportunity would
offer tremendous advantages during the infec-
tion course (Takeuchi and Akira 2009).

A wealth of data implicates the endoplas-
mic reticulum (ER), one of the most elaborate
membranous networks in a cell (Shibata et al.
2009), as the organelle many viruses exploit
during infection. This review focuses on how
viruses co-opt the ER to enter, replicate, and
assemble in the target cell. We will also draw
parallels from the mechanisms by which bacte-
rial toxins use the ER for entry. Together, these
insights should unveil clues regarding why
many viruses select the ER during infection.

THE ER

Structurally, the ER is a continuous membra-
nous system consisting of the nuclear envelope,
and peripheral sheets and tubules emanating
from it (Voeltz et al. 2002). Recent studies sug-
gest the membrane sheets correspond to the
rough ER whereas the tubules represent the
smooth ER (Voeltz et al. 2006; Shibata et al.
2010). Functionally, the rough ER is responsible
for translating secretory and transmembrane
proteins, whereas the smooth ER possesses spe-
cialized roles including lipid and glycogen me-
tabolism (reviewed in Hopkins 1978). Once a
newly synthesized protein is translated and fold-
ed properly in the ER lumen, it exits the ER to
reach the Golgi apparatus via membrane bud-
ding mediated by the COPII complex. By con-
trast, should a protein misfold in the ER, an
endogenous ER quality control system called
ER-associated degradation (ERAD) alleviates
the build-up of misfolded ER proteins (Brodsky

and Skach 2011; Smith et al. 2011). To do so, a
network of ER factors recognizes and retro-
translocates the misfolded protein to the cyto-
sol. On reaching the cytosol, another cohort of
cytosolic factors engage and ubiquitinate the
substrate, targeting it to the proteasome for deg-
radation.

Strikingly, some of ER’s general properties
are beneficial to viruses. For example, as the ER-
to-cytosol retro-translocation machinery is an
inherent apparatus in the ER, it represents an
ideal conduit for certain viruses and bacterial
toxins to enter the cytosol.

Additionally, ER membrane’s ability to un-
dergo constant budding reactions plays a crucial
role during viral replication and assembly when
viruses deform and rearrange the ER membrane
to generate ER-derived structures used to sup-
port these processes.

POLYOMAVIRUS CO-OPTS THE ER
DURING ENTRY

A decisive virus entry step necessitates the in-
coming viral particle to breach a host cell’s
membrane barrier (Fig. 1). This barrier could
be the plasma (Fig. 1, pathway 1), endolysosome
(Fig. 1, pathway 2), or ER (Fig. 1, pathway 3)
membrane. Although many viruses such as in-
fluenza virus, HIV, human poliovirus (PV), and
adenovirus cross the plasma or endolysosome
membrane (Fig. 1, pathways 1 and 2), only poly-
omavirus (Py) family members penetrate the
ER membrane during entry (Fig. 1, pathway 3).

As Py lacks a surrounding lipid bilayer that
defines enveloped viruses, it is classified as a non-
enveloped virus. Prominent Py family members
include the murine Py (mPy), simian virus 40
(SV40), and the human BK (BKV), JC (JCV),
and Merkel Cell (MCPy) polyomaviruses. Al-
though mPy and SV40 can induce tumors in
experimental animals (Gross 1953; Sweet and
Hilleman 1960), human polyomavirus’s role as
human cancer-causing agents is less certain. Per-
haps the strongest link is observed in MCPy, in
which the virus is positively correlated with in-
cidences of Merkel cell carcinoma, a rare but ag-
gressive skin cancer of neuroendocrine origin
(Feng et al. 2008). Regardless of their role in
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cancer, human polyomaviruses are well-estab-
lished causative agents forother human diseases,
including hemorrhagic cystitis and nephropa-
thy (by BKV), and the fatal demyelinating dis-
ease progressive multifocal leukoencephalopa-
thy (by JCV) (Jiang et al. 2009a).

Structurally, Py particles are composed of a
layer of the outer coat protein VP1. This single
protein, arranged as 72 pentamers, forms the
shell surrounding the viral genome (Liddington
et al. 1991; Stehle et al. 1994). Each VP1 pen-
tamer engages the internal protein VP2 or VP3
via hydrophobic interactions (Chen et al. 1998).
Additionally, VP1 binds directly to its DNA ge-
nome harbored within the viral particle (Car-
bone et al. 2004). To stabilize the virus structure,

each VP1 within a pentamerextends its carboxy-
terminal arm to an adjacent pentamer. Calcium
ions bound to the virus further strengthen this
interpentamer interaction (Stehle et al. 1996).
Finally, a network of VP1 disulfide bonds rein-
forces its overall architecture (Stehle et al. 1996).

To initiate infection, Py binds to glycolipid
receptors called gangliosides on the plasma
membrane (Smith et al. 2003; Tsai et al. 2003;
Low et al. 2006). After internalization, the virus
is transferred first to the endolysosome (Eash
et al. 2004; Querbes et al. 2006; Qian et al.
2009; Engel et al. 2011) and then the ER (Tsai
et al. 2003; Gilbert and Benjamin 2004; Qian
et al. 2009). Py transport to the ER, a phenom-
enon documented over 20 years ago by Helenius

PM
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Endolysosome

Pathway 1

Pathway 2

Pathway 3

Virus Virus Virus

Figure 1. Virus entry across different cellular membranes. To enter cells, viruses penetrate the plasma membrane
(PM) (pathway 1), endolysosome membrane (pathway 2), or ER membrane (pathway 3) to reach the cytosol.
Whereas many viruses including influenza virus, HIV, and PV breach the plasma or endolysosome membranes,
only Py transports across the ER membrane during cell entry.
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and coworkers using electron microscopy (EM)
(Kartenbeck et al. 1989), is unique as most ex-
tracellular ligands do not reach the ER after en-
docytosis. On reaching the ER, Py penetrates the
ER membrane to gain access to the cytosol and
then the nucleus, in which ensuing transcrip-
tion and replication of the viral genome lead to
lytic infection or cell transformation. Insights
into how Py crosses the ER membrane to gain
entry into the cytosol are emerging. Conceptu-
ally, Py’s entry into the cytosol via penetration
of the ER membrane can be divided into three
steps. First, the virus undergoes host-triggered
conformational changes in the ER, priming it
for membrane penetration. Second, the struc-
turally altered virus transports across the ER
membrane. Third, the virus is released into the
cytosol.

In the first membrane penetration step, ER
factors perturb the major forces stabilizing Py’s
structure to generate a membrane transport-
competent intermediate. One of the major
forces is the VP1 disulfide bond network. ER-
resident redox-active protein disulfide isomer-
ase (PDI) family members, including the ca-
nonical PDI, ERp57, and ERp72, can isomerize
or reduce the virus disulfide bonds (Fig. 2A,
step 1a) (Gilbert et al. 2006; Schelhaas et al. 2007;
Walczak and Tsai 2011; Nelson et al. 2012).
However, the precise combination of PDI pro-
teins engaging a specific Py family member
may differ because of subtle differences in the
viral disulfide bond arrangements. For some
Pys, a dimeric redox-inactive PDI protein called
ERp29 untangles the VP1 carboxy-terminal
arms (Magnuson et al. 2005; Rainey-Barger et al.
2007a,b; Nelson et al. 2012) exposing hydro-
phobic VP2 and VP3 to generate a hydrophobic
viral particle (Fig. 2A, step 1b) (Magnuson et al.
2005; Rainey-Barger et al. 2007a; Geiger et al.
2011). The hydrophobic virus is likely main-
tained in a soluble state by binding to the Hsp70
chaperone BiP (Fig. 2A, step 1c) (Geiger et al.
2011; Goodwin et al. 2011) in a reaction regu-
lated by the J-domain containing cochaperone
ERdj3 (Goodwin et al. 2011). The J domain
typically stimulates Hsp70’s ATPase activity to
control Hsp70-substrate interaction (Kampinga
and Craig 2010). No ER factors have been found

to extract Py’s bound calcium ions. Despite the
actions of the ER factors on Py, biochemical
analyses have revealed that the virus remains
as a large and intact particle in the ER (Inoue
and Tsai 2011).

In the second step, the hydrophobic virus
integrates into the ER membrane to initiate
membrane penetration (Fig. 2A, step 2) (Daniels
et al. 2006; Rainey-Barger et al. 2007b; Geiger
et al. 2011). At this juncture, ERAD membrane
components including Derlin-1 (Schelhaas et al.
2007; Jiang et al. 2009b), Derlin-2 (Lilley et al.
2006), Sel1L (Schelhaas et al. 2007), RMA1 (Gei-
ger et al. 2011), and BAP29/BAP31 (Geiger et al.
2011), have been proposed to facilitate Py’s exit
to the cytosol. However, as none of them have
been shown to interact with Py physically, their
actions on the virus may be transient or indi-
rect. Additionally, given the relatively large viral
particle size (40–50 nm in diameter) in the ER
(Inoue and Tsai 2011) compared to cellular pro-
teins, it is unlikely to cross a protein-conducting
channel of the ERAD machinery that accommo-
dates smaller cellular proteins. Instead, we hy-
pothesize that Py penetrates the ER lipid bilayer
directly. Trapping Py on the ER membrane to
ascertain its interacting partners under this con-
dition should distinguish these possibilities. Py
penetration across a lipid bilayer and not a pro-
tein channel will be consistent with the general
mechanism by which nonenveloped viruses
breach their limiting membranes (Tsai 2007). If
the large Py particle transports across the lipid
bilayer, we envision this processto deform the ER
membrane physically. The advent of electron
tomography (ET) capable of visualizing cell-
ular structures in three dimension (3D) at high
resolutions may reveal such ER membrane re-
modeling during virus penetration. Clearly, de-
ciphering Py’s precise membrane transport
mechanismwill require more rigorous biochem-
ical and imaging approaches.

In the final entry step, Py is released into the
cytosol (Fig. 2A, step 3). How this step is ac-
complished is the least understood. The cyto-
solic ATPase p97, which normally extracts mis-
folded cellular proteins into the cytosol during
ERAD (Ye et al. 2001), plays only a minor role
in releasing Py into the cytosol (Geiger et al.
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2011). Furthermore, although there is evidence
implicating the proteasome at this stage (Schel-
haas et al. 2007; Jiang et al. 2009b; Inoue and
Tsai 2011), it is unlikely to play a direct role. If
cytosol release and virus disassembly are cou-
pled, the cytosolic chaperone Hsc70 may be the

ideal candidate for catalyzing the release step as
it disassembles Py in vitro (Chromy et al. 2006).
Because all of these proposed cytosolic factors
play many other cellular functions, whether
they execute a direct role in catalyzing Py release
into the cytosol remains inconclusive. What is
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Figure 2. Model of Py and CT transport across the ER membrane. (A) On reaching the ER, PDI family
members (i.e., PDI, ERp72, and ERp57) disrupt disulfide bonds on Py’s surface (step 1a). ERp29 then extrudes
the VP1 carboxy-terminal arm to expose VP2 and VP3 (step 1b), generating a hydrophobic virus. This particle
is likely maintained in a soluble state by the BiP-ERdj3 chaperones (step 1c). The hydrophobic virus then
integrates into the ER membrane (step 2). ERAD membrane components including Derlin-1, Derlin-2, Sel1L,
BAP29/31, and RMA1 are postulated to mediate virus transport across the ER membrane. How Py is released
into the cytosol is not well-understood (step 3), but may rely on the ER membrane J proteins (i.e., DNAJ B12,
B14, and C18) stimulating binding between the virus and cytosolic Hsp70; reiterative cycles of this binding
“pull” the virus into the cytosol. (B) CT arrives to the ER by binding to the host ganglioside GM1 receptor. In
the ER, CT is transferred to the Derlin-1-Hrd1 membrane proteins (step 1) potentially mediated by BiP-J
protein chaperones. An unidentified reductase reduces CTA to generate the CTA1 peptide (step 2). Next, PDI
(bound to Derlin-1 and Hrd1), in its reduced state, unfolds CTA1 (step 3); ensuing PDI oxidation by Ero1
releases the unfolded toxin from PDI. The unfolded toxin presumably crosses the Hrd1 complex to reach the
cytosol (step 4). Finally, an unidentified cytosolic factor extracts the toxin into the cytosol to complete the
transport event (step 5).
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needed is the establishment of an in vitro trans-
location assay in which defined cytosolic factors
can be added to an ER membrane fraction pre-
loaded with Py; these putative factors’ ability to
stimulate virus release from the ER membrane
would offer compelling evidence of their direct
role in promoting cytosol release.

Interestingly, a recent report identified an ER
membrane-bound DNA J protein family (i.e.,
DNAJ B12, B14, and C18) in facilitating Py
ER-to-cytosol transport (Goodwin et al. 2011).
As these Hsp70 co-chaperones’ J domains are
expected to face the ER membrane’s cytosol-
ic surface, they may stimulate Hsp70’s ATPase
activity to promote Hsp70-Py interaction; re-
iterative cycles of this binding eventually “pull”
the virus into the cytosol. This scenario is rem-
iniscent of the manner by which BiP “pulls” sub-
strates into the ER lumen in a reaction controlled
by the J-domain containing Sec63 protein dur-
ing posttranslational translocation (Matlack et
al. 1999). Why so many members of this DNA
J protein family promote Py’s release into the
cytosol from the ER is unclear.

ER AS THE ENTRY SITE FOR
CHOLERA TOXIN

Similar to Py, certain bacterial toxins including
cholera toxin (CT) and shiga toxin (ST) hijack
the ERAD machinery to reach the cytosol to
induce cytotoxicity (Teter and Holmes 2002;
Lencer and Tsai 2003; Lord et al. 2005). As CT
is this toxin group’s prototype, we briefly de-
scribe how it co-opts the ERAD machinery dur-
ing entry. On reaching the ER from the cell sur-
face, CT is transferred to a membrane complex
composed of the Derlin-1 (Bernardi et al. 2008;
Dixit et al. 2008) and Hrd1 E3 ubiquitin ligase
(Bernardi et al. 2010) membrane proteins (Fig.
2B, step 1) postulated to form the ERAD trans-
location channel (Carvalho et al. 2010; Smith
et al. 2011). How this complex captures CT is
unknown. After reaching the Derlin-1-Hrd1
complex, the toxin’s CTA subunit is reduced
to generate the toxic CTA1 fragment (Fig. 2B,
step 2). PDI (bound to the Derlin-1-Hrd1 com-
plex) then acts as a redox-dependent chaperone
to unfold CTA1 (Fig. 2B, step 3) (Forster et al.

2009; Tsai et al. 2001). In its reduced state, PDI
binds to and unfolds CTA1; PDI oxidation by
Ero1 alters PDI’s conformation, enabling it to
release the unfolded toxin (Tsai and Rapoport
2002; Moore et al. 2010). A recent high-resolu-
tion PDI X-ray structure confirms that it under-
goes a redox-driven structural change (Wang
et al. 2012). That CTA1 hijacks ER redox pro-
teins for cytosol entry parallels Py’s use of these
factors during its ER membrane transport.

Once CTA1 is released from PDI, it presum-
ably transports across the Hrd1 complex (Fig.
2B, step 4) (Carvalho et al. 2010). The driving
force propelling the toxin to the cytosol is un-
known. One possibility is CTA1’s propensity
to refold (Rodighiero et al. 2002). In this sce-
nario, the toxin’s ability to refold rapidly on
emerging the ER membrane’s cytosolic surface
prevents it from backsliding. A cytosolic factor
then extracts the folded toxin from the ER mem-
brane, releasing it into the cytosol (Fig. 2B,
step 5). Similar to Py, p97 plays a modest role
in this step (Abujarour et al. 2005; Kothe et al.
2005). Thus, we postulate another cytosolic fac-
tor ejects the toxin into the cytosol. An obvious
distinction between CTA1 and a typical ERAD
substrate’s fate in the cytosol is that the toxin is
not degraded by the proteasome. How the toxin
evades this degradative machinery is unclear.

ER’S ROLE IN VIRUS REPLICATION
AND ASSEMBLY

After entry into the cytosol, an incoming bacte-
rial toxin exerts its cytotoxic effect. In contrast,
an incoming viral particle after entry replicates
and assembles to generate new progenies to
complete its infection cycle. Viral replication
and assembly are often supported by a host
cell’s membranous network. These membranes
function as scaffolds to recruit viral and host
components necessary for replication and as-
sembly. As examples, influenza virus (Compans
and Dimmock 1969) and HIV (Ono and Freed
2001) assembly is supported by the plasma
membrane (Fig. 3, site 1), Semliki Forest virus
(Kujala et al. 2001) and Rubella virus (Magli-
ano et al. 1998), RNA replication by the endo-
lysosome (Fig. 3, site 2), Flock House virus
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(Miller et al. 2001), genome replication by the
mitochondria (Fig. 3, site 3), and Herpes sim-
plex virus (Mettenleiter et al. 2006) assembly by
the inner nuclear membrane (Fig. 3, site 4).

Remarkably, diverse viruses including RNA
and DNA viruses belonging to both the envel-
oped and nonenveloped virus families rear-
range the ER membrane to generate a vast array
of ER-derived structures, with each structure
postulated to facilitate viral replication and as-
sembly (Fig. 3, site 5) (Stephens and Compans
1988; Miller and Krijnse-Locker 2008; den Boon
and Ahlquist 2010). For instance, the enveloped

hepatitis C virus (HCV) promotes formation of
an ER-derived membranous matrix referred to
as “membranous webs” important for viral rep-
lication and assembly (Egger et al. 2002), and
the enveloped Dengue virus (DENV) generates
so-called vesicle packets and convoluted mem-
branes also presumed to facilitate genome rep-
lication and virus assembly (Welsch et al. 2009).
For the enveloped vaccinia virus (VV), the only
known DNA virus to replicate in the cytosol
and not the nucleus, the ER membrane encloses
discrete cytoplasmic foci in which active viral
DNA replication is thought to take place

Endolysosome Mitochondria
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Nucleus
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Influenza virus

and HIV assembly

Flock House virus
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Nuclear membrane

Herpes simplex virus
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Figure 3. Viral replication and assembly in different membranous networks. Distinct host membranes support
replication and assembly of different viruses. As examples, influenza virus and HIVassembly is supported by the
plasma membrane (site 1), Semliki Forest virus and Rubella virus RNA replication by the endolysosome (site 2),
Flock House virus genome replication by the mitochondria (site 3), Herpes simplex virus assembly by the inner
nuclear membrane (site 4), and Hepatitis C virus, Dengue virus, vaccinia virus, and rotavirus replication and
assembly by the ER membrane (site 5).
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(Tolonen et al. 2001). In the case of the non-
enveloped rotavirus, the virus buds into the ER
lumen to generate a transient enveloped inter-
mediate, with removal of the viral envelope in
the ER lumen required to complete virus assem-
bly. We will not describe each case in detail as
they are already covered in many excellent re-
views (Miller and Krijnse-Locker 2008; den
Boon and Ahlquist 2010). Instead, we focus
here on how HCV induces ER-derived membra-
nous webs to support its replication and assem-
bly, and how rotavirus uses the ER for assembly.
These examples illustrate ER’s remarkable ver-
satility in facilitating different stages of the virus
life cycle.

HCV, which infects approximately 170 mil-
lion people worldwide, causes chronic hepati-
tis, liver cirrhosis, and hepatocellular carcino-
ma. This virus is a member of the Flavivirus
family. Its positive-strand RNA genome encodes
ten structural and nonstructural proteins (i.e.,
core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A,
and NS5B) (Reed and Rice 2000). The core pro-
teins and the RNA genome constitute the nucle-
ocapsid, and are surrounded by a host-derived
envelope. Embedded in this envelope are the E1
and E2 glycoproteins that mediate viral attach-
ment and entry. To infect cells, HCV binds to
host receptors, becomes endocytosed, and un-
dergoes pH-dependent membrane fusion in an
endosomal compartment that enables the viral
core proteins and genome access to the cytosol
where genome replication ensues (Ploss and Ev-
ans 2012).

HCV replicates its genome specifically on
the cytosolic surface of a virus-induced, ER-de-
rived membranous system called the membra-
nous web (Fig. 4A). Functionally, this web
harbors the HCV replication complex that pro-
motes replication with assistance from viral non-
structural proteins along with an increasing list
of cellular factors (Wolk et al. 2008). Although
the HCV membranous web is found juxtaposed
to the rough ER (Egger et al. 2002), whether it is
physically connected to or detached from the ER
membrane network remains unclear. Web for-
mation is thought to initiate when the ER mem-
brane-bound viral nonstructural protein NS5A
recruits and activates phosphatidylinositol 4-ki-

nase-a (PI4KIIIa) (Fig. 4A) (Berger et al. 2009,
2011; Reiss et al. 2011), thereby increasing the
local concentration of phosphatidylinositol-
4-phosphate (PI4P). PI4P might itself be an im-
portant membrane constituent that supports
membranous web structural integrity. Alter-
natively, PI4P may recruit downstream effec-
tor proteins such as oxysterol-binding protein
1 (OSBP1) to form a sterol-rich environment
surrounding the membranous web essenti-
al for HCV replication (Amako et al. 2009).
Recruitment of the host protein proline-ser-
ine-threonine phosphatase-interacting protein
2 (PSTPIP2) by the nonstructural proteins
NS4B and NS5A to the membranous web also
appears to mediate web formation (Chao et al.
2012). Interestingly, PSTPIP2 contains a F-BAR
domain that has membrane-deforming acti-
vity (Frost et al. 2008). This property enables
PSTPIP2 to induce membrane curvature on
the ER membrane to promote web formation
(Chao et al. 2012). In this context, NS4B itself
can also cause web formation (Egger et al. 2002),
suggesting that both viral and host components
play key roles in sculpting the ER-derived mem-
branous web.

In addition to supporting replication, the
membranous web is also postulated to be the
virus assembly site. Within this web, lipid drop-
lets (LDs),a storage organelle forneutral lipids in
cells (Guo et al. 2009), execute a key viral assem-
bly role (Miyanari et al. 2007). Acting as a scaf-
fold, LD captures HCV core proteins on its sur-
face (Fig. 4B). The LD-core protein interaction is
crucial for production of infectious virus (Bou-
lant et al. 2007; Shavinskaya et al. 2007). As LD is
located proximal to the replication complex po-
sitioned on the surface of the membranous web,
core proteins released from LD encapsulate the
newly synthesized RNA genome, forming the
nucleocapsid (Fig. 4B, step 1). This process likely
occurs within an invagination on the membra-
nous web distinct from where replication takes
place. The viral P7 and nonstructural proteins
NS2, NS3, and NS4A have been implicated in
the release of core proteins from the LD (Boson
et al. 2011; Counihan et al. 2011). Once the nu-
cleocapsid is formed, it buds into the lumen of
the membranous web, generating an enveloped
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viral particle with E1 and E2 glycoproteins dis-
played on the surface (Fig. 4B, step 2). If the
membranous web remains connected to the ER
membrane network, the newly assembled viral
particle can be secreted from the cell via the clas-
sic secretory pathway. Should the web be discon-

nected from the ER, the virus-containing vesicle
can reconnect with the secretory pathway by fus-
ing with elements of the secretory pathway such
as the Golgi complex.

Replication and assembly of DENV, a flavi-
virus that causes dengue fever, show interesting
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Figure 4. ER-derived membranous web as the HCV replication and assembly site (A) HCV replication and
assembly occur in the context of a virus-induced, ER-derived membrane matrix called the membranous web. It
remains unclear whether the membranous web is connected to or detached from the ER membrane network. To
initiate web formation, the viral nonstructural protein NS5A recruits and activates PI4KIIIa, generating PI4P.
PI4P may be crucial to maintain web structural integrity, or it could recruit OSBP1 to create a sterol-rich
environment that supports HCV RNA replication. Membrane remodeling proteins such as the viral nonstruc-
tural protein NS4B and host protein PSTPIP2 sculpt the ER membrane to promote web formation. (B) The
membranous web is also thought to be the HCV assembly site. Lipid droplet (LD), situated proximal to the
replication complex on the web surface, captures core proteins. Core proteins are released from LD, delivered to
the assembly site on the membranous web, and encapsulate the RNA genome, generating the nucleocapsid (step
1). This reaction is mediated by P7 and the nonstructural proteins NS2, NS3, and NS4A. Nucleocapsid forma-
tion is thought to take place within an invagination on the membranous web distinct from where replication
occurs. Once the nucleocapsid is formed, it buds into the lumen of the membranous web to form the enveloped
virus with concomitant incorporation of the E1 and E2 glycoproteins (step 2). The HCV particle is then secreted
to the extracellular milieu.
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parallels to and differences from HCV. For in-
stance, akin to HCV’s NS4B, DENV’s nonstruc-
tural protein NS4A rearranges the ER mem-
brane (Miller et al. 2007), leading to formation
of vesicle packets and convoluted membranes
(Welsch et al. 2009). Additional viral and host
components (Khadka et al. 2011) are likely re-
cruited to the ER membrane to promote this
reaction. DENV also employs LD for particle
formation (Samsa et al. 2009), similar to HCV
assembly. However, in contrast to the less obvi-
ous physical connection between the HCV-in-
duced membranous web and ER, high-resolu-
tion ET analyses show that the DENV-induced
ER-derived structures are clearly interconnected
in one continuous ER membrane network
(Welsch et al. 2009). Perhaps a similar approach
using ETwill better clarify the physical relation-
ship between HCV’s membranous web and the
ER membrane network.

The ER also aids in rotavirus assembly, par-
ticularly during the late stage of this process.
This virus belongs to the reovirus family and
is an important causative agent for childhood
diarrhea. Structurally, the capsid is an icosahe-
dral particle with a diameter of approximately
100 nm; its double-stranded RNA genome is
enclosed within the particle (Trask et al. 2012).
The capsid consists of three layers: the inner
most layer (called core shell), the middle layer,
and the outer layer. The core shell is formed by
120 copies of VP2 dimers arranged as an icosa-
hedron, with the replication complex and the
genome encapsulated (McClain et al. 2010).
The middle layer is formed by up to 260 VP6
trimers that interact with VP2 dimers to stabi-
lize the core shell (Mathieu et al. 2001). The
outer layer is composed of VP7 and VP4: VP7
constitutes a large part of the outer layer and
makes extensive contact with the middle lay-
er, whereas VP4 protrudes radially from the
particle as spike-like structures (Settembre et
al. 2011). A viral intermediate containing the
core shell and middle layer is called a double-
layer particle (DLP) and a mature infectious
particle harboring all three layers is referred
to as a triple-layer particle (TLP). DLP-to-TLP
morphogenesis is intimately associated with
the ER.

To form TLP, DLP must gain access into the
ER lumen to acquire the outer layer (Fig. 5).
Once formed, TLP exits the host cell via lysis
(Musalem and Espejo 1985) or secretion (Jour-
dan et al. 1997). The unusual DLP-to-TLP con-
version is composed of two steps. The first step
requires DLP budding into the ER lumen, gen-
erating a transient enveloped intermediate (Fig.
5, step 1). The viral nonstructural membrane
protein NSP4 executes a key role in this step.
As a tetramer on the ER membrane (Bowman
et al. 2000), NSP4 recruits DLP and VP4 to the
ER membrane’s cytosolic surface (Petrie et al.
1984). The energy source required to deform
the ER membrane to bud DLP into the ER lu-
men is not clear, although multivalent interac-
tions between NSP4 and DLP may trigger this
reaction (Taylor et al. 1993). VP4 is dispensable
for budding as its knockdown generates TLP
(Dector et al. 2002), albeit spike-less as the re-
sulting TLP lacks VP4. That the ER membrane
supports DLP budding into the ER lumen re-
flects this membrane’s propensity for promot-
ing budding reactions, even though this reaction
proceeds in the opposite direction to conven-
tional ER budding.

How does VP7 assemble on DLP’s surface
after budding? Using its signal sequence, VP7
translocates into the ER lumen where the sig-
nal sequence is cleaved. However, this cleaved
unassembled VP7 remains tethered to the ER
membrane via noncovalent interactions with
its signal peptide (Stirzaker and Both 1989).
VP7 also interacts with NSP4’s amino termi-
nus on the ER membrane (Maass and Atkin-
son 1990). Thus the emerging picture of the
transient enveloped intermediate is an ER-de-
rived lipid bilayer encasing a VP4-bound DLP
with unassembled VP7 decorated on the outer
membrane surface (Fig. 5, transient enveloped
intermediate).

In the second maturation step, the transient
membrane layer is removed, which enables VP7
to dock and assemble on the VP4-bound DLP,
forming infectious TLP; NSP4 release from DLP
is coordinated with these events (Fig. 5, step 2).
Although the mechanics of this process re-
mains unclear, VP7 is thought to play a crucial
role as VP7 knockdown fails to block viral
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DLP

TLP

VP4

NSP4

Unassembled VP7

Assembled VP7

Removal of lipid bilayer

 by VP7 and NSP4 

Transient enveloped

 intermediate

Step 1

Step 2

ER lumen

Cytosol

Secretion Lysis

Figure 5. ER as the final rotavirus assembly site. Infectious rotavirus particle formation requires DLP-to-TLP
conversion. This process requires two steps that occur in or surrounding the ER. The first step is DLP budding
into the ER lumen, generating a viral enveloped intermediate (step 1). This step is initiated when NSP4 recruits
DLP and VP4 to the ER membrane. ER membrane deformation by the DLP-NSP4-VP4 complex generates a
transient enveloped intermediate. Because unassembled VP7 is tethered on the ER membrane’s lumenal surface
prior to budding, formation of the transient enveloped intermediate “captures” VP7 that remains topologically
facing the ER lumen. The second step necessitates removal of the transient membrane layer (step 2), a process
likely mediated by VP7 and NSP4. This step is accompanied by VP7 conformational change that enables it to
dock and assemble on DLP. Additionally, NSP4 is released from DLP during this process. Mature TLP finally
exits the host cell via lysis or secretion.
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budding but causes enveloped intermediate
accumulation in the ER lumen (Lopez et al.
2005; Cuadras et al. 2006). How might VP7 pro-
mote envelope shedding? In addition to serving
as a structural protein, VP7 possesses membrane
lytic activity (Charpilienne et al. 1997). There is
evidence that unassembled VP7 tethered on
ER membrane’s lumenal side exists in a differ-
ent conformation when compared to its na-
tive assembled structure on TLP’s surface (Kab-
cenell et al. 1988). Thus, VP7 likely undergoes
conformational rearrangements after budding,
exposing its membrane-lytic portion to disrupt
envelope integrity. Although NSP4 also has
membrane lytic activity (Browne et al. 2000),
its function in removing the transient envelope
is difficult to assess as NSP4 knockdown attenu-
ates DLP assembly severely (Lopez et al. 2005).
Topologically, VP7 but not NSP4 of the transient
enveloped intermediate is exposed to the ER lu-
men. Thus, should ER factors trigger membrane
disruption, VP7 would be the likely candidate to
engage the ER proteins. Importantly, knock-
down of ER-resident chaperones including BiP
and PDI perturb proper rotavirus ER morpho-
genesis (Maruri-Avidal et al. 2008), further sup-
porting ER’s role during rotavirus DLP-to-TLP
assembly.

Clarifying how the transient enveloped in-
termediate’s membrane is removed to facilitate
TLP formation is unquestionably the most cru-
cial step in illuminating rotavirus assembly.
What ER factors impart conformational chang-
es on VP7 to render it membrane penetration-
competent? What is the nature of these VP7
structural changes? Does the envelope simply
“dissolve” to release DLP or does DLP cross
the envelope leaving an intact membrane be-
hind, potentially containing NSP4? And final-
ly, how does VP7 dock and assemble on DLP
as NSP4 is coordinately removed from DLP?
Perhaps a reconstitution system in which ER
proteins are added to various rotavirus ER in-
termediates to drive the next assembly step will
provide a better understanding of this dynam-
ic process. Moreover, high-resolution cryo-EM
and ET approaches could be useful in revealing
a 3D view of the ER-localized enveloped inter-
mediate.

ER’S FUNCTION DURING VIRAL
IMMUNE EVASION

In addition to supporting entry, replication,
and assembly, the ER also affords viruses an
opportunity to manipulate the host immune
system to sustain the infection course. Promi-
nent examples include proteasomal destruction
of MHC class I molecule triggered by the hu-
man cytomegalovirus (HCMV)-encoded trans-
membrane proteins US2 and US11 (Wiertz
et al. 1996; Machold et al. 1997) in a pathway
that requires the ERAD machinery. By degrad-
ing MHC class I molecules, HCMV effective-
ly prevents infected cells from properly present-
ing viral antigens on their surface. Similarly, the
murine g herpesvirus encodes a membrane-
bound E3 ubiquitin ligase called mK3 that pro-
motes MHC class I degradation via the ERAD
pathway (Wang et al. 2006). Another salient ex-
ample is observed in HIV, where its Vpu protein
also coopts the ERAD machinery to down-reg-
ulate the host entry receptor CD4 (Willey et al.
1992; Magadan et al. 2010). CD4 down-regula-
tion leads to a series of events including dis-
ruption of T cell activation (Lanzavecchia et al.
1988), ultimately contributing to robust HIV in-
fection. As there are many reviews on how virus-
es use the ER to thwart the host immune system
(Loureiro and Ploegh 2006; Lindwasser et al.
2007; Hansen and Bouvier 2009; Jackson et al.
2011), this topic will not be covered extensively
in this article. Nonetheless, it unveils another
aspect of the ER function that viruses hijack
to maintain infection.

CONCLUDING REMARKS

A virus navigates through the host cell’s envi-
ronment to chart the most effective infection
strategy. This strategy not only requires it to
evade pathways that trap or degrade itself, but
more importantly, delivers it to an appropriate
intracellular destination where it can replicate
and assemble. Increasing evidence shows host
membranes play crucial roles in supporting vi-
rus infection. There is no better example than
the ER organelle, where many viruses have
evolved to co-opt ER’s lumenal and membrane
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contents to achieve proper entry, replication, or
assembly.

Although only Py family members use the
ER for entry, many viruses including HCV,
DENV, VV, and rotavirus, use the ER mem-
brane to support their replication and assembly.
In the case of Py entry, elegant studies have
identified ER factors that prime the virus for
ER membrane penetration. However, elucidat-
ing the specific ER membrane machinery and
cytosolic factors that complete the transport
reaction remains a challenge. This viral entry
field should look to the field of ER membrane
translocation where transport of a defined cel-
lular substrate across the ER membrane can be
reconstituted using purified translocation com-
ponents (Brundage et al. 1990; Akimaru et al.
1991; Gorlich and Rapoport 1993). Such a feat
can be accomplished for Py when more rigorous
biochemical strategies are applied.

Powerful imaging approaches, in particular
cryo-ET, have revealed formation of virus-in-
duced ER-derived structures considered critical
for viral replication and assembly. In many in-
stances, co-localization of these structures with
the replicated genome and assembling inter-
mediates implicate these structures as virus rep-
lication and assembly sites. Although plausible,
convincingly showing these structures support
replication and assembly requires the imaging
findings to be reinforced by in vitro and cell-
based studies. For example, can the virus-in-
duced ER-derived structures be isolated and
shown to be active in promoting a specific rep-
lication or assembly step? In cells, will blocking
formation of the ER-derived structures prevent
virus replication or assembly? A more compre-
hensive approach combining classical biochem-
ical and cell biological methods coupled with
state-of-the-art imaging techniques is needed
to establish firmly a causal relationship between
these ER-derived structures and their roles in
viral infection.

Historically, clarifying the nature of virus–
host cell interactions has illuminated fundamen-
tal cellular processes. In this review, we observe
how ER’s potential functions can be unveiled
through its interaction with viruses. Specifically,
ER-resident factors not only interact with en-

dogenous substrates but also viral pathogens
to trigger their entry and assembly. Additional-
ly, the ER membrane that normally accommo-
dates budding reactions can undergo virus-
induced structural rearrangements to generate
ER-derived structures postulated to be impor-
tant for replication and assembly. Although not
discussed, the abundant ER membrane surface
can also serve to recruit different viral compo-
nents to promote efficient genome replication.
Such revelations regarding ER’s functional ca-
pacity will onlyexpand as we continue to explore
its role in facilitating pathogen infection.
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