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Genome-wide analysis of translational control has taken strides in recent years owing to the
advent of high-throughput technologies, including DNA microarrays and deep sequencing.
Global studies have unraveled a principal role, among posttranscriptional mechanisms, for
mRNA translation in determining protein levels in the cell. The impact of translational control
in dynamic regulation of the proteome under different conditions is increasinglyappreciated.
Here we review genome-wide studies that use high-throughput techniques and bioinfor-
matics to assess the role of mRNA translation in the regulation of protein levels; we also
discuss how genome-wide data on mRNA translation can be obtained, analyzed, and used to
identify mechanisms of translational control.

The gene expression pathway leading to pro-
tein production consists of many mecha-

nistic layers that are subject to regulation. They
are commonly grouped into transcriptional or
posttranscriptional types. Some posttranscrip-
tional mechanisms, including RNA splicing,
mRNA editing, and posttranslational modifica-
tion, determine the identity and activity of the
protein products, whereas others control pro-
tein levels by regulating transport of mRNA
from the nucleus to the cytoplasm, mRNA
stability, translation, and protein stability. De-
termining how posttranscriptional regulation
contributes to protein levels and, more precise-
ly, how regulation of translation impacts gene

expression have attracted substantial attention
during the last decade.

POSTTRANSCRIPTIONAL MECHANISMS
SUBSTANTIALLY AFFECT GENE EXPRESSION
LEVELS AT A GENOME-WIDE SCALE

Several studies have examined the extent to
which posttranscriptional mechanisms affect
protein expression by comparing mRNA and
protein levels, either in one cell state or across
different conditions. This is typically based on
Pearson or Spearman correlation coefficients,
denoted as rp or rs, respectively (for examples,
see Fig. 1). Both range from 21 to 1, where 0
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Figure 1. Approaches to examine the contribution of posttranscriptional regulation to protein expression. (A)
Comparison of mRNA and protein levels from a single condition. Measured mRNA and protein levels are
compared to indicate posttranscriptional regulation across genes using r2

p , which describes the fraction of the
observed protein levels that are explained by mRNA levels. (B) Cross-species analysis of mRNA and protein
levels. mRNA and protein levels are obtained in parallel from two species, and cross-species levels are compared.
Higher correlation of protein levels across species as compared with mRNA levels indicates posttranscriptional
regulation that maintains conserved protein levels. (C) Parallel measurements of mRNA and protein levels
across many conditions. Per gene mRNA and protein levels are compared across conditions to estimate dynamic
regulation of gene expression by posttranscriptional mechanisms. As indicated by r2

p, gene 3 shows more
posttranscriptional regulation as compared with gene 1. Simulated numbers are shown.
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indicates no correlation and 21 and 1 indicate
perfect negative and positive correlations, re-
spectively. Whereas Pearson correlation is based
on actual values, Spearman correlation uses
ranks (ordered by values) and is therefore
less influenced by extreme values (outliers). A
squared Pearson correlation value (r2

p ; the coef-
ficient of determination) describes how much
of the variance of one factor is explained by that
of the other factor. For example, a Pearson cor-
relation between protein and mRNA levels of
0.6 indicates that 36% (0.62) of the protein lev-
els can be explained by mRNA levels. Thus, a
lower rs or r2

p between mRNA and protein levels
indicates more posttranscriptional regulation.

Comparison of mRNA and protein levels
across genes under one condition (e.g., steady-
state growth) has been conducted in species
ranging from bacteria to humans. These studies
attempted to assess intrinsic posttranscription-
al regulation of gene expression (Fig. 1A). Pio-
neering studies in yeast established genome-
wide differences in expression levels between
mRNAs and proteins, although they assessed
only a fraction of all yeast genes (Futcher et al.
1999; Gygi et al. 1999). Subsequent studies based
on measurements of more genes estimated r2

p

from 0.14 to 0.73 (Lu et al. 2007; Schmidt et al.
2007; Ingolia et al. 2009) or rs of 0.57 and 0.58
(Ghaemmaghami et al. 2003; Beyer et al. 2004).
In bacteria, r2

p between 0.20 and 0.47 has been
reported (Nie et al. 2006; Lu et al. 2007; Jayapal
et al. 2008). Moreover, in a recent single-cell study
in Escherichia coli, mean mRNA copies and pro-
tein copies showed r2

p of 0.29 and 0.59 using deep
sequencing of RNA (RNA-seq) and fluorescence
in situ hybridization (FISH), respectively (Tani-
guchi et al. 2010). These studies indicate that
posttranscriptional regulation is used in unicel-
lular organisms, although estimates of its extent
vary substantially across studies.

Similar studies performed in multicellular
organisms, including Arabidopsis thaliana (Bae-
renfaller et al. 2008), Drosophila melanogaster,
and Caenorhabditis elegans (Schrimpf et al.
2009), all indicated substantial posttranscrip-
tional regulation (r2

p between 0.27 and 0.46
[Baerenfaller et al. 2008] and rs of �0.6
[Schrimpf et al. 2009]). Moreover, a recent

study of a human cancer cell line reported a
modest r2

p of 0.29 from more than 1000 genes
(Vogel et al. 2010). Interestingly, these investi-
gators built a model that predicts protein levels
from measured mRNA levels and a variety of
mRNA properties that affect posttranscriptional
regulation, such as the length of the 30 untrans-
lated region (UTR). The r2

p between the predict-
ed and the measured protein levels increased
dramatically as compared with the initial r2

p

between mRNA and protein levels (from 0.29–
0.67). Because the data used to derive the model
were also used to generate the predictions, creat-
ing the possibility of data overfitting (meaning
that the prediction outcome is heavily influenced
by the data used to construct the model), future
studies will be needed to assess the generality of
the model. Despite this limitation, the study sug-
gests that mRNA sequence features systematically
impact protein production through posttran-
scriptional control.

Cross-species comparisons provide an alter-
native approach for assessing the importance of
posttranscriptional regulation (Fig. 1B). In such
studies, mRNA and protein levels from one spe-
cies are compared with their orthologs in a dif-
ferent species. Assuming that the measurement
error is similar for mRNA and protein levels, a
higher cross-species correlation between protein
levels than between mRNA levels would suggest
a role of posttranscriptional control in maintain-
ing conserved protein levels. Based on this rea-
soning, Schrimpf et al. (2009) reported rs of 0.79
and 0.47 for protein and mRNA levels, respective-
ly, when comparing C. elegans with D. melanoga-
ster. A follow-up study examined all paired com-
parisons between seven species and found a
higher cross-species correlation for protein levels
in 17 out of 21 comparisons (Laurent et al. 2010).
These comparisons included mRNA measure-
ments obtained by RNA-seq, which is thought
to better reflect relative mRNA levels across genes
as compared with DNA microarrays (Laurent
et al. 2010). Cross-species comparisons thus pro-
vide further support for the idea that posttran-
scriptional mechanisms substantially contribute
to determination of protein levels.

A common critique of correlation-based
mRNA/protein comparative studies is that the
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magnitude of systematic and random variations
inherent in mRNA and protein analysis tools,
such as DNA microarrays, RNA-seq, and mass
spectrometry, is often unknown. This is of sig-
nificance because more variation will lead to
lower correlation, giving the appearance of a
greater degree of posttranscriptional regulation.
This ambiguity in the interpretation of rs or r2

p

has been addressed in some studies by assessing
how much variation affects the rs or r2

p values.
Another caveat is that the half-lives of proteins
and their cognate mRNAs often differ, which
can reduce rs or r2

p if the mRNA or protein lev-
els are obtained under non-steady-state condi-
tions. Indeed, in mouse NIH/3T3 cells, mRNAs
show a median half-life of 9 h, whereas proteins
have a median half-life of 46 h (Schwanhausser
et al. 2011), making protein level regulation
linger over a longer time period relative to the
corresponding mRNA. Caution is therefore
needed when interpreting rs or r2

p values.

DYNAMIC REGULATION OF GENE
EXPRESSION AT THE
POSTTRANSCRIPTIONAL LEVEL

In addition to the studies discussed above,
which evaluate intrinsic protein levels in the
cell, progress has been made in understanding
the role of posttranscriptional mechanisms in
dynamic regulation of gene expression. Three
approaches have been applied to determine
whether the protein product levels of individual
genes can change independently of their mRNA
levels.

In the first approach, mRNA and protein
levels are measured under two conditions, and
differences between the conditions are calcu-
lated for mRNA and protein levels separately.
These per gene differences in mRNA and pro-
tein levels are then compared across all genes.
This approach using yeast produced rs of 0.21 or
0.45 (Griffin et al. 2002; Washburn et al. 2003).
A similar study of two human cell lines reported
an r2

p of 0.41 (Tian et al. 2004). Importantly, the
latter study estimated the maximum obtainable
r2

p to 0.81 (given the variation in measurements
of mRNA and protein levels) using a simulation
approach, suggesting a substantial contribution

from posttranscriptional mechanisms in the
dynamic regulation of gene expression (r2

p of
0.41 vs. 0.81).

The second approach involves parallel mea-
surement of mRNA and protein levels at sev-
eral time points following a treatment. This
approach also allows for assessment of the ex-
tent to which differences in half-lives between
mRNAs and proteins can affect the result. A
study using yeast monitored the mRNA and
protein levels in untreated cells and at six time
points following treatment with rapamycin
(Fournier et al. 2010). The investigators found
that for proteins whose expression had changed,
their mRNA levels at 1 h after treatment showed
the maximum correlation with protein levels
6 h after treatment—thus, a delayed adjustment
of protein levels to mRNA levels. Yet, the r2

p only
reached a maximum of 0.36 throughout the ex-
periment. In a similarly designed experiment of
mouse embryonic stem cell differentiation with
four time points, Lu et al. (2009) concluded that
only about half of the proteins that changed
their levels also displayed concordant mRNA
level changes. A proportion of the proteins that
initially did not show concordant protein and
mRNA levels did, however, show concordant
levels at a later time point.

The third approach minimizes the potential
bias arising from differences in mRNA and pro-
tein half-lives by studying mRNA and protein
levels under steady-state conditions (Fig. 1C).
In a recent study, 1066 mRNA and protein levels
were measured in 23 human cell lines (Gry et al.
2009). The average rs between mRNA and pro-
tein levels was 0.20 and 0.25 using cDNA mi-
croarrays or Affymetrix GeneChips, respec-
tively. As a comparison, the average rs between
mRNA levels obtained from cDNA microarrays
and Affymetrix GeneChips was 0.52. This is
substantially higher than that observed between
protein and mRNA levels (i.e., 0.2 or 0.25 as
compared with 0.52), indicating that mRNA
measurement error is not likely to explain the
low correlations between protein and mRNA
levels. In an extensive study using the approach
shown in Figure 1C, mRNA and protein levels in
livers from 97 inbred mice were measured (Gha-
zalpour et al. 2011). Out of 396 genes, only 21%
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showed significant correlations between mRNA
and protein levels. By replicating the experi-
ment, the researchers stratified the genes based
on their signal-to-noise ratio, thereby also as-
sessing the impact of random variation on the
reported correlations. As expected, the mean rs

increased as the signal-to-noise ratio increased
and reached a maximum of �0.4. Thus, in this
extensive study in which differences in half-lives
between mRNAs and proteins are likely to have
a minimal impact and only genes that could be
measured with high confidence were analyzed,
the results still support a substantial role for
posttranscriptional mechanisms in dynamic
regulation of protein levels.

GENOME-WIDE ANALYSIS OF
TRANSLATIONAL ACTIVITY

The studies described above all indicate sub-
stantial posttranscriptional controls in different
systems. A detailed, in-depth examination of
posttranscriptional regulation was recently con-
ducted by Schwanhausser et al. (2011), using a
multi-omics approach in NIH/3T3 cells (Fig.
2A). They assumed a model in which mRNA
levels are determined by transcription and
mRNA stability, whereas protein levels are de-
termined by mRNA levels, translational activity,
and protein degradation (Fig. 2B). Accordingly,
per gene translational activity and transcription

could be inferred from measurements of mRNA
levels, mRNA stability, protein levels, and pro-
tein degradation. Notably, the investigators used
independently replicated data to assess the extent
to which protein levels predicted by the model
compared with the measured levels from the rep-
licates. This allowed the researchers to determine
the relative contribution of different gene ex-
pression mechanisms while avoiding overfitting.
Strikingly, a principal role for mRNA translation
among posttranscriptional mechanisms, was
identified in determining intrinsic protein levels,
strongly suggesting that most of the discrepan-
cies between mRNA and protein levels result
from translational control.

More direct evidence supporting the wide-
spread role of translational control comes from
studies of the global association between
mRNAs and ribosomes. Because mRNAs that
have a higher translational activity are associat-
ed with more ribosomes, the polysome micro-
array technique has been used to study genome-
wide mRNA translation. For polysome prep-
aration, translation elongation is inhibited by
cycloheximide, the cytoplasmic lysate is isolated
and applied to a sucrose gradient, and mRNAs
associated with varying numbers of ribosomes
are separated using ultracentrifugation accord-
ing to their sedimentation velocity (Fig. 3A).
Fractionated mRNAs are then extracted and
subjected to DNA microarray analysis for
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Figure 2. A multi-omics approach to examine relative contributions of posttranscriptional mechanisms to
protein expression. (A) Levels and turnover rates for both mRNA and proteins are obtained in parallel. (B) A
simple model is used to calculate transcription and translational efficiencies using measured levels and turnover
rates for both mRNA and proteins.
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identification and quantification. Although a
large number of fractions can be obtained to
examine mRNA profiles across the entire poly-
some range (Arava et al. 2003), most studies
pool fractions because of the high cost of

DNA microarrays (Johannes et al. 1999; Zong
et al. 1999; Chen et al. 2002, 2011; Jechlinger
et al. 2003; Preiss et al. 2003; Kitamura et al.
2004, 2008; Provenzani et al. 2006; Spence
et al. 2006; Genolet et al. 2008; Parent and
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Figure 3. Techniques to obtain genome-wide data on mRNA translation. (A) The polysome technique. Poly-
some-associated mRNA is prepared in parallel with cytoplasmic mRNA and quantified using DNA microarrays
or RNA-seq. (B) The affinity purification technique. mRNAs that are associated with tagged ribosomes are
purified using an antibody-based affinity purification approach. Cytoplasmic mRNA is prepared in parallel, and
both samples are quantified using DNA microarrays or RNA-seq. (C) The ribosome profiling technique. RPFs
generated by RNase treatment are isolated from monosomes and subsequently purified by gel based on size. A
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Beretta 2008; Ramirez-Valle et al. 2008; Ceppi
et al. 2009; Dhamija et al. 2010; Rivera-Ruiz
et al. 2010; Di Florio et al. 2011). Commonly,
fractions with two or more associated ribo-
somes are pooled, limiting the analysis of regu-
lation to a shift from less than two to two or
more associated ribosomes (i.e., “on–off” reg-
ulation), whereas other shifts (e.g., from three
to nine associated ribosomes, i.e., “relative” reg-
ulation) are missed. An alternative approach
involves pooling mRNAs that are associated
with .n ribosomes, where n is often 3 (Larsson
et al. 2006, 2007; Mamane et al. 2007; Colina
et al. 2008; Kim et al. 2009). This approach en-
ables identification of differential translation
involving both “on–off” and some “relative”
regulation. Short mRNAs or mRNAs constantly
associated with more than four ribosomes are,
however, not studied. The polysome microarray
technique has been applied to address a wide
range of questions, including regulation of trans-
lation by the mTOR pathway (Rajasekhar et al.
2003; Tominaga et al. 2005; Larsson et al. 2006,
2007; Bilanges et al. 2007; Mamane et al. 2007;
Kim et al. 2009; Furic et al. 2010), dynamic
regulation of protein synthesis during cellular
stress (Blais et al. 2004, 2006; Lu et al. 2006;
Kumaraswamy et al. 2008; Dang Do et al. 2009;
Matsuura et al. 2010), and the role of mRNA
translation in development or differentiation
(Iguchi et al. 2006; Grech et al. 2008; Parent and
Beretta 2008; Sampath et al. 2008; Otulakowski
et al. 2009) and disease (Larsson et al. 2008;
Davidson et al. 2009; Treton et al. 2011).

A second set of techniques relies on affin-
ity purification of ribosomes, analogous to the
RNA-binding protein immunoprecipitation
(RIP)–based techniques (Keene et al. 2006).
These methods allow for identification and
quantification of translating mRNAs (Fig. 3B).
In one application, the ribosomal protein Rpl16
in yeast was modified by addition of a protein A
tag to allow purification of mRNAs associated
with ribosomes (Halbeisen et al. 2009). Similar-
ly, a hemagglutinin (HA) tag was used to mark
ribosomal protein Rpl22 in mouse (Sanz et al.
2009). Importantly, the HA tagging of Rpl22
was dependent on the activity of Cre recom-
binase, allowing analysis of mRNA translation

in a selected cell type in vivo when combined
with cell-type-specific Cre expression (Sanz
et al. 2009). Another approach is based on the
capture of Hsp70 chaperones associated with
polysomes (Kudo et al. 2010). Theoretically,
the efficiency of immunoprecipitation depends
on the number of associated ribosomes, thereby
reflecting translational activity. However, the
precise number of ribosomes per mRNA is un-
known.

A new technique named ribosome profil-
ing has recently been developed (Ingolia et al.
2009), which is designed to identify open read-
ing frames (ORFs) and quantitatively examine
ribosome association with mRNAs. The tech-
nique involves two steps: isolation of mRNA
fragments that are protected by ribosomes (ri-
bosome-protected fragments [RPF]) from RN-
ase treatment, and identification and quantifi-
cation of the fragments by RNA-seq (Ingolia
et al. 2009). For simplicity, this method is called
RPF-seq here. Because RNA fragments are size-
selected to obtain those corresponding to the
expected footprint of the ribosome (Fig. 3C),
RPF data reveal the locations of ribosomes on
mRNA. As such, detailed quantitative examina-
tion of all steps of mRNA translation, including
initiation, elongation, and termination, be-
comes possible. RPF-seq was first used to exam-
ine translational control in budding yeast under
rich and starvation conditions (Ingolia et al.
2009). More recent studies using RPF-seq have
assessed translation in several systems, includ-
ing mouse embryonic stem cells (Ingolia et al.
2011), meiosis in yeast (Brar et al. 2012), and
microRNA-mediated suppression of gene ex-
pression (Bazzini et al. 2012).

ANALYSIS OF mRNA TRANSLATION DATA

A major advantage in studying translating
mRNA (the “translatome”) over steady-state
mRNA (the “transcriptome”) is the ability to
obtain measurements that more closely corre-
spond to protein levels (Ingolia et al. 2009),
owing to fewer intermediate regulatory steps.
Accurate assessment of translational control,
however, requires adjustment for the influence
of other steps in the gene expression pathway,
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including transcription, mRNA stability, and
mRNA transport (Larsson et al. 2010). Because
individual mRNAs can be regulated substan-
tially at the level of mRNA transport (Rousseau
et al. 1996), only comparison to cytoplasmic
mRNA levels will allow for the precise analysis
of differential translation, whereas comparison
to whole-cell mRNAwill lead to joint analysis of
mRNA transport and translation. A common
approach to examine translational control is to
calculate translational efficiency scores—log2

[(translating mRNA)/(cytoplasmic mRNA)]—
and compare these between conditions to iden-
tify differential translation. Because of a math-
ematical necessity, translational efficiency scores
may correlate with the cytoplasmic mRNA
abundance instead of solely describing mRNA
translation (Larsson et al. 2010). This phenom-
enon is called spurious correlation (Pearson
1896), which leads to increased false-positive
and false-negative rates when examining differ-
ential translation (Larsson et al. 2010). Indeed,
an assessment of 20 studies using the polysome
microarray technique or RPF-seq showed that
spurious correlations are common (Larsson
et al. 2010). This shortcoming of using transla-
tional efficiency scores prompted development
of a method based on analysis of partial variance
(APV, implemented in the program Anota)
(Larsson et al. 2010), which eliminates spurious
correlations. In APV, a linear regression model
(between translating and cytoplasmic mRNA
data) is applied. Fold-change for mRNA trans-
lation and associated P-values are calculated
based on differences in intercepts and residual
errors (Fig. 4). In addition, the method in-
cludes a range of quality criteria to judge wheth-
er the input data set violates model assumptions
(Larsson et al. 2011). Notably, this method has
been successfully applied to identify differential
mRNA translation using both polysome micro-
array and RPF-seq data (Larsson et al. 2010).

TECHNIQUES TO REVEAL CIS AND TRANS
REGULATORS OF POSTTRANSCRIPTIONAL
CONTROL

Posttranscriptional regulation of gene expres-
sion, including translation, is believed to in-

volve sets of targeted mRNAs resembling the
polycistronic operons present in bacteria (Spi-
rin 1969; Keene and Tenenbaum 2002; Keene
2007). The theory posits that subsets of mRNAs
can be regulated at the posttranscriptional level
in a combinatorial fashion. Such selective regu-
lation commonly involves RNA-binding pro-
teins (RBPs) or microRNAs that associate with
RNA elements within the target mRNA (Bartel
2004; Richter and Sonenberg 2005). RBP-asso-
ciated mRNA elements are often defined by
combinations of structure and sequence prop-
erties and usually reside in the mRNA UTR.
Once associated with their target mRNA, the
RBPs interact with translation initiation factors
and sometimes other RBPs and/or microRNAs
to positively or negatively regulate translation.
Thus, active RNA elements and RBPs need to be
identified to mechanistically reveal how differ-
ential translation takes place (Fig. 5).

Known RNA elements are often examined
as the first step to explain differential transla-
tion. These are collected in general databases
such as the UTRdb (Grillo et al. 2010), RBPDB
(Cook et al. 2011), and CLIPZ (Khorshid et al.
2011) or element-specific databases such as the
ARED (Halees et al. 2008) and IRESite (Mokrejs
et al. 2010). Information regarding miRNA tar-
get sites can be obtained from many databases
such as TargetScan (Lewis et al. 2005). Some-
times searching such databases leads to identifi-
cation of active RNA elements as exemplified by
identification of 50-terminal oligopyrimidine
tract (TOP) elements as targets of mTOR signal-
ing (Bilanges et al. 2007; Mamane et al. 2007).
More often, however, known RNA elements are
not sufficient to explain observed mRNA trans-
lation patterns. This makes de novo discovery of
regulatory RNA elements necessary.

Bioinformatic methods to uncover novel cis
elements are based on the assumption that dif-
ferentially translated mRNAs share common
RNA elements (Larsson and Bitterman 2010).
mRNA sequences, often in UTRs, are thus used
as input to identify sequences or structures
overrepresented in the regulated mRNAs, as
compared with background ones (Larsson
et al. 2006; Foat and Stormo 2009; Chen et al.
2011). A set of three algorithms detected �50%
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of known RNA elements when UTRs with spe-
cific RNA elements were mixed with randomly
selected, unrelated UTR sequences (Fan et al.
2009), highlighting the potential of this ap-
proach. There are, nonetheless, several limita-
tions. First, the precise length of each UTR is
often unknown, and the active RNA elements
may therefore be located outside of the stud-
ied sequences. In addition, alternative cleavage
and polyadenylation, which regulates 30-UTR
length, is widespread and dynamically regulated
under different conditions and across tissue
types (Tian et al. 2005; Sandberg et al. 2008).
Examining UTRs that are not expressed in the
studied cell type can lead to false identification
of RNA elements. Moreover, there is a possibil-
ity that some regulation involves several players,
including RBPs, microRNAs, and RNA ele-
ments, with linear or nonlinear interactions.
Such a complex situation likely makes identifi-
cation of any single mechanism more difficult
(Fan et al. 2009).

Several high-throughput techniques have
been developed to study RNA–RBP interac-
tions. In vitro methods include RNAcompete,
whereby a library of RNAs is synthesized and
used in pull-down experiments with RBPs fol-
lowed by detection using DNA microarrays
(Ray et al. 2009), and SELEX-seq, whereby
random RNA aptamers are selected based on
interaction with a specific RBP and are deep-
sequenced (Dittmar et al. 2012). Although these
methods do not directly address which mRNAs

are targeted by the RBP under investigation,
they elucidate binding specificities.

In vivo methods generally involve immuno-
precipitation of RBPs from cells and identifica-
tion of coimmunoprecipitated RNAs (Darnell
and Richter 2012). Indeed, identification of
RNA elements by ribonucleoprotein immu-
noprecipitation (RIP) followed by microarray
(RIP-chip) has been successful for a number of
RBPs (Gerber et al. 2004; Hogan et al. 2008).
RBPs can also be UV-cross-linked to their bind-
ing RNAs in vivo, allowing purification of the
RBP:RNA complex under denaturing condi-
tions, for example, SDS-PAGE (polyacrylamide
gel electrophoresis). Deep sequencing of RNA
isolated by cross-linking and immunoprecipita-
tion (HITS-CLIP) has been used to study RBPs
(Licatalosi et al. 2008; Darnell et al. 2011) and
microRNAs (Chi et al. 2009). The photo-
activatable-ribonucleoside-enhanced cross-link-
ing and immunoprecipitation (PAR-CLIP) tech-
nique, which also has been used to study micro-
RNAs and RBPs (Hafner et al. 2010; Hoell
et al. 2011; Lebedeva et al. 2011; Mukherjee
et al. 2011), is similar to HITS-CLIP but al-
lows cross-linking at a longer wavelength. Both
HITS-CLIP and PAR-CLIP allow precise detec-
tion of the binding site because cross-linking
sites lead to mutations and deletions in sequenc-
ing reads (Hafner et al. 2010; Zhang and Darnell
2011). A comparison between HITS-CLIP and
PAR-CLIP indicated that experimental condi-
tions, such as the extent of RNase digestion,

Known RNA elements

De novo RNA-element
discovery

RBP elements
(e.g., RNA complete)

RBP targets
(e.g., CLIP experiments)

Differentially translated
mRNAs

Figure 5. Approaches to examine mechanisms for differential mRNA translation.
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need to be optimized to minimize the sequence
bias of the identified RNA fragments (Kishore
et al. 2011). Another CLIP-based approach,
iCLIP, identifies sequencing reads that terminate
at the cross-linked sites (Wang et al. 2010; Konig
et al. 2011; Tollervey et al. 2011). One potential
caveat of all of these approaches is that binding of
an RBP to mRNA may depend on other RBPs.
Moreover, separating transient interactions with
limited effect on regulation from stable interac-
tions that substantially affect regulation is a chal-
lenge (Mukherjee et al. 2011). Nevertheless, sys-
tematic studies of many RBPs will likely soon be
available and could be very useful to mechanis-
tically dissect genome-wide patterns of differen-
tial mRNA translation.

CONCLUDING REMARKS

Decades of research based on single genes have
established that mRNA translation can pro-
foundly control protein levels and thereby di-
rectly determine biological outcomes (Costa-
Mattioli et al. 2009; Sonenberg and Hinnebusch
2009; Jackson et al. 2010; Silvera et al. 2010;
Spriggs et al. 2010; Blagden and Willis 2011).
Over the last few years, genome-wide analyses
have shown that posttranscriptional regulation,
translational control in particular, plays sig-
nificant roles in determining protein levels in
the cell. With the rapid development of cur-
rent methodologies, especially deep-sequenc-
ing-based methods, we can expect many major
discoveries to come from genome-wide studies.
Integrating data on mRNA translation with in-
formation regarding RBP–mRNA interactions
is an emerging area of research. In addition,
given the widespread occurrence of mRNA iso-
forms in higher species, resulting from alter-
native initiation, splicing, and polyadenylation
(Wang et al. 2008), sorting out the translational
efficiency for each mRNA isoform will shed im-
portant light on the compendium of protein
isoforms and reveal the connection between
translational control and mRNA processing.
On the other hand, to harness the power of ge-
nomics fully, we will need to better adopt high-
throughput techniques and use rigorous data
analysis approaches. It is exciting that a ge-

nome-wide landscape of translational control
is now in sight.
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