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The Wnt/b-catenin pathway is highly regulated to insure the correct temporal and spatial
activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator
b-catenin is degraded by a multiprotein “destruction complex” that includes the tumor
suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and
CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase b-TrCP. The complex
generates ab-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence
near the b-catenin amino terminus, a process that requires scaffolding of the kinases and b-
catenin by Axin. Ubiquitinated b-catenin is degraded by the proteasome. The molecular
mechanisms that underlie several aspects of destruction complex function are poorly
understood, particularly the role of APC. Here we review the molecular mechanisms of
destruction complex function and discuss several potential roles of APC in b-catenin de-
struction.

b
-Catenin, first discovered as a part of
the adherens junction complex with cad-

herin and a-catenin (Ozawa et al. 1989), also
serves as a transcriptional coactivator of Wnt
target gene expression. In the absence of an ex-
tracellular Wnt stimulus, the nonjunctional
pool of cytoplasmic b-catenin is targeted for
proteolysis by a large multiprotein assembly
termed the b-catenin destruction complex
(Fig. 1). Wnt binding to cell–surface receptors
turns off b-catenin destruction, and the result-
ing stabilized b-catenin translocates to the nu-
cleus and binds to TCF/Lef proteins to activate
Wnt target gene transcription (Behrens et al.
1996; Molenaar et al. 1996). The importance
of b-catenin destruction first came to light
with the discovery that mutations of the adeno-

matous polyposis coli protein associated with
familial and sporadic colon cancers produce ac-
cumulation of b-catenin and inappropriate ac-
tivation of target genes (Munemitsu et al. 1995;
Korinek et al. 1997; Morin et al. 1997; Rubinfeld
et al. 1997a; Clevers 2006). The precise temporal
activation or inhibition of Wnt target genes
necessary during development may explain the
need for the rapid and sensitive responses of b-
catenin protein levels.

The destruction complex is likely a dynamic
multiprotein assembly, but its core components
include, in addition to b-catenin itself, the Ser/
Thr kinases glycogen synthase kinase 3 (GSK-3)
and casein kinase 1 (CK1), the scaffolding pro-
tein Axin, the adenomatous polyposis coli
(APC) protein, and the E3-ubiquitin ligase
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b-TrCP (Fig. 1). Protein phosphatase 2A (PP2A)
also associates with the complex (Hsu et al.
1999; Seeling et al. 1999; Ratcliffe et al. 2000;
Yamamoto et al. 2001). Mutations in destruc-
tion complex components associated with var-
ious cancers result in inappropriate stabilization
of b-catenin and Wnt target gene expression in
the absence of a Wnt stimulus (Dominguez
et al. 1995; Jiang and Struhl 1998; Marikawa
and Elinson 1998; Peters et al. 1999; Liu et al.
2000; Satoh et al. 2000; Heisenberg et al. 2001).
For example, in the absence of a Wnt signal, the
half-life of b-catenin was found to be 50 min in
AtT20 cells, but 3 h in the colon cancer cell line
SW480, which bears a mutated APC protein
(Munemitsu et al. 1996).

Although the core components of the b-
catenin destruction complex and their binding
interactions are understood in molecular detail,
a complete molecular understanding of b-cat-
enin destruction has been elusive. In particular,
the essential role of APC in this process, as well
as the relationship between the kinase/scaffold
complexes and the ubiquitination machinery,
remain unclear. Here we review what is known

about these core destruction complex func-
tions, focusing on potential molecular mecha-
nisms.

b-CATENIN DESTRUCTION OCCURS VIA
PROTEASOMAL DEGRADATION

The actual destruction of b-catenin is accom-
plished by the proteasome, which proteolyti-
cally degrades b-catenin (Aberle et al. 1997;
Orford et al. 1997). b-Catenin is presented to
the proteasome through its interaction with
the F-box containing E3-ligase protein b-
TrCP, an adaptor protein that forms a complex
with the Skp1/Cullin machinery to attach
ubiquitin to its binding partners (Hart et al.
1999; Kitagawa et al. 1999; Latres et al. 1999;
Liu et al. 1999; Winston et al. 1999). The bind-
ing site for b-TrCP on b-catenin is a short
peptide that encompasses two conserved ser-
ines, Ser33 and Ser37, which when phosphory-
lated interact with the b-propeller domain of
b-TrCP (Orford et al. 1997; Wu et al. 2003).
Cancer cells such as the colon cancer line
HCT116 in which the key phosphorylated

β-cat19K A A V S H W Q Q Q S Y L D S

GSK-3
4 3 2 1

GSK-3 GSK-3 CK1

SG GI H A T T T A P S L S G K G N P E E E D V D

APC APC

P P

GSK-3 GSK-3

Axin

Destruction complex

Proteasome

β-TrCP

β-cat

β-cat

SCF

Axin

CK1 CK1

Figure 1. Overview of the destruction complex. The phosphorylated sequence in the amino terminus of b-
catenin is shown, with CK1 and GSK-3 sites circled. The acidic cluster that primes CK1 phosphorylation is
highlighted in gray. SCF, the Skp1/cullin/F-box complex.
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serines or threonines in b-catenin are mutated
or deleted have inappropriately high levels of b-
catenin that activate Wnt target genes (Morin
et al. 1997).

PHOSPHORYLATION BY THE
DESTRUCTION COMPLEX

The phosphorylation of b-catenin Ser33 and
Ser37 by GSK-3 is the best-characterized func-
tion of the destruction complex. CK1 initially
phosphorylates Ser45 of b-catenin (Amit et al.
2002; Liu et al. 2002), and is targeted to this site
by a cluster of acidic residues located seven ami-
no acids carboxy-terminally (Fig. 1) (Marin et al.
2003). GSK-3 phosphorylates residues in the
sequence S/T-X-X-X-pS/pT, in which the
bold residue represents the phosphorylation
site, and X is any amino acid (Fiol et al. 1987;
Frame et al. 2001). Phosphorylated Ser45 primes
GSK-3-mediatedphosphorylationofT41,which
in turn primes successive phosphorylation
of S37 and S33 by GSK-3 to generate the
b-TrCP-binding site (Fig. 1) (Yost et al. 1996;
Hagen et al. 2002; Liu et al. 2002; Wu and He
2006).

A number of CK1 isoforms can be ex-
pressed, including a membrane-tethered ver-
sion (CK1g). The a isoform consists almost
solely of the catalytic kinase domain, whereas
the d and 1 isoforms have carboxy-terminal ex-
tensions that can be autophosphorylated, which
leads to autoinhibition (Cegielska et al. 1998).
The cytoplasmic isoforms a, d, and 1 can bind
to Axin, and purified CK1a, d, or 1 can phos-
phorylate b-catenin at S45 (Amit et al. 2002).
RNAi experiments in both mammalian cells
and Drosophila and genetic experiments in
mice indicate that CK1a is the principal iso-
form responsible for phosphorylating Ser45
(Liu et al. 2002; Matsubayashi et al. 2004; Elyada
et al. 2011).

Mammalian GSK-3 is expressed from two
different genes, termed GSK-3a and GSK-3b,
which differ principally by the presence of an
extended, glycine-rich amino terminus in
GSK-3a (Woodgett 1990). The single GSK-3
in Drosophila more closely resembles the shorter
GSK-3b. Although isoform-specific roles have

been observed in other pathways (e.g., McMa-
nus et al. 2005; Patel et al. 2008; Kaidanovich-
Beilin et al. 2009), GSK-3a and b appear to
function redundantly in b-catenin destruction
(Doble et al. 2007). Many studies of the verte-
brate Wnt pathway have focused on GSK-3b.
Doble et al. (2007) noted that this is likely an
historical bias that arose from apparent differ-
ences in the ability of the two isoforms to rescue
GSK-3 mutants in Drosophila (Siegfried et al.
1992; Ruel et al. 1993), but expression of the
two forms was not equal in those studies.
GSK-3 can be phosphorylated at a tyrosine on
its activation loop (Tyr279/Tyr216 in a/b
isoforms), which increases enzymatic activity
approximately five-fold, a modest increase com-
pared to the activation of other kinases (Dajani
et al. 2003). Mutating this residue to Phe appears
to have little (Itoh et al. 1995; Dajani et al. 2003)
or moderate (Doble et al. 2007) effects on b-
catenin activity.

In addition to its role in the Wnt/b-catenin
pathway, GSK-3 has regulatory roles in many
other cellular processes, including glycogen bio-
synthesis, microtubule stability, cell-cycle con-
trol, and inflammatory pathways (Frame and
Cohen 2001). GSK-3 activity is regulated in
several of these pathways by phosphorylation
of a serine (Ser21/Ser9, a/b isoforms) present
in a conserved sequence near the amino termi-
nus of the protein. When phosphorylated by
other serine/threonine kinases, including Akt
and p70S6K (Cross et al. 1995; Peyrollier et al.
2000), this phosphopeptide inhibits GSK-3 ac-
tivity. Although autoinhibition by the phos-
phorylated amino-terminal peptide is impor-
tant in non-Wnt GSK-3 functions, mutation
of the Ser21/Ser9 does not affect Wnt signaling,
and this residue does not become phosphory-
lated on Wnt stimulation (Ding et al. 2000;
McManus et al. 2005). Furthermore, the bind-
ing of GSK-3 to Axin, discussed below, probably
targets a fraction of cytoplasmic GSK-3 to the
destruction complex and insulates GSK-3 from
regulatory proteins not involved in Wnt signal-
ing. For example, Ser21/Ser9 of Axin-bound
GSK-3 does not become phosphorylated during
insulin signaling and activation of Akt (Ding
et al. 2000).
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AXIN, THE CENTRAL PHOSPHORYLATION
SCAFFOLD

Axin was discovered as the product of the mouse
Fused locus, whose disruption caused the dupli-
cation of the embryonic body axis (Zeng et al.
1997). Drosophila possess only one Axin gene,
but vertebrates and nematodes have two, Axin
and Axin 2/Conductin. In the mouse, these two
isoforms appear to be mechanistically inter-
changeable, and vary only in their patterns of
transcription. Axin is more widely expressed,
whereas Axin 2/Conductin has a more restricted
expression pattern that is controlled in part by
Wnt signaling (Jho et al. 2002; Leung et al. 2002;
Chia and Costantini 2005). A study of hepato-
cellular carcinomas showed that Axin mutations
lead to inappropriate b-catenin-mediated tran-
scription (Satoh et al. 2000). Overexpression of
Axin in colon cancer cells can rescue the accu-
mulation of b-catenin that results from APC
mutation (Behrens et al. 1998; Hart et al. 1998;
Kishida et al. 1998; Sakanaka et al. 1998).

Axin is a largely unstructured, flexible pro-
tein (Spink et al. 2000; Noutsou et al. 2011) that
contains CK1, GSK-3, and b-catenin-binding
sites (Fig. 2) (Ikeda et al. 1998; Yamamoto
et al. 1999; Rubinfeld et al. 2001; Liu et al.
2002). The region carboxy-terminal to the b-

catenin and GSK-3-binding sites has been re-
ported to bind to the catalytic domain of the
PP2A or to the PR61 regulatory subunit of
PP2A (Fig. 2) (Hsu et al. 1999; Ikeda et al.
2000; Yamamoto et al. 2001), as well as the phos-
phatase PP1 (Luo et al. 2007). The simultaneous
binding of Axin to a kinase and b-catenin en-
forces close proximity and thereby increases
the effective concentration of enzyme and
substrate. This “scaffold effect” is seen with pu-
rified proteins; phosphorylation of b-catenin
by CK1 and GSK-3b is greatly enhanced by
the presence of Axin (Ikeda et al. 1998; Dajani
et al. 2003; Ha et al. 2004). Crystal structures
have detailed the binding interactions between
Axin and b-catenin (Xing et al. 2003), and Axin
and GSK-3 (Dajani et al. 2003). The structure
of the GSK-3b–Axin complex shows that Axin
binds to a region far removed from the cataly-
tic site (Dajani et al. 2003), and we have found
that Axin has no effect on the intrinsic catalytic
capability of GSK-3 (unpubl.). Likewise, Axin
binds to a region of CK1 far from the cataly-
tic site, and a pure scaffolding effect without
enhancement of intrinsic catalytic activity has
been shown for this interaction (Sobrado et al.
2005).

In addition to the b-catenin, kinase, and
PP2A binding sites, Axin also possesses two
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Figure 2. Primary structures of human Axin and APC. Key protein–protein interaction regions are indicated.
Structured domains are RGS, regulator of G-protein signaling homology; DIX, domain common to Dishevelled
and Axin; olig, coiled-coil dimerization domain of human APC; and arm, armadillo repeat domain. 15-mer
repeats are marked A–D; 20-mer repeats are marked 1–7. The mutation cluster region (MCR) is the site of the
majority of APC truncations found in colorectal cancers. Dashed lines indicate that mapping of the CK1 and
PP2A sites on Axin are based on deletion studies and have not been verified with purified proteins.
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folded, structured domains. Near the amino
terminus, the RGS domain, named for its ho-
mology to the regulators of G-protein signal-
ing protein family, binds to the APC protein
(Behrens et al. 1998; Kishida et al. 1998; Spink
et al. 2000). The interaction with APC is re-
quired for efficient phosphorylation of APC
(see below) (Fagotto et al. 1999; Ikeda et al.
2000). At the carboxyl terminus, the DIX do-
main mediates homomeric complex formation,
as well as binding to other DIX domain-con-
taining proteins, most notably Dishevelled
(Fig. 2) (Fagotto et al. 1999; Kishida et al.
1999; Julius et al. 2000; Capelluto et al. 2002;
Schwarz-Romond et al. 2007a; Fiedler et al.
2011; Liu et al. 2011), an interaction crucial for
transducing a Wnt signal to turn off b-catenin
destruction (MacDonald and He 2012).

Axin is a key control point for b-catenin
destruction by virtue of its ability to promote
efficient phosphorylation of b-catenin and
APC; indeed, the GSK-3 andb-catenin-binding
sites are essential for Axin function (Fagotto
et al. 1999). In addition, deletion of the Axin
RGS domain in both vertebrates and Drosophila
compromisesb-catenin destruction in vivo (Fa-
gotto et al. 1999; Peterson-Nedry et al. 2008),
demonstrating the importance of the Axin–
APC interaction. However, the APC interaction
mediated by the RGS domain is dispensable
when Axin is overexpressed in SW480 colon
cancer cells (see below) (Kohler et al. 2009; Rob-
erts et al. 2011). Measurements of destruction
complex components in mammalian kidney ep-
ithelial cells and Xenopus oocytes gave different
absolute and relative concentrations of APC and
Axin (Salic et al. 2000; Lee et al. 2003; Tan et al.
2012), suggesting that Wnt signaling operates
over a range of component concentrations that
vary with cell type. Studies in Drosophila have
suggested that precise APC levels are important
in modulating Wnt responses; a twofold change
in APC2 was shown to profoundly affect signal-
ing in photoreceptor development, indicating
that APC levels are likely tuned to optimize re-
sponses to morphogen gradients (Benchabane
et al. 2008). Thus, although Axin is clearly a key
component of the destruction complex, the rel-
ative levels of all components appear to be crit-

ical for both homeostasis and responsiveness
to Wnt.

THE ROLE OF APC IN b-CATENIN
DESTRUCTION

APC is an �310-kDa protein whose central
�1000 amino acids contain short peptide mo-
tifs that bind to b-catenin or Axin (Fig. 2). The
APC protein in most organisms, including Dro-
sophila, expresses in two isoforms, designated
APC and APC2. In addition to the central
b-catenin- and Axin-binding region, the ami-
no-terminal portion of APC contains a dimeri-
zation domain in vertebrates (Day and Alber
2000) and an armadillo repeat (arm) domain.
The arm domain interacts with a number of
cytoskeletal regulators (Kawasaki et al. 2000;
Jimbo et al. 2002; Watanabe et al. 2004; Breit-
man et al. 2008), and the B56 regulatory sub-
unit of PP2A (Seeling et al. 1999). The carboxy-
terminal region of APC1 features a microtu-
bule interaction region (McCartney and Nathke
2008) that is dispensable for b-catenin des-
truction (Smits et al. 1999). These activities
are thought to be important for other aspects
of APC biology, including roles in spindle for-
mation, kinetochore attachment, and mainte-
nance of microtubule stability (McCartney and
Nathke 2008), but it is not known if interactions
with cytoskeletal regulators are important to the
function of APC in b-catenin destruction.

APC proteins contain multiple independent
binding sites for b-catenin, comprising homol-
ogous repeats of either 15 or 20 amino acids
(Fig. 2) (Eklof Spink et al. 2001). Human APC
contains four 15-mers (designated 15RA-D)
and seven 20-mers (20R1-7) (Fig. 3). The 20-
mer repeats can be phosphorylated by GSK-3
and CK1, which enhances affinity for b-catenin
up to 1500-fold (Fig. 3) (Rubinfeld et al. 1996;
Rubinfeld et al. 1997b; Ha et al. 2004; Liu et al.
2006). Phosphorylation of the 20-mers in vivo
likely requires Axin, as a scaffold effect can be
shown using purified Axin and the kinases (Ike-
da et al. 2000; Su et al. 2008). The level of phos-
phorylation heterogeneity is not known under
physiological conditions, however. The stoichi-
ometry of the APC–b-catenin interaction is
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also unknown, and may vary depending on the
status of Wnt signaling. An early experiment
showed that APC protein extracted from cells
appears to be bound to only one or two mole-
cules of b-catenin (Rubinfeld et al. 1995).

Interspersed with the b-catenin-binding
20-mer repeats are Axin-binding sequences of
�16 amino acids, termed SAMP repeats for the
conserved amino acid sequence present in the
Axin-binding sites of mammalian APC (Fig. 2)
(Behrens et al. 1998; Spink et al. 2000). APCs
contain two or three SAMP repeats, depending
on species and isoform. Mammalian cell culture
studies showed that the APC–Axin interaction
contributes to b-catenin destruction (Behrens
et al. 1998; Hart et al. 1998), and at least one
SAMP repeat in combination with at least two
b-catenin-binding repeats were required (Ru-
binfeld et al. 1997a). In mice, at least one
SAMP repeat is needed to regulate Wnt signal-
ing (Smits et al. 1999). Truncations of APC that
remove all SAMP repeats are oncogenic, al-
though certain of these truncations may retain
some level of b-catenin regulation (Smits et al.
1999; Kohler et al. 2009).

Experiments that rely on APC truncations
to remove the SAMP repeats by necessity also
remove many of the 20-mer b-catenin-binding
sites, which confounds interpretations of the
role of the APC–Axin interaction. Peifer and

colleagues generated a Drosophila APC2 variant
in which the SAMP repeats were deleted cleanly
rather than by truncation, so that all b-catenin-
binding sites were retained. This mutant APC
was nonfunctional in animals, although b-cat-
enin destruction and TCF signaling down-reg-
ulation were retained in SW480 cells (Roberts
et al. 2011). Curiously, Roberts et al. 2011 found
that APC2 lacking SAMP repeats colocalized
with Axin, but the mutant APC2 did not coim-
munoprecipitate with Axin, suggesting a weak
and indirect interaction. It is possible that b-
catenin itself bridged Axin and the mutant
APC2, because it can interact with Axin and
the APC 15-mer or nonphosphorylated 20-mer
repeats simultaneously (Ha et al. 2004).

The molecular roles of APC in b-catenin
destruction have not been determined decisive-
ly. Several distinct and not necessarily mutually
exclusive functions for APC in regulating b-cat-
enin have been proposed, which we consider in
the following subsections.

Phosphorylation of b-Catenin

The ability ofb-catenin, Axin, and APC to inter-
act with one another might suggest a stabilizing
role for APC in promoting b-catenin phosphor-
ylation by Axin-bound kinases. Bioinformatic
analyses, nuclear magnetic resonance (NMR)
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Figure 3. Alignment of b-catenin-binding sequences of human APC, showing the 15-mers (top) and 20-mers
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and circular dichroism (CD) spectroscopy,
and proteolytic sensitivity experiments indicate
that, like the central region of Axin (see above),
the central portion of APC is intrinsically un-
structured (Li and Nathke 2005; Liu et al. 2006).
Moreover, biochemical and structural studies
have shown that Axin and nonphosphorylated
APC repeats can bind simultaneously to b-cat-
enin (Ha et al. 2004). These properties imply
that APC can scaffold the Axin–b-catenin in-
teraction. However, addition of purified APC
fragments that contain b-catenin and Axin-
binding sites to purified b-catenin, Axin,
GSK-3b, and CK1 does not enhance b-catenin
phosphorylation (Su et al. 2008; JL Stamos and
WI Weis, unpubl.).

Measurements of two mammalian kidney
cell lines have shown that Axin concentrations
are in the range 110–150 nM; total and cytosolic
b-catenin concentrations are in the hundreds
and tens of nM range, respectively (Tan et al.
2012). APC is found at 12–40� lower concen-
trations than Axin in these cells. In contrast, in
Xenopus oocyte extracts Axin is present at sub-
nM concentrations, roughly 2000� lower than
b-catenin and 5000� lower than APC (Salic
et al. 2000; Lee et al. 2003). Given these concen-
trations and the weak affinity (mM-range disso-
ciation constants) of the Axin-APC, Axin-b-
catenin, and nonphosphorylated APC-b-cate-
nin interactions (Spink et al. 2000; Choi et al.
2006; Liu et al. 2006), it could be argued that the
stabilizing effect of a three-way interaction net-
work helps to insure efficient b-catenin phos-
phorylation in vivo. However, APC truncations
that remove the Axin-binding SAMP repeats do
not prevent b-catenin phosphorylation (Sadot
et al. 2002; Yang et al. 2006), indicating that
APC does not enhance Axin-mediated phos-
phorylation of b-catenin.

Klein and colleagues reported recently that
addition of a large fragment of APC encompass-
ing the b-catenin and Axin-binding region en-
hances phosphorylation of b-catenin in the
presence or absence of Axin, and also promotes
phosphorylation of other GSK-3 substrates
(Valvezan et al. 2012). These findings would
seem to contradict those of (Su et al. 2008),
and there is at present no evidence for direct

APC–GSK-3 interactions required for scaffold-
ing or for allosteric activation. Further studies
with purified proteins will be needed to assess
the molecular basis of these findings.

Destruction Complex Cycling

An alternative role for APC in b-catenin de-
struction was suggested by the observation
that, in contrast to the simultaneous binding
of nonphosphorylated APC repeats and Axin
to b-catenin, phosphorylation of the APC 20-
mer repeats enhances their affinity by binding to
a surface of b-catenin that overlaps the Axin-
binding site (Fig. 4); the higher affinity of the
phosphorylated 20-mer versus Axin enables dis-
placement of Axin from b-catenin (Xing et al.
2003; Ha et al. 2004; Xing et al. 2004). Kimel-
man, Xu, and colleagues (Xing et al. 2003) pro-
posed that CK1 and GSK-3 phosphorylate APC
after phosphorylating b-catenin; the phosphor-
ylated APC 20-mer would displace b-catenin
from Axin, freeing Axin to interact with another
b-catenin molecule. This model also postulates
that PP2A, which has been reported to bind to
Axin and APC (Hsu et al. 1999; Seeling et al.
1999; Yamamoto et al. 2001) and can modulate
APC phosphorylation (Ikeda et al. 2000), de-
phosphorylates b-catenin-bound APC to reset
the system for another round of b-catenin
phosphorylation and release.

The Kimelman/Xu model is appealing in its
explanation of the roles of conserved APC 20-
mer phosphorylation sites, the competition be-
tween phosphorylated APC and Axin for b-cat-
enin, and the presence of PP2A in the destruc-
tion complex, but there are several caveats. First,
phosphorylation of APC would have to occur
after b-catenin phosphorylation, because phos-
phorylated APC would prevent Axin from bind-
ing to b-catenin. Given the unstructured nature
of Axin and APC, it is difficult to envision how
such an ordered sequence could be achieved at a
molecular level—it seems unlikely that random
collisions of these flexible scaffold proteins could
produce a strict order of interaction of b-cate-
nin, then APC, with the Axin-bound kinases.
A stochastic mechanism would be physically
plausible but inefficient. Second, the postulated
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role of PP2A is not supported by in vitro exper-
iments with purified PP1, whose catalytic do-
main is very similar to that of PP2A, which
showed that phosphorylated APC repeat 3
bound to b-catenin could not be dephosphor-
ylated over 3 h (Ha et al. 2004). This would be
inconsistent with the measured half-life of
b-catenin (Munemitsu et al. 1996). Equivalent
experiments have not been performed with
heterotrimeric PP2A, however, and the effect
of PP2A interactions with Axin and/or APC
have not been assessed in this context. Finally,
Peifer and colleagues showed that an APC2 con-
struct in which only the highest affinity 20-mer
repeat is retained is unable to promote b-cate-
nin destruction (Roberts et al. 2011), indicating
that high-affinity b-catenin binding by phos-
phorylated APC is not sufficient for destruction
complex function.

It is important to note that there is no evi-
dence that phosphorylated b-catenin must dis-
sociate from the destruction complex to be de-
graded. Indeed, a ubiquitin ligase is part of the
destruction complex (Hart et al. 1999; Liu et al.
1999; Major et al. 2007), and there is evidence
that other components of the ubiquitination
machinery physically associate with the protea-
some in other systems (Crosas et al. 2006; Lee
et al. 2011). It has been suggested that unfolding
of b-catenin by proteasome-associated chaper-

ones provides the energy to remove b-catenin
from phosphorylated APC (Ha et al. 2004),
which would then allow PP2A associated with
the complex to dephosphorylate the APC 20-
mers. Indeed, proteasomal activity has been
shown to selectively remove and degrade indi-
vidual components of multiprotein complexes
(e.g., see Rape et al. 2001; Shi et al. 2008).

Interfacing to the Ubiquitin/Proteasome
Pathway

APC truncations present in several colon cancer
cell lines, including SW480, DLD-1, and HT-29,
do not prevent b-catenin phosphorylation,
but ablate or strongly reduce ubiquitination of
b-catenin (Sadot et al. 2002; Yang et al. 2006; Su
et al. 2008). Ubiquitination requires the pres-
ence of APC 20-mer repeat 2 (20R2), which,
importantly, does not bind to b-catenin (Liu
et al. 2006; Kohler et al. 2008). Furthermore,
transfection of SW480 cells with a construct of
APC truncated after 20R3 can still down-regu-
lateb-catenin in a cell culture system (Yang et al.
2006; Kohler et al. 2008), whereas deletion of
20R2 and the strongly conserved sequence that
follows it, designated the “catenin inhibitory
domain” (CID; also called “sequence B” by Pei-
fer and coworkers), prevents b-catenin destruc-
tion (Kohler et al. 2009; Roberts et al. 2011).

N

C

C

APC R3 + Axin

APC R3-P

C

Figure 4. Competition between phosphorylated APC and Axin for b-catenin. Crystal structures of nonphos-
phorylated APC R3 (orange) (Ha et al. 2004), Axin (purple) (Xing et al. 2003), and phosphorylated APC R3-
P (red) (Ha et al. 2004; Xing et al. 2004) bound to the armadillo repeat domain ofb-catenin (blue and gray) were
superimposed to show the relationship between the bound ligands. The portion of APC that becomes ordered on
phosphorylation by CK1 and GSK-3 (compare red and orange structures) binds to an overlapping surface with
Axin, and biochemical studies show that these two ligands compete for binding. This competition is the basis for
models suggesting that Axin is displaced from b-catenin when the Axin-bound kinases phosphorylate APC.
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These data show that the 20R2-CID region of
APC has an essential role in promoting b-cat-
enin ubiquitination that is mechanistically
downstream from b-catenin phosphorylation,
and is independent of b-catenin-binding activ-
ity. Su et al. (2008) found that b-TrCP did not
coimmunoprecipitate b-catenin from cell lines
bearing APCs truncated before 20R2, but copre-
cipitation was restored by transfection with
wild-type APC, suggesting that 20R2-CID me-
diates interactions with b-TrCP, either directly
or through other proteins.

An alternative possibility for the essential
role of 20R2-CID in b-catenin ubiquitination
comes from the observation that in the absence
of APC, Ser33/Ser37 phosphorylated b-catenin
was rapidly dephosphorylated in vitro by PP2A,
whereas full-length APC or APC fragments con-
taining SAMP repeats could protect b-catenin
from PP2A (Su et al. 2008). This suggests that
APC prevents PP2A from accessing the amino-
terminal phosphorylation sites on b-catenin
(Su et al. 2008). Su et al. (2008) proposed that
phosphorylated APC spatially orients phospho-
b-catenin to prevent its dephosphorylation, al-
though it is unclear how this could work given
the unstructured, flexible nature of both APC
and the amino-terminal region of b-catenin.
The protection occurs only with phosphorylat-
ed APC, and the investigators argue APC must
bind to b-catenin sufficiently tightly to protect
the b-TrCP recognition sequence of b-catenin
from PP2A. However, the protective effect of
phosphorylated APC was observed even under
conditions in which unphosphorylated and
phosphorylated APC were equivalently occu-
pied by b-catenin, so enhanced affinity would
not appear to produce this result. Instead, bind-
ing of the phosphorylated APC 20-mers to b-
catenin (Ha et al. 2004; Xing et al. 2004) might
create a novel interaction surface for PP2A that
inhibits its action on the b-catenin amino ter-
minus.

Sequestration of b-Catenin

Comparison of b-catenin localization in wild-
type and APC mutant cells suggested that APC
and Axin can retain b-catenin in the cytoplasm

(Tolwinski and Wieschaus 2001; Brocardo et al.
2005; Krieghoff et al. 2006; McCartney et al.
2006). Both Axin and APC contain CRM-1-de-
pendent nuclear export signal sequences, and
have been reported to mediate nuclear-cytoplas-
mic shuttling of b-catenin (Rosin-Arbesfeld et
al. 2000; Henderson and Fagotto 2002; Cong
and Varmus 2004). However, direct observation
of intercompartmental movement using fluo-
rescence recovery after photobleaching showed
that APC and Axin enriched cytoplasmic b-cat-
enin in a CRM-1 independent manner, and nei-
ther increased the rate of nuclear-cytoplasmic
shuttling of b-catenin, suggesting that these
proteins retainb-catenin in the cytosol (Kriegh-
off et al. 2006).

Cytoplasmic sequestration of b-catenin
would insure that no signaling occurs before
its actual destruction. Peifer and colleagues test-
ed the ability of various Drosophila APC2 mu-
tants to rescue b-catenin destruction in SW480
cells, and their effects in flies lacking APC2 only
or both APC1 and APC2. Note that APC2 is the
major form in fly embryos, but in single APC2
mutants, APC1 provides residual activity such
that levels ofb-catenin are only slightly elevated,
producing effects on cell fate but not leading
to complete nonviability (McCartney et al.
1999). By deleting R2 and/or the CID to pre-
ventb-catenin destruction, Roberts et al. (2011)
could assess the function of b-catenin-binding
activity of the 15-mers and the other 20-mer
repeats. An APC2 mutant lacking all 20-mers
except for the high-affinity 20R3 was able to
reduce nuclear b-catenin enrichment, consis-
tent with a role in cytoplasmic retention. Like-
wise, Kohler et al. (2009) found that cell lines
overexpressing a truncated human APC that
included 20R3 displayed down-regulation of
b-catenin, whereas removal of 20R3 (but reten-
tion of 20R2-CID) produced relatively poor
down-regulation. Thus, a lack of high-affinity
b-catenin-binding sites impairs down-regula-
tion, consistent with the importance of cyto-
plasmic retention.

Roberts et al. (2011) found that an APC
variant lacking all 20-mers displayed cytoplas-
mic b-catenin retention activity, presumably
owing to the presence of the 15-mers, and could
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rescue cell-fate defects in single APC2 mutants,
although it failed to rescue lethality of double
APC1/APC2 mutant flies. Importantly, remov-
al of all 15- and 20-mer repeats destroyed the
ability to rescue the single APC2 mutant flies.
These data suggest that cytoplasmic retention is
an important function of APC, but that no one
b-catenin-binding repeat is essential for this
purpose. These experiments show that reten-
tion activity has at least an important modula-
tory role, but an APC variant containing only
20R2 and the CID, but none of the other b-
catenin-binding repeats, would have to be tested
to confirm an absolute requirement for b-cat-
enin binding. The apparent need for cytoplas-
mic retention is consistent with the observation
that colon tumors bearing mutant APCs carry
at least one allele encoding a truncated protein.
The “just right” model hypothesizes that these
mutations are selected to provide sufficient de-
struction activity to avoid programmed cell
death resulting from excessive b-catenin-medi-
ated signaling (Albuquerque et al. 2002); buf-
fering of free b-catenin levels by APC would
provide the needed activity.

Ha et al. (2004) proposed that the presence
of low- and high-affinity binding sites on APC
provides a wide dynamic range for sequester-
ing cytoplasmic b-catenin under different con-
ditions. Binding of APC and Axin via the
SAMP-RGS interaction would enable phos-
phorylation of 20-mer repeats regardless of
the presence of b-catenin. High-affinity b-cat-
enin-binding sites produced by APC phosphor-
ylation would sequester b-catenin and prevent
its nuclear localization when no Wnt signal is
present and the concentration of free b-catenin
is low. When b-catenin levels increase follow-
ing a Wnt stimulus, binding to the lower affini-
ty sites (both 15- and nonphosphorylated 20-
mers) would help to reduce free b-catenin levels
to turn off the signal. This model, however, does
not explain how Axin would be able to access b-
catenin bound to high-affinity APC sites to scaf-
fold phosphorylation of b-catenin. It is possible
that this is accomplished through the APC–
Axin RGS interaction; alternatively, PP2A-
mediated dephosphorylation suffices for this
purpose, but, as noted above, no measurements

of APC dephosphorylation kinetics have been
reported.

Destruction Complex Localization

A pool of APC localizes to the basolateral cortex
or cell–cell junctions of vertebrate epithelial
cells and tissues, and Drosophila APC2 likewise
localizes to the cell cortex through interac-
tions with the microtubule and actin cytosk-
eletons (Näthke et al. 1996; McCartney et al.
1999, 2006; Yu et al. 1999; Rosin-Arbesfeld et
al. 2001; Langford et al. 2006a,b; Grohmann
et al. 2007; Zhou et al. 2011). In studies of nu-
clear export by APC, it was found that truncated
APCs lacking cytoskeletal interaction regions
shuttle between the nucleus and cytoplasm
more efficiently than the full-length protein,
suggesting that cytoskeletal interactions help to
retain APC in the cytosol (Brocardo et al. 2005),
consistent with a role in cytoplasmic retention of
b-catenin.

Activation of the coreceptors LRP5/6 and
Fzd results in recruitment of the destruction
complex to the membrane and formation of
membrane-associated puncta associated with
b-catenin activation (Cliffe et al. 2003; Tolwin-
ski et al. 2003; Bilic et al. 2007; Schwarz-Ro-
mond et al. 2007b; Hendriksen et al. 2008; Mac-
Donald and He 2012). The recently described
WTX/AMER1 protein binds to the APC arm
domain and to PIP2, and appears to be impor-
tant for targeting the complex to the plasma
membrane, although this protein appears to be
specific to vertebrates (Grohmann et al. 2007;
Tanneberger et al. 2011). In addition, the car-
boxy-terminal-binding protein (CtBP) binds to
the 15-mer repeats of APC and promotes poly-
merization of truncated APC to form cytoplas-
mic puncta (Hamada and Bienz 2004; Schnei-
kert et al. 2011), but the relationship between
these puncta and the Wnt-stimulated assem-
blies is unclear.

Collectively, these observations suggest that
APC localization might be important in its abil-
ity to modulate b-catenin destruction. How-
ever, Roberts et al. (2012) recently found that
targeting fly APC2 to several different non-
physiological subcellular locations, including
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mitochondrial membranes and cytoplasmic
vesicles, did not significantly alter down-regu-
lation of b-catenin protein levels, TOPFLASH
activation, or Drosophila embryo develop-
ment. Moreover, these APC2 targeting variants
do not appear to enter the nucleus at any time
(Roberts et al. 2012), indicating that the abili-
ty of APC to enter the nucleus has either a
relatively minor role in Wnt signaling, or is re-
lated to functions of APC apart from the Wnt
pathway.

CONCLUDING REMARKS

A great deal is known about elements of the b-
catenin destruction complex, but a complete
molecular understanding of its function has re-
mained elusive. This is due in part to the com-
plexity of APC, the study of which is complicat-
ed by its other roles apart from Wnt signaling
(McCartney and Nathke 2008). Outstanding
problems include whether b-catenin binding
by APC is an essential or modulatory aspect of
the destruction complex, how the 20R2-CID
region of APC functions in b-catenin ubiquiti-
nation, and the mechanism by which amino-
terminally phosphorylated and ubiquitinated
b-catenin is handed off to the proteasome.
The function of PP2A in the complex is another
open question. Finally, although the impor-
tance of cellular localization of destruction
complex components has been challenged re-
cently (Roberts et al. 2012), data from other
systems would be useful in assessing potential
roles of localization on Wnt signal transduction
through LRP5/6, Fzd, and Dvl.

Many of the proteins that are necessary for
b-catenin destruction, including GSK-3, CK1,
Axin, and APC, also have roles in stabilizing
b-catenin on Wnt stimulation (Liu et al. 2002;
Cong et al. 2004; Zeng et al. 2005, 2008; Takacs
et al. 2008; Tanneberger et al. 2011), thus con-
founding genetic analyses and cell culture over-
expression studies in difficult-to-predict ways.
Biochemical studies of purified protein com-
plexes, as well as experiments that carefully con-
trol expression levels, will be important in re-
solving many of the mysteries surrounding the
destruction complex.

ACKNOWLEDGMENTS

This work is supported by grant GM56169 from
the U.S. National Institutes of Health.

REFERENCES
�Reference is also in this collection.

Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. 1997. b-
Catenin is a target for the ubiquitin-proteasome pathway.
EMBO J 16: 3797–3804.

Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P,
Slors FJ, Leitao CN, Fodde R, Smits R. 2002. The “just-
right” signaling model: APC somatic mutations are se-
lected based on a specific level of activation of the b-cat-
enin signaling cascade. Hum Mol Genet 11: 1549–1560.

Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E,
Mann M, Ben-Neriah Y, Alkalay I. 2002. Axin-mediated
CKI phosphorylation of b-catenin at Ser 45: A molecular
switch for the Wnt pathway. Genes Dev 16: 1066–1076.
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