
Numerical Poisson-Boltzmann Model for Continuum Membrane
Systems

Wesley M. Botello-Smith1,2,4, Xingping Liu3,4, Qin Cai3,4, Zhilin Li5, Hongkai Zhao6, and Ray
Luo3,4,*

1Chemical Physics and Mateiral Physics Graduate Program, University of California, Irvine, CA,
92697
2Department of Chemistry, University of California, Irvine, CA, 92697
3Department of Biomedical Engineering, University of California, Irvine, CA, 92697
4Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697
5Department of Mathematics, North Carolina State University, Raleigh, NC 27695
6Department of Mathematics, University of California, Irvine, CA92697

Abstract
Membrane protein systems are important computational research topics due to their roles in
rational drug design. In this study, we developed a continuum membrane model utilizing a level
set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular
mechanics suite for applications such as protein-ligand binding affinity and docking pose
predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge
effects. Validation on systems ranging from organic molecules to membrane proteins up to 200
residues, demonstrated good numerical properties. This lays foundations for sophisticated models
with variable dielectric treatments and second-order accurate modeling of solvation interactions.
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Introduction
Energetic analyses of solvated systems are of fundamental importance in theoretical and
computational studies of molecular biophysics. Due to the sizes of many biologically
relevant compounds and systems, and the need for extensive sampling required to recover
observable properties, explicit inclusion of solvent molecules can become quite demanding.
Implicit/continuum solvation methods allow energetic calculations to be computed with far
less computational expense by approximating discrete solvent molecules with a continuum.
These types of methods have been routinely applied in many biomolecular applications such
as protein-ligand binding affinity and docking pose predictions (1,2).
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Recent interest in membrane proteins has spurred extension of continuum solvation
treatments to incorporate membrane models (3–8). To implement a continuum membrane,
an additional solvent region must be incorporated into the solvation model. Since most
membranes are typically non-polar at the interior, energy terms that would be accounted for
in an aqueous system by using solute volume or surface area can be adapted to include a
membrane by taking the union of the solute and membrane regions. This manuscript focuses
on treatment of the electrostatic energy contributions. Electrostatic energy contributions can
be accounted for by treating the membrane as a region with a low dielectric constant, often
close to that of the solute. While this approach is relatively straightforward on the surface,
the solvent region now includes a heterogeneity that may have significant bearing on
handling boundary conditions and interface conditions.

The Poisson-Boltzmann equation (PBE) is the basis of electrostatic energy calculations for
many continuum solvation methods (9–26). However, closed-form analytical solution is
only possible for a few special cases, such as systems with radial symmetry. Indeed the
popular Generalized-Born (GB) methods are derived from PBE by making specific
simplifying assumptions to allow a closed-form approximated solution to be obtained
(27,28). Although GB is very fast compared to most full numerical solution techniques, its
inherent assumptions are often a source of debate and the methods have been shown to result
in undesirable errors in some cases (29). Furthermore, application to heterogeneous cases
such as membrane protein systems, while possible, poses significant challenges (4,5,30). In
most cases the only recourse is to seek a numerical solution. Many methods have been
proposed and investigated for this purpose. Finite-difference (FD) (31–33) methods are
amongst the most popular. Despite their somewhat lower adaptivity compared to finite-
element (34) or boundary-element methods (13,16,35–38), they are often preferred for large-
scale computations due to their speed, efficiency, and ease of implementation (39).

Current numerical methods often assume free or zero potential boundary conditions.
Systems with more complex setups, e.g. when a membrane region is included, may suffer
from artifacts due to edge effects when these boundary conditions are used. The problem is
particularly profound in the FD methods. For such systems, periodic boundaries become an
attractive alternative. Implementation of the periodic boundary condition requires modifying
the algebraic equations generated for grid nodes at the FD grid edges to include terms
imposing periodicity. An additional benefit of imposing periodicity, however, is that it
eliminates the need for adding boundary charge distributions required for the free boundary
conditions. Additionally, Fourier transform based solvers become an attractive option due to
their innately periodic formulation and log-linear scaling (40). Apparently, limitation of
these algorithms to use for constant coefficient equations prevents them from solving the
general PBE with inhomogeneous coefficients. The augmented Immersed Interface Method
(IIM) allows this limitation to be overcome for systems where each region has a distinct
uniform dielectric constant (41).

In the following, we first present a continuum membrane model based on the level set
formulism and a pseudo density function approach (42). This is followed with the
description of two periodic FD solvers, the finite volume/periodic conjugate gradient (FV/
PCG) and augmented Immersed Interface Method/Fast Fourier Transform solver (IIM/FFT)
to solve the PBE for the continuum membrane systems. Finally a detailed validation of the
new continuum model and analysis of the numerical algorithms are presented.
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Method
Membrane Setup

Dielectric Model Setup and Interface Location via Level Set—Continuum
solvation can be extended to include a membrane by modeling it as an additional dielectric
region. We first focused on the case where the membrane dielectric matches the solute’s
dielectric, so that the membrane region is simply an extension of the solute region. This
requires us to derive, define, and merge a membrane level set into the molecular level set
originally used to generate a dielectric mapping for globular proteins (42). Further
modification to allow unique membrane dielectric constant can make use of this
infrastructure, but will be left to a future study. The resulting linear systems were then
solved assuming the periodic boundary condition.

Solute-Solvent Level Set Construction—We begin by reviewing the level set
formulation for globular proteins. The level set is defined such that it will be positive on one
side of the interface (solvent region in this case), negative on the other side (solute or
membrane region) and zero on the interface. The interface is thus the locus of all points
where the level set is zero.

Earlier attempts used the “signed” distance function as the level set, which was defined as
the distance to the molecular surface (42). However, the straightforward definition prohibits
the use of higher accuracy methods, such as IIM (41,43), which requires smooth and
continuous level set functions. In this study a smooth and continuous density function (42)
was used instead. In this approach, the solute-solvent level set ϕ at a point [p] is derived
from the sum of atomic density contributions defined by the equations:

(1)

(2)

(3)

where the natm is the number of atoms in our system and ρi[p] is the density function for
atom i at [p]. The density ρi[p] is computed based upon the signed distance between [p] and
the solvent accessible surface of the atom. Function fspline is a splined density function as
defined and optimized in (42), and k is the constant needed to ensure the function
smoothness across the interface. Lastly, di is the signed distance to the interfacial surface for
atom i, where ri is the distance from atom i to [p] and Ri is the atomic cavity radius.

Membrane Level Set—To implement a continuum membrane model, a corresponding
level set function is needed to merge with the solute – solvent level set. The simplest
membrane resembles a slab-like region with two planar interfaces parallel to the x-y plane.
Thus the total level set function, considering both the solute and membrane, can be
expressed as

(4)
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(5)

(6)

(7)

Here ρm[p] is the membrane level set density contribution at [p] and fspline is the same as the
spline function for atomic contributions. The function gmemb is a monotonic, concave up,
cubic polynomial function constructed to transition the level set to a constant value near the
membrane center while preserving smoothness and continuity. Coefficients a, b, and c were
parameterized to ensure that 1) the first derivative of gmemb with respect to dm matched the
first derivative at dm = 0, and 2) 0 > dm > Rp. The coefficient e must remain 0 since we want
fspline[0] = gmemb[0]=0. See Figure 1 for an illustration of the construction of ρm[p] and the
corresponding level set density sum contribution starting from dm[p]. Finally dm[p] is the
distance from [p] to the nearest membrane surface, where zmctr is the z coordinate of the
membrane center, [p]z is the z coordinate of [p] and m is the membrane thickness.

Inclusion of Channels—The simple slab-like membrane setup may cause problems if a
solute contains pore- or channel-like region(s) that need to retain a solvent dielectric
constant. To describe these proteins more accurately, an appropriate cylindrical region will
be removed from the membrane region (8).

Removal of a cylindrical region could lead to sharp changes in the level set if not properly
transitioned. Use of gmemb in (5) rather than a linear function as in (2) ensures that there will
not be a cusp at the membrane center. What remains is to transition the level set contribution
smoothly at the excluded region’s surface. The membrane density is thus modified as
follows when a cylindrical region is needed

(8)

(9)

Here dp is the signed distance to the surface of the cylindrical region, where c is the
coordinates of the center of the cylindrical region. Again, fspline and gmemb scale the signed
distances to match a density summation approach. Distances dm[p] and dp[p] are defined
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from point [p] to the membrane and cylindrical region interfacial surfaces respectively.
Finally rp[p] is the distance to the centeral axis of the cylindrical region running along x = cx
and y = cy.

The upper expressions in equation (8) represents the region that is assigned solvent dielectric
constant. This includes the region above or below the membrane or within the cylidnrical
region (pore) of the membrane. The top most equation is used for the region just above the
cylindrical exclusion region and is used to transition the level set smoothly as the distance to
the upper or lower edge of the intersection of the cylinder and membrane regions. Finally
the last equation uses a geometric average to provide a smooth transition between the
membrane interior level set and the cylindrical regions level set for points residing near the
interfacial surface interior to the membrane. See Figure 2 for an illustration of the
construction of (9) from signed distances dm[p] and dp[p] for a model channel membrane
setup on a 200×200 cross-sectional grid.

Once the membrane level set is computed and added to the solute-solvent level set, the
existing dielectric map setup procedure can be used to map the needed dielectric distribution
on the FD grid (15,17).

Adaptation of the Numerical FD Solvers for Periodic Boundary Conditions
Now that we have an appropriate model for the discretization for the dielectric map of our
membrane, solvent, and solute regions, we must implement an appropriate method to solve
the resulting systems of equations. However, unlike the globular protein model wherein non-
uniformity in the dielectric constant was confined to the interior of our system, the
membrane model extends the solute dielectric constant to the edges of the grid. To overcome
potential computational artifacts due to edge effects, a periodic boundary formulation is used
when a membrane model is employed. This requires adapting our solver methods from the
isolated free-boundary formulation to a periodic boundary formulation. In this study we first
consider the Finite Volume / Periodic Conjugate Gradient and the Immersed Interface
Method / FFT approaches.

Periodic Conjugate Gradient Solver—The existing conjugate gradient solvers, either
unconditioned or conditioned, can be used to solve the algebraic equations from the finite
volume discretization. This approach, reviewed in the supplemental material section, was
initially developed for isolated systems when the free boundary condition is used. Briefly,
the effect of the dielectric is modeled using a dielectric map, which assigns a dielectric value
to each edge connecting a pair of grid nodes in a regular rectangular lattice. The dielectric
map is then used to construct a series of algebraic equations based on an appropriate stencil
according to the finite volume representation of the linearized PBE. To utilize this method
under free boundary conditions, pseudo charges would need to be computed and mapped to
the boundary of the grid. This is unnecessary for a periodic system. Implementation involves
modifying the linear system by coupling grid nodes on one edge with “adjacent” nodes on
the opposite edge (see equation 9 of supplementary materials). For the unconditioned
conjugate gradient method, this can be accomplished with a single pass over each edge node
performed prior to the main pass of each iteration step.

FFT Solver—The augmented immersed interface method (41,43,44), briefly reviewed in
the supplementary materials, provides an alternative to the finite volume discretization.
Under this approach, the effect of the non-uniform dielectric constant of the system is
modeled by introducing an effective surface charge distribution along the interface(s)
between regions with differing dielectric constants. This results in introduction of potential
and field jump conditions. The field jump condition is used as an augmented variable which
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is converged iteratively. This requires solving PBE for a system with point charges, a
surface charge distribution and uniform dielectric constant, at each step. This proves to be
the most time consuming step of each iteration. Periodicity may be implemented by
implementing periodic boundary conditions for the Poisson’s equation solver. However,
since the system now has a uniform dielectric constant, we may employ a rapid ellipitical
fast fourier transform based solver to accelerate this step (40). Due to the nature of the fast
fourier transform approach, the resulting solutions will naturally be periodic without any
further modification. The details of the development and implementation of our FFT based
solver are reviewed in the supplementary materials.

Computational Details
For the FV/PCG method, edges connecting points within a dielectric region are assigned to
that region’s value, and edges that cross an interface are assigned a value using a weighted
harmonic average (45,46). For the IIM/FFT method, dielectric is modeled using surface
charges and corresponding surface jump conditions (41). For both approaches, a level set
function provides the means of locating the interface(s). To provide a consistent testing
framework, the PBSA module in the AMBER 12 simulation and modeling package (47) was
used to implement our methods. In each case, single point electrostatic energy calculations
were computed. The atomic cavity radii were set to be the default mbondi set in the Amber
package, except all hydrogen radii were set to be 1.0Å. A classical two-dielectric model was
used to set the dielectric distribution where region within the solute/membrane is set to 1 and
region outside is set to 80. Default options were used for all parameters except those
specifically noted here or in the corresponding discussion in the results and discussion
section. All models except for the quadrapole system and aquaporin C-terminal coil system
were parameterized directly from their corresponding models from pdb entries. The
quadrapole system was modeled as a single sphere of 2.0 Ångstroms and four point charges
of zero net charge and zero net dipole moment. The aquaporin coil system was constructed
by excising the last 19 C-terminal residues of the aquaporin model (1IH5).

Biomolecular systems were implemented in a realistic membrane with a thickness of 20
Ångstroms. In all cases except the aquaporin systems, a simple slab-like membrane was
sufficient. For the aquaporin system, both a simple slab-like model and cylindrical exclusion
pore model were tested. The pore radius was set to 6.0 Ångstroms to ensure that no solvent
in the channel region would be overwritten.

Results and Discussion
Consistency between Periodic FD Solvers

The FFT solver may be used to calculate potentials for in vacuo systems without the
augmented IIM method. This allows us to compare the FFT and PCG solvers for in vacuo
systems directly. To ensure that both methods give consistent results, electrostatic potential
distributions were generated for the complete aquaporin system in vacuum. Contour plots
were generated using the Mathematica software package and are shown in Figure 3. As is
evident from the contour plots, the two methods yield equivalent electrostatic potential
distribution in vacuum, even for the tested large complex molecule. Electrostatic energies
reported for AMBER were also identical for both solvers (Table 1). More detailed analysis
shows that discrepancy in computed energies is below the corresponding tolerance set for
PCG. Given their high numerical consistency, we next proceed to validate our numerical
models in more complex dielectric setups.
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Quadrapole in a Membrane
We first used a simple quadrapole system in a 2 Ångstrom low dielectric sphere as an initial
test case for the membrane setup. The membrane region was represented as a rectangular
slab oriented with its normal running parallel to the z axis, and centered on the middle of the
simulation box with dielectric constant equal to that of the solute (e.g. acting as an extension
of the solute region). Cross-sectional electrostatic potential distributions for the water only
and water + membrane systems were generated using VMD and displayed with the solute/
solvent boundary grid points overlaid as shown in Figure 4. Comparison of the left and right
panels clearly shows that the low dielectric solute region is indeed being extended to include
the slab-like membrane. It is also evident that the level set density method leads to
smoothing out of what would otherwise be a sharp transition between the spherical solute
and the rectangular membrane.

Small to Mid-Sized Membrane Peptides and Proteins
To test the numerical setups for moderate-sized membrane protein systems, we first ran
computations on the C-terminal trans-membrane alpha helix of aquaporin. Computations
were run for vacuum, continuum water, and continuum water + 20 Ångstrom membrane.
The results are visualized in Figure 5 where molecule itself is visualized using the van Der
Waals surface with the electrostatic potential distribution mapped onto it. The boundary grid
points are also shown to indicate the solute solvent interface. The effect of adding the high
dielectric solvent is clearly evident when comparing the left (vacuum) and middle (water
only) panels, which shows reduction in intensity and contrast of the color mapping. The
effect of the membrane region is evident from comparing the right (water + membrane)
panels with the middle and left panels. The upper and lower portions of the molecule that
extend beyond the membrane exhibit potentials that most closely resemble the water-
solvated potentials while the region interior to the membrane exhibits potential more closely
resembling that of the vacuum potentials.

Next we tested our models directly on membrane protein systems, we ran computations on
several proteins ranging from 19 to 200 amino acids. Electrostatic energies were computed
using both the FV/PCG and IIM/FFT methods. Results are shown in Table 1. Columns 3 and
4 show the reaction field energy for each system. Columns 5 and 6 show the change in the
reaction field energy due to the addition of the membrane region. We again notice that the
membrane solvation yields energy values between the water only and vacuum cases, as
would be expected from extension of the low dielectric solute region (for which the
dielectric constant matches the vacuum dielectric). Furthermore, both numerical methods
yield energies highly consistent with each other, with difference less than 1–2% for most
cases, demonstrating the consistency between the very different handlings of the
heterogeneous dielectrics by FV/PCG and IIM/FFT methods.

Aquaporin Channel in Membrane
The new model is next tested on a typical membrane protein system, aquaporin, whose
transmembrane channel also offers an opportunity to test the implementation of the
cylindrical exclusion feature. The tested aquaporin was oriented such that its central solvent
channel ran roughly parallel to the z axis. A grid spacing of 0.5 Ångstrom and a fill ratio of
1.125 were used due to its large size. Default AMBER settings were used in all other cases.
Four continuum solvation setups were tested: in vacuum, in water, in water + membrane,
and in water + membrane with pore. The width and placement of the pore exclusion region
was chosen such that membrane dielectric would not be assigned to the solvent channel of
the aquaporin while also ensuring that the exclusion region remained within the bounds of
the membrane bound protein region.
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Figure 6 demonstrates the proper implementation of the solvated membrane system with the
transmembrane channel. The top panels (membrane with the pore exclusion region) show
that the pore region is set to the solvent dielectric when the membrane pore exclusion feature
is turned on; whereas the pore region is set to the solute/membrane dielectric when the pore
exclusion feature is turned off. This indicates that the membrane pore exclusion feature
functions as expected. Figure 7 further visualizes the electrostatic potential distributions of
the membrane protein with or without membrane and with and without pore. The addition of
solvent (top right panel) clearly reduces the magnitude of the electrostatic potential in the
solvent region when compared to the in vacuo run (top left panel). The addition of the slab-
like membrane region to the solvated protein (bottom left) results in an increase in the
magnitude of the potential within the membrane region as expected. When an excluded pore
region is included (bottom right), the magnitude of the potential in the pore region becomes
more closely matching that in the protein solvated in water.

Conclusions and Future Directions
In this study we explored a continuum slab-like membrane model based on the density
function strategy. The optional cylindrical exclusion region, to accommodate the existence
of transmembrane channel, was also implemented with the assistance of the level set
function for easily mapping of heterogeneous dielectric distributions in the continuum
representation of the membrane systems. To mitigate the artifacts of edge effects of the
finite system sizes, the periodic boundary condition was also utilized. The continuous and
smooth density level set function also allows higher-order PBE solvers to be utilized in the
current setup.

Visualization of the tested systems for the water only and water + membrane setups indicate
that the membrane level set scheme functions properly. Comparison of reaction field
energies between the water only and the water + membrane setups for various small to mid-
sized peptides and proteins indicate that addition of a membrane region lowers the
magnitude of the reaction field energies. This is expected since the membrane is an
extension of the low dielectric region and thus should produce results that fall somewhere
between the water only and the vacuum environments. Finally, the cylindrical exclusion
feature, as illustrated in the visualizations for the aquaporin system, was shown to have the
desired effect of preventing the solute dielectric from being mapped to the channel region of
the protein, which should retain the high solvent dielectric. The implementation was also
confirmed by comparison of the electrostatic potential in the channel region between the
simple slab-like membrane setups with and without the cylindrical exclusion. The
magnitude of the electrostatic potential in the channel region more closely matches that from
the water only setup.

The results of our continuum membrane model are encouraging. However, there are still
many details that must be addressed before it can be routinely applied in biomembrane
system modeling and analysis. We are actively working on implementation of unique
dielectric constants profiles for the membrane and reformulation of the preconditioned linear
PBE solvers (48,49) to suit the periodic boundary condition for more efficient numerical
calculations of large biomembrane systems. In addition, extension of the continuum
membrane model to include charged head group distributions and incorporation of the
hydrophobic effect are clearly interesting (50). Finally, optimization of model parameters for
simulation of common membranes should lead to robust modeling of the membrane
systems.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Proposed a continuum membrane model in the Amber molecular mechanics model

Implemented the model with differential geometry concepts for efficiency

Adapted high-accuracy numerical solvers to more robust solvation modeling

Laid foundation for extension to more realistic modeling of membrane environment
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Figure 1. Construction Of Solute And Membrane Level Set Densities
Illustrations of level set construction starting from signed distance functions. Signed
distance to van Der Waals surface is shown in red. Summation contribution computed using
spline and/or polynomial scaling functions is shown in green. Final level set function is
shown in blue. Left: Diagram for solute level set function construction. Right: Diagram for
membrane level set function construction
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Figure 2. Effective Signed Distance (Å) And Level Set Density Distribution Cross Sections For
Model Membrane
Signed distance and level set density distributions on the cross section of a 20 Å model
membrane containing a cylindrical exclusion region with a radius of 6 Å. Top: Signed
distance distribution. Bottom: Level set density distribution.
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Figure 3. Electrostatic Potential Distribution (Kcal/Mol-E) Of Aquaporin In Vacuum
Left: Results for the FFT solver. Right: Results for the PCG solver. Contours are taken along
the yz plane through the center of the finite-difference grid.
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Figure 4. Level Set Cross Sections And Boundary Grid Points For Quadrapole System
Left: System solvated in water. Right: System solvated in water and 2 Å slab-like
membrane. Boundary grid points are overlaid as green points. For both plots, red indicates
the solute/membrane interior region, and blue indicates the solvent region.
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Figure 5. Electrostatic Potential Distribution (Kcal/Mol-E) And Boundary Grid Points For The
Aquaporin Coil System
Top: Electrostatic potential maps only. Bottom: Electrostatic potential maps overlaid with
boundary grid points in yellow. Left: Vacuum System. Middle: Solvated in water + 20 Å
slab-like membrane. Right: Solvated in water only.
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Figure 6. Cross-Sectional Distribution Of Level Set Density Function And Boundary Grid Points
For The Aquaporin System
Left: Cross-sectional distribution of the level set density function taken along the y-z plane
through the center of the channel. Red indicates the solute region, white indicates the
membrane region, and blue indicates the solvent region. Right: van der Waals surface of the
aquaporin system overlaid with boundary grid points in white. The van der Waals surface is
made transparent to allow viewing of buried boundary grid points. Top panels: Solvated in
water + 20 Å membrane with a 6 Å cylindrical exclusion region. Middle panels: Solvated in
water + 20 Å membrane. Bottom panels: Solvated in water.
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Figure 7. Cross-Sectional Distributions Of Electrostatic Potential (Kcal/Mol-E) For The
Aquaporin System
Top Left: Vacuum. Top right: Solvated in water. Bottom Left: Solvated in water + 20 Å
membrane. Bottom Right: Solvated in water + 20 Å membrane and a 6 Å cylindrical
exclusion region. Contour plots are taken along the yz plane through the center of the
channel.
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