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Abstract
The identification of common tumor signatures can discover the shared molecular mechanisms
underlying tumorgenesis whereby we can prevent and treat tumors by a system intervention. We
identified tumor-associated signatures including pathways, transcription factors, microRNAs and
gene ontology categories by analyzing gene sets for differential expression between normal vs.
tumor phenotypes classes in various tumor gene expression datasets. We obtained the common
tumor signatures based on their identified frequencies for different tumor types. Some shared
signatures important for various tumor types were uncovered and discussed. We proposed that the
interventions aiming at both the shared tumor signatures and the tissue-specific tumor signatures
might be a potential approach to overcoming cancer.
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1 Introduction
A large amount of studies have revealed that cancer has been associated with the genetic and
genomic changes [1–2]. As the microarray technology have enabled the simultaneous
measurement of the expression levels of tens of thousands of genes in a single experiment
[3], the use of microarray technology to analyze gene expression changes in tumor tissues is
a powerful tool for uncovering the molecular mechanisms underlying cancer [4]. At the
same time, the biology of cancer is extremely intricate so that a simple genetic or genomic
perspective is insufficient to understand it. Only by attaining more complete cancer-
associated molecular profiles such as pathways and transcriptional regulatory circuits, could
we comprehend the disease more clearly.

Gene expression profiling has been widely used for identification of cancerous biomarkers
whereby we can improve cancerous diagnosis, treatment and prognosis [5–19]. Moreover,
since it has been recognized that a gene set could be more biologically significant than
individual genes considering gene interactions, the microarray-based gene set enrichment
analysis has been investigated on the assumption that it could provide additional insights
into the cancer biology [20–22]. Generally speaking, cancer is a systems biology disease
[23–24]. To understand the disease at a system level, identification of common tumor
signatures among multiple tumor tissues is a critical avenue, although a substantial number
of tumor signatures might be tissue-specific.

In the present study, we identified the common tumor signatures closely associated with
various tumor types. The signatures include four types: pathways, transcriptional factors
(TFs), microRNAs (miRNAs) and gene ontology (GO) categories, which were identified
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through the gene set enrichment analysis based on gene expression profiling. The signatures
suggested some basic molecular mechanisms underlying tumor, and might imply potential
routes of interventions for cancerous diagnosis and treatment.

2 Methods and Materials
2.1 Methods

We identified important pathways, TFs, miRNAs and GO categories by analyzing gene sets
for differential expression between normal vs. tumor phenotypes classes. The LS or KS
permuation test and Efron-Tibshirani’s GSA maxmean test were used to determine the
significant gene sets at 0.05 significance level for identification of pathways, TFs and
miRNAs, and 0.0001 significance level for GO categories. The pathways (BioCarta) related
to the significant gene sets were identified. The TFs were identified by the gene sets, in each
of which all genes were experimentally verified to be targets of the same transcription factor
(TF). Each miRNA potentially targeting all the genes in one of the gene sets was identified.
The identification of important pathways, TFs and miRNAs was performed with the gene set
expression class comparison tool in BRB-ArrayTools, which is an integrated software
package for the visualization and statistical analysis of DNA microarray gene expression
data [25].

2.2 Materials
We analyzed 23 human gene expression datasets involving 15 tumor types (Table 1) [26].
For each dataset, we carried out class comparison algorithm to identify informative
pathways, TFs, miRNAs and GO categories relevant to the tumor(s).

3 Results and Analysis
3.1 Identification of tumor-associated pathways

In the total of 26 class comparisons, we identified 25 pathway sets significant at 0.05
threshold level. The 25 sets encompassed 304 different pathways, 17 of which appeared at
least in 10 different sets, suggesting that they were associated with at least 10 different types
of tumors. Table 2 lists the 17 most frequent identified pathways. The complete 304
pathways identified are presented in the supplementary Table S1. From Table 2, we can see
that the most common tumor-associated pathways are often involved in cell cycle regulation,
mitogen-activated protein kinase (MAPK) signaling, epidermal growth factor receptor
(EGFR), metabolism, oxidative stress, cell motility etc. Many studies have come to the
similar conclusions [27–43].

3.2 Identification of tumor-associated TFs
We identified 26 sets of TF targets significant at 0.05 threshold level. There were 99
different TFs identified relevant to the 26 sets, 22 of which were associated with more than
1/3 of the 26 target sets (Table 3). The most frequently identified TF was c-Myc with 62%
occurrence rate, and the next ones were E2F-4, MYB and TP53 all with 58% occurrence
rate. All the 99 TFs and their occurrence rates were provided in the supplementary Table S2.

Evidently, c-Myc is one of the most important TFs relevant to cancer [44]. Since c-Myc
target genes are often involved in the critical mechanisms underlying cancer like cell cycle
regulation, apoptosis, metabolism etc., the dysregulation of c-Myc greatly contributes to
cancer [45–47]. Table 3 shows that two members of the MYB family of TFs: MYB and
MYBL2, have important relevance to cancer. Indeed, many studies have strongly suggested
that they played a role in tumorgenesis [48–58]. The two members of the E2F TF family:
E2F-1 and E2F-4, have been revealed to be associated with cancer [59–63]. An extremely
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important tumor-associated TF p53 is also presented in Table 3. The role played by p53 in
tumorgenesis has been well-recognized [64–66].

3.3 Identification of tumor-associated miRNAs
We identified 24 sets of miRNA targets significant at 0.05 threshold level. The 24 sets were
involved in 587 different miRNAs, 34 of which were associated with at least one half of the
24 sets. The 34 miRNAs are listed in Table 4 and the 587 miRNAs are provided in the
supplementary Table S3. The most frequently identified three miRNAs were miR-29b,
miR-29c and miR-29a, members of miR-29 miRNA gene family. The miR-29 family has
been proven to be strongly involved in cancer [67–71]. Table 4 shows that another miRNA
gene family miR-30 seems to be closely associated with various tumors. There has been
some evidence to support this conclusion [72–74]. In addition, miR-19 and miR-526
miRNA gene families appear to be involved in various tumors (see Table 4). Some
literatures have suggested their roles in tumorgenesis [75–77]. The other miRNAs with high
frequencies like miR-181c, miR-590, miR-212, miR-338 and miR-202 have also been
reported to be associated with tumorgenesis [78–82]. It should be noted that most of the
cited support literatures were from recent publications, while all the gene expression datasets
studied were from earlier publications, indicating that our inference and prediction were
reliable to a certain degree.

3.4 Identification of tumor-associated GO categories
We identified 25 sets of GO categories significant at 0.0001 threshold level. The 25 sets
were involved in 2273 different GO terms, 39 of which were concerned with at least five
different tumor types. The 39 GO terms are listed in Table 5 and the complete 2273 GO
terms are provided in the supplementary Table S4.

Table 5 shows that the genes involved in immune, metabolism, development, cell
proliferation and differentiation, damage response etc., are most relevant to tumorgenesis.

4 Discussion and Conclusions
The microarray analysis of gene expression profiling of tumor tissues can not only discover
the marker genes relevant to tumor malignancies, but also identify the informative gene sets
to reveal the molecular mechanisms underlying tumor. The gene set enrichment analysis is a
strong supplement to the individual gene analysis as it can potentially make use of the gene
interaction information, which is often missed by the individual gene analysis. In this study,
we used the gene set enrichment analysis to identify the shared tumor signatures whereby
we could reveal the common mechanisms underlying different types of tumors, and
therefore might provide a basic reference to tumor prevention and treatment.

Our tumor signatures included tumor-associated pathways, TFs, miRNAs and GO
catagories. Each of the tumor signatures was related to multiple genes and identified based
on gene set comparison. Therefore, these kinds of signatures may imply the mechanisms
underlying tumor at a close system level. Since it has been recognized that cancer was a
systems biology disease, the systems interventions aiming at cancer prevention and
treatment could contribute to conquering cancer. Of course, some tumors might involve
tissue-specific signatures, and therefore the tissue-specific interventions are necessary for
treating the tumors in addition to the systems interventions.

The reliability of the results obtained by the present study is mainly affected by two factors:
the quality of microarrays and the statistical power. Microarrays, especially poor-qualified
microarrays, often contain a large amount of noises, which are prone to result to
identification of false signatures. In addition, the discovery of common tumor signatures by
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their occurrence frequencies in different tumor types is not based on sufficiently strong
statistical power so that some signatures might be identified by chance. This is a work
needed to be improved in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Summary of human tumor gene expression datasets

Tumor Type # Datasets Reference

Brain Cancer 1 [83]

Cervical Cancer 1 [84]

Embryonal Cancer 1 [85]

Esophageal Cancer 1 [86]

Gastric Cancer 2 [87–88]

Head and Neck Cancer 1 [89]

Lung Cancer 2 [90–91]

Melanoma 1 [92]

Mesothelioma 1 [93]

Pancreatic Cancer 1 [94]

Prostate Cancer 5 [95–99]

Renal Cancer 2 [100–101]

Soft Tissue Sarcoma 1 [102]

Thyroid Cancer 1 [103]

Uterine Leiomyoma 2 [104–105]
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Table 2

Seventeen pathways frequently identified in tumors

Pathway Symbola Pathway Namea Frequencyb

Vitcb Vitamin C in the Brain 14

Mhc Antigen Processing and Presentation 13

No1 Actions of Nitric Oxide in the Heart 13

Keratinocyte Keratinocyte Differentiation 12

Cbl Mediated ligand-induced downregulation of EGF receptors 12

Biopeptides Bioactive Peptide Induced Signaling Pathway 12

Cell Cycle Cyclins and Cell Cycle Regulation 11

Cftr Cystic fibrosis transmembrane conductance regulator (CFTR) and beta 2 adrenergic receptor (b2AR)
pathway

11

Erad ER-associated degradation Pathway 11

Arenrf2 Oxidative Stress Induced Gene Expression Via Nrf2 11

Vobesity Visceral Fat Deposits and the Metabolic Syndrome 11

PlateletApp Platelet Amyloid Precursor Protein Pathway 11

Mcalpain mCalpain and friends in Cell motility 10

Ranms Role of Ran in mitotic spindle regulation 10

P38 Mapk p38 MAPK Signaling Pathway 10

Tcra Lck and Fyn tyrosine kinases in initiation of TCR Activation 10

Dsp Regulation of MAP Kinase Pathways Through Dual Specificity Phosphatases 10

a
BioCarta pathway symbol and name.

b
The occurrence times of the pathway in the 25 pathway sets identified.
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Table 3

Twenty-two TFs frequently identified in tumors

TF Frequency

c-Myc 16

E2F-4 15

MYB 15

P53 15

SMAD1 14

TAL1 13

TFAP2A 11

JUN 11

PPARA 11

MYBL2 10

SP2 10

EPAS1 10

FLI1 10

STAT3 10

E2F-1 9

PPARD 9

STAT5B 9

NFIC 9

POU2F2 9

PGR 9

ETS2 9

HIF1A 9
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Table 4

Thirty-four miRNAs frequently identified in tumors

miRNA Frequency

miR-29b 18

miR-29c 17

miR-29a 16

miR-30e-3p 14

miR-547 14

miR-181c 13

miR-30e-5p 13

miR-590 13

miR-212 13

miR-603 13

miR-669b 13

miR-338 13

miR-202 13

miR-1 12

miR-103 12

miR-181a 12

miR-19a 12

miR-19b 12

miR-200b 12

miR-21 12

miR-30a-5p 12

miR-30c 12

miR-30d 12

miR-330 12

miR-518a 12

miR-526c 12

miR-562 12

miR-31 12

miR-128a 12

miR-30a-3p 12

miR-182 12

miR-669c 12

miR-526b 12

miR-95 12
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Table 5

Thirty-nine GO terms frequently identified in tumors

GO Terms Frequency

antigen processing and presentation of peptide antigen 7

MHC protein complex 7

antigen processing and presentation of peptide antigen via MHC class I 6

MHC class I receptor activity 6

cytosolic ribosome 6

extracellular matrix part 6

collagen 6

fibrillar collagen 6

cell proliferation 6

regulation of cell proliferation 6

regulation of biological quality 6

basement membrane 5

collagen metabolic process 5

ribosomal subunit 5

extracellular matrix structural constituent 5

peptide cross-linking 5

glycosaminoglycan binding 5

small ribosomal subunit 5

blood vessel development 5

vasculature development 5

response to external stimulus 5

response to wounding 5

anatomical structure morphogenesis 5

tissue development 5

response to organic substance 5

cell differentiation 5

response to chemical stimulus 5

cell development 5

organ development 5

cellular developmental process 5

proteinaceous extracellular matrix 5

extracellular space 5

extracellular matrix 5

extracellular region part 5

structural molecule activity 5

cytoskeletal protein binding 5

cytoskeleton 5
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GO Terms Frequency

identical protein binding 5

response to stress 5

In Silico Biol. Author manuscript; available in PMC 2013 February 22.


