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Toll-like receptors (TLRs) are protective immune sen-
tries that sense pathogen-associated molecular patterns
(PAMPs) such as unmethylated double-stranded DNA
(CpG), single-stranded RNA (ssRNA), lipoproteins, lipo-

polysaccharide (LPS), and flagellin. In innate immune
myeloid cells, TLRs induce the secretion of inflammatory
cytokines (Newton and Dixit 2012), thereby engaging lym-
phocytes to mount an adaptive, antigen-specific immune
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Figure 1. TLR signaling (simplified view).
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response (see Fig. 1) that ultimately eradicates the invading
microbes (Kawai and Akira 2010).

Identification of TLR innate immune function began
with the discovery that Drosophila mutants in the Toll gene
are highly susceptible to fungal infection (Lemaitre et al.
1996). This was soon followed by identification of a human
Toll homolog, now known as TLR4 (Medzhitov et al. 1997).
To date, 10 TLR family members have been identified in
humans, and at least 13 are present in mice. All TLRs

consist of an amino-terminal domain, characterized by
multiple leucine-rich repeats, and a carboxy-terminal TIR
domain that interacts with TIR-containing adaptors. Nu-
cleic acid–sensing TLRs (TLR3, TLR7, TLR8, and TLR9)
are localized within endosomal compartments, whereas the
other TLRs reside at the plasma membrane (Blasius and
Beutler 2010; McGettrick and O’Neill 2010). Trafficking of
most TLRs from the endoplasmic reticulum (ER) to either
the plasma membrane or endolysosomes is orchestrated by
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Figure 2. TLR signaling. (Adapted with kind permission of Cell Signaling Technology [http://www.cellsignal.com].)
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ER-resident proteins such as UNC93B (for TLR3, TLR7,
TLR8, and TLR9) and PRAT4A (for TLR1, TLR2, TLR4,
TLR7, and TLR9) (Blasius and Beutler 2010). Once in the
endolysosomes, TLR3, TLR7, and TLR9 are subject to step-
wise proteolytic cleavage, which is required for ligand bind-
ing and signaling (Barton and Kagan 2009). For some
TLRs, ligand binding is facilitated by coreceptors, includ-
ing CD14 and MD2.

Following ligand engagement, the cytoplasmic TIR do-
mains of the TLRs recruit the signaling adaptors MyD88,
TIRAP, TRAM, and/or TRIF (see Fig. 2). Depending on the
nature of the adaptor that is used, various kinases (IRAK4,
IRAK1, IRAK2, TBK1, and IKK1) and ubiquitin ligases
(TRAF6 and pellino 1) are recruited and activated, culmi-
nating in the engagement of the NF-kB, type I interferon,
p38 MAP kinase (MAPK), and JNK MAPK pathways (Ka-
wai and Akira 2010; Morrison 2012). TRAF6 is modified by
K63-linked autoubiquitylation, which enables the recruit-
ment of IkB kinase (IKK) through a ubiquitin-binding do-
main of the IKKg (also known as NEMO) subunit. In
addition, a ubiquitin-binding domain of TAB2 recognizes
ubiquitylated TRAF6, causing activation of the associated
TAK1 kinase, which then phosphorylates the IKKb subunit.
Pellino 1 can modify IRAK1 with K63-linked ubiquitin,
allowing IRAK1 to recruit IKK directly. TLR4 signaling
via the TRIF adaptor protein leads to K63-linked polyubi-
quitylation of TRAF3, thereby promoting the type I inter-
feron response via interferon regulatory factor (IRFs)
(Hacker et al. 2011). Alternatively, TLR4 signaling via
MyD88 leads to the activation of TRAF6, which modifies
cIAP1 or cIAP2 with K63-linked polyubiquitin (Hacker
et al. 2011). The cIAPs are thereby activated to modify
TRAF3 with K48-linked polyubiquitin, causing its protea-
somal degradation. This allows a TRAF6–TAK1 complex to
activate the p38 MAPK pathway and promote inflammato-
ry cytokine production (Hacker et al. 2011). TLR signaling
is turned off by various negative regulators: IRAK-M and
MyD88 short (MyD88s), which antagonize IRAK1 activa-
tion; FADD, which antagonizes MyD88 or IRAKs; SHP1
and SHP2, which dephosphorylate IRAK1 and TBK1, re-
spectively; and A20, which deubiquitylates TRAF6 and IKK
(Flannery and Bowie 2010; Kawai and Akira 2010).

Deregulation of the TLR signaling cascade causes sev-
eral human diseases. Patients with inherited deficiencies
of MyD88, IRAK4, UNC93B1, or TLR3 are susceptible to
recurrent bacterial or viral infections (Casanova et al. 2011).
Chronic TLR7 and/or TLR9 activation in autoreactive

B cells, in contrast, underlies systemic autoimmune dis-
eases (Green and Marshak-Rothstein 2011). Furthermore,
oncogenic activating mutations of MyD88 occur frequently
in the activated B-cell-like subtype of diffuse large B-cell
lymphoma and in other B-cell malignancies (Ngo et al.
2011). Inhibitors of various TLRs or their associated kinas-
es are currently being developed for autoimmune or in-
flammatory diseases and also hold promise for the
treatment of B-cell malignancies with oncogenic MyD88
mutations. Many TLR7 and TLR9 agonists are currently in
clinical trials as adjuvants to boost host antitumor respons-
es in cancer patients (Hennessy et al. 2010).
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