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Abstract

The recent development and application of molecular genetics to the symbionts of invertebrate
animal species have advanced our knowledge of the biochemical communication that occurs
between the host and its bacterial symbionts. In particular, the ability to manipulate these
associations experimentally by introducing genetic variants of the symbionts into naive hosts has
allowed the discovery of novel colonization mechanisms and factors. In addition, the role of the
symbionts in inducing normal host development has been revealed, and its molecular basis
described. In this Review, | discuss many of these developments, focusing on what has been
discovered in five well-understood model systems.

Thisisan exciting time for biologists, and for microbiologistsin particular. We are at the
convergence of two breakthroughs that are advancing our understanding of how animals and
plants live with their microbiota. The first of these advances is the development of methods
for dissecting the genetic mechanisms by which organisms signal and respond to each other.
The second advance is conceptual: the recognition that higher organisms create a shared
living space with a specific set of beneficial microorganisms. Together, these two
developments have made it possible to begin to understand how animals and plants
communicate with the many bacterial species that livein and on their tissues. Describing the
genetic basis of this symbiotic conversation has become a new frontier of biology.

Recent research is expanding to identify and embrace the diversity of microbial symbioses
inliving systems (FIG. 1). This diversity includes associations in which bacteria perform
conserved functions that are common to the needs of many host species (for example,
digestive activitiesl), aswell as those in which they perform unusual functions (for example,
bioluminescence?) that have specifically evolved in afew host species. Included in this
Focus issue are contributions that address a range of symbiosesin depth and describe
specific phylogenetic groups and metabolic processes. For example, Parniske? discusses
plant-microorganism associations, whereas Werren and colleagues? concentrate on obligate
intracellular partnerships and Ley and colleagues® discuss complex microbial consortiain
vertebrates. By contrast, this Review focuses on a set of experimentally accessible,
genetically developed systems that consist of a natural association between an invertebrate
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host and one or afew bacterial symbionts. These associationsillustrate how the application
of molecular genetics and genomicsto anumber of biologically diverse symbiosesis
revealing the nature of the conversation by which an animal and its microbiota initiate and
maintain a shared existence.

The value of natural experimental models

An emerging awareness of the role of beneficial microorganismsin human health has led to
arecent increase in interest in symbioses®:’. For example, there has been successin using
gnotobiotic animals that were inoculated with specific combinations of microbial speciesto
dissect the processes that underlie the complex enteric consortia of vertebratesS. These
studies, which use constructed systems (FIG. 2) that are artificially simplified to focus on a
specific set of events, have already revealed the role of specific bacteriain modulating such
diverse and important health issues as obesity and immune dysfunction®12. As aresult of
these discoveries, there has been a widespread re-evaluation of the extent to which
microorganisms may influence other, as yet unrecognized, aspects of host physiology?.

A second kind of model that is used in biology, natural systems, allows us to exam how
interactions function in the context in which they evolved. In contrast to the genetically
modified or inbred host lines that are developed for constructed systems, natural models
purposely use a population of genetically heterogeneous hosts to provide insight into the
natural range of responses that characterize normal animal populations. However, athough
these systems may be natural, they are most useful when they have experimentally valuable
characteristics, including culturable partners that can be maintained separately from each
other. For some symbioses that are established through horizontal transfer, the newly
hatched host can survive without its symbiont (aposymbiotic) and the symbiont (or
symbionts) can be grown under axenic conditions. such conditions present the opportunity to
experimentally study the initiation of the association. Alternatively, in those casesin which
mature hosts can be cured of their microbial symbionts and artificially reinfected with novel
strains, the persistence of the association can be followed. In any event, if the association is
binary (one host and one symbiont species) or consists of asimple bacterial consortium?3, it
can be easier to focus on a specific set of relationships or events.

Numerous other attributes that allow for technological applications (BOX 1) have been
exploited in arange of natural symbioses, but one that has recently begun to open many
guestions to experimental evaluation is the ability to genetically manipulate one or more of
the symbiotic partners and subsequently reconstitute the association with these variants. This
genetic level of manipulation has usually been developed in the bacterium, although there
are exceptions'. However, in all cases, the desired result is to be able to build and
interrogate testable models of the nature of the interaction.

Over the past 20 years a number of new systems have been developed to study animal-
bacteria symbioses!®. But why should we promote the development of so many different
models? In addition to the ability of an individual model to reveal evolutionary novelties or
clearly conserved mechanisms, each model allows a distinct set of difficult questionsto be
addressed, which when combined with other model s provides opportunities that would not
be available from any one system8:16, The importance of using arange of different models
was illustrated by a study of animal development, in which more than a dozen species were
assessed to investigate how animals control the mechanisms by which an individual is built
from asingle cell. The number of different models that are available has been crucial to the
advance of developmental biology: at least seven of these models have directly led to
discoveries that were recognized by nobel Prizes (TABLE 1). It isclear that each of these
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different anima models has provided a unique opportunity to better describe a fundamental
processin developmental biology.

of beneficial symbioses

With only afew known exceptions (for example, light-organ symbioses of marine fish?),
beneficial associations between vertebrates and bacteria exist as complex consortia of tensto
hundreds of species®. By contrast, most beneficial symbioses in invertebrates are
monospecific or constitute simple (<10 species) consortia, perhaps owing to the limited
ability of their hosts to carry out immunological surveillancel’. Although most beneficial
symbionts of insects are obligately intracellular and are passed vertically through the
maternal linel8, many bacteriathat are associated with these and other invertebrates are
passed horizontally, and therefore must be able to live in the external environment. It is
therefore not surprising that most of the currently recognized, genetically tractable
symbionts that can be readily cultured are horizontally passed, heterotrophic bacteria.
Described below are five beneficial symbioses of invertebrate hosts that have been
examined by genetically manipulating at |east one bacterial species. Three of these systems
are normally found as binary associations of a monospecific symbiont population that grows
within a specialized tissue of its host, whereas two consist of simple consortia that are found
inan animal’s enteric tract (FIG. 3).

Vibrio and sepiolid squid

Many species of marine animals are bioluminescent, and approximately half of these
generate their light by devel oping associations with luminous bacteriain the genera Vibrio
or Photobacterium?1°. The best studied of the light-emitting symbioses is that between
Vibrio fischeri and the sepiolid squid Euyprymna scolopes, although other species of
sepiolids that are symbiotic with V. fischeri and/or the related Vibrio logei have also been
described?021, |n these symbioses, the host is thought to use the luminescencein a
behaviour called counterillumination?2. The E£. scolgpesassociation is horizontally passed
between generations of hosts?3, which must individually obtain their bacterial symbionts
from environmental populations that live in the ambient sea water24. Thus, the newly
hatched juvenile squid is aposymbiotic and, because bioluminescence is not a nutritional
product, the host can be maintained in a free-living form in the laboratory for generations®.
similarly, V. fischeri cells are easily grown in culture, and can be genetically engineered
using recently developed techniques (for example, REFS 26,27). In addition, the completion
of two V. fischeri genomes?822 and associated microarraysi031, aswell asalibrary of
expressed sequence tags®2 and amicroarray chip for the host squid33, have ushered in an era
of genomic-level analysisin both partners of this symbiosis.

Xenorhabdus-Photorhabdus and nematode worms

One of the best-devel oped systems for the study of beneficial symbiosesis a series of
specific associations that have evolved between two genera of nematode worms and one of
two genera from the Enterobacteriaceae®. These associations share a common biological
function: they allow the partnership to infect, kill and grow within insect larvae. As many of
the infected insect species are crop pests, an understanding of the basis of bacteria-nematode
symbiosis and its potential in biological control is of considerable interest in agriculture.
Two pairs of bacteria-host genera are known: Xerorhabaus-Steinernema®* and
Photorhabaus-Heterorhabditis®. Although these interactions have distinct features, they
share many developmental and genetic characteristicsl®. Interestingly, in each interaction,
the bacterium is highly specific for its particular nematode species, whereas the insect larvae
from both taxa are susceptible to both species of nematode.

Nat Rev Microbiol. Author manuscript; availablein PMC 2013 February 22.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Ruby

Page 4

The nematodes exist in soil in aresting form, and carry dozens of symbiontsin aregion of
their upper enteric tract. In Xerorhabalus, this region consists of a specialized structure
called the vesicle. Although initially dormant, this vesicle migratesinto the blood system
and begins to ingest blood when the nematode invades alarval insect. The nematode then
expelsits bacterial symbionts, which produce extracellular toxins and degradative enzymes,
and proliferate, providing afood source that supports the reproduction of an increasing
population of worms. When the insect carcass is depleted of nutrients, the worms revert
back into the resting form, and the nematode vesicle becomes colonized by afew cells of the
bacterial population3®. The nematodes then escape into the soil, where they await the next
insect host. Knowledge of the process by which the bacteria colonize their nematode host,
and in particular the genetic basis of specificity and development in the bacterial symbionts,
has increased markedly in recent years3”-39, Although there is considerable interest in the
genetic basis of the insect-parasitism stage of the bacteria-nematode life cycle, which has
been aided by the development of atripartite model system that targets larvae of the
genetically facile fruit fly Drosophila melanogaster3®, the emphasis of this Review is on the
beneficial association between the worm and its bacterial symbiont. nevertheless, it should
be noted that there is some overlap between the genetic requirements for pathogenic and
beneficial symbiosis3®.

Sodalis glossinidius and the tsetse fly

Aeromonas,

Many, if not most, insect species maintain intracellular bacteria that provide essential
metabolic and developmental activities for their hosts*®41, These organisms are classified as
either primary symbionts (for example, species of Buchneraand Wigglesworthig), which are
uniformly present in the host, but are not culturable in their free-living form, or secondary
symbionts, which occur more sporadically and in several cases have been grown outside of
the host4%42, Primary symbionts are always found in the specialized tissue called the
bacteriome, whereas secondary symbionts can occur in several different tissues of the host.
Asfor primary symbionts, secondary symbionts are generally inherited maternally.
However, secondary symbionts retain their ability to pass to a new host from either the
environment or another host#0. Sodalis glossinidius, which is thought to provide a beneficial
effect to its specific host, the tsetse fly, is of considerable epidemiological interest asa
potential vector that can be engineered by paratransgenetics to artificially produce anti-
trypanosomal proteins?3. This symbiont is closely related to well-studied enteric species,

and microarray-based analyses have shown that its genome is surprisingly similar to that of
Escherichia coli**. In addition, because S, glossinidiusis not essential to its host, it is
possible to eliminate the native bacteria within afly by antibiotic treatment and reinfect it
with genetically modified strains®.

Rikenella and the leech

The diversity and specificity of invertebrate enteric microbiota have begun to be examined
using culture-independent techniques, and, with the exception of specialized cellulosic
species, such as termites™, these communities seem to be generally composed of simple
consortia of fewer than ten species!’46. one such invertebrate is the medicinal leech Hirudo
verbana, the diet of which isrestricted to vertebrate blood. Because of the initial activity of
complement in the ingested blood*’, the ingestion of susceptible bacteria by leech
haemocytes® and possibly other leech- or symbiont-produced antimicrobial compounds?®,
only two species of bacteria (from the genera Aeromonasand Rikenella) are long-term
inhabitants of vertebrate blood0. A higher number of species can be detected downstream
of the crop in the intestinum, where the blood is digested, but even there Aeromonasand
Rikenellaremain the most abundant microbial species!3.
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The role (or roles) of these symbiontsin the leech remains unclear, but they might foster the
nutrition and/or development of the host. Aeromonasspp. are easily cultured and produce
many exoenzymes, whereas Rikenellaspp. are fastidiously obligate anaerobes. Interestingly,
when in the crop, cells of the two species associate tightly with each other, forming mixed
microcolonies that are embedded in a polysaccharide matrix. In addition, the growth of one
species is enhanced by the presence of the other®0. Taken together, these observations
suggest a synergistic interaction between the bacteria partners in this symbiosis.

Enterococcus and the fruit fly

Considerable interest has developed in determining the nature of the microorganisms that
inhabit the enteric tracts of insects, and particularly the high number of speciesthat are pests
of environmentally and agriculturally important plants®L. surprisingly, it seems that despite
the high number of different host species that have been examined species of the genus
Enterococcusare typically among the natural members of the microbiota. This patternis
apparent even when specimens of D. melanogaster from |aboratory-maintained stocks are
compared with those from wild-caught populations!4. When the anatomical distribution of
these bacteria was determined in fruit flies, they were found to be restricted to portions of
the foregut, midgut and hindgut. Asfor Aeromonas spp., native Enterococcus symbionts can
be cured, and the consortium re-established using other genetically modified strains. using
this approach, cox and Gilmorel4 recently showed that an Enterococcus faecalisstrain
which was engineered to produce a non-native haemolysin was lethal to its host.

Application of molecular genetics

What key mechanisms underlie the development of a beneficial symbiosis? specifically,
how have these mechanisms evolved to permit a host and its microbiotato effectively
communicate during the initiation, accommodation and subsequent persistence of their
symbiotic association (FIG. 3)? Thisis adialogue in which the words and phrases are
biochemical. However, the conversation as awholeis organized at the genetic and even
genomic level. Approaches that apply molecular genetics to help us dissect and define the
steps during a pathogenic infection have had along history of success®2, and more recently
have begun to provide a useful paradigm for studies of beneficial symbioses. For example,
the application of signature-tagged mutagenesis has allowed us to identify symbiont genes
that are involved in different steps of an infection, which has begun to reveal new
colonization determinants*:53 (FIG. 4).

Bacterial genetics has been most effectively applied to characterize the well-studied
association between V. fischeri and its squid host. The application of bacterial geneticsto
this association is discussed below, together with the similar and contrasting mechanisms of
interaction that have been discovered in the other four experimental genetic associations. It
is clear that each of the five systems described above have particular strengths owing both to
the specific biology of the symbiosis and the current range of research activities (TABLE 2).

Surface structures and specificity of the association

A hallmark of all the symbioses considered in this Review istheir exclusivity, and therefore
the mechanisms that underlie this species specificity are of interest. not surprisingly,
surface-associated activities of both the host and the symbiont may be required. For
example, mucus that is produced from the surface of the nascent light organ allows the
juvenile squid to entrap planktonic cells of V. fischeriin aggregates. These aggregates form
near surface poresthat lead into the crypt spaces deep within the organ, where the bacteria
grow and reside®*. The ability of V. fischeri to aggregate in this mucus is dependent on
signalling by the Rscs two-component regulation system®®. Rscs controls production of an
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extracellular polysaccharide through its regulation of the syp operon®6, and strains with null
mutationsin either rscSor key syp genes become defective in colonization®”%8, similarly,
genetic modification of V. fischerilipopolysaccharide (LPs), either by deletion of pgm,
which generates precursors for LPs glycosylation®, or AtrB1, which acylates the lipid A
component of LPsS?, |eads to a reduction in light-organ colonization. LPs modification also
seems to be important to species of Photorhabaus. pgbE1, a homologue of agene in the prmr
locus of serovars of Salmonella enterics?, is also thought to modify lipid A, and a pgbE1
mutant loses the ability to colonize its nematode host®2. In related bacteria, such
modifications have also been linked to resistance to host cationic antimicrobial peptides©3.
similarly, anormal LPsisimportant for Aeromonasspp. to overcome the activity of host
complement and successfully colonize the leechb4,

Not surprisingly, other surface factors have also been shown to facilitate a bacterial
interaction with host tissue during initiation of the association. In V. fischeri, mutation of
either ompU, which encodes an outer membrane protein®, or i/A%6, which encodes one of
the ten type-lv pili of this bacterium?®, has only asmall effect on colonization competence.
such defects become more apparent at alow inoculum that might more realistically mimic
natural conditions®”:68, more impressive effects follow loss of the 7/ genes of Xenorhabaus
species. A nilA mutant strain is attenuated during col onization of the nematode host,
whereas deletion of either r//B or ni/C, which seem to encode membrane components,
completely eliminates symbiosis competency®3. The basis of this requirement is as yet
unknown, but the similarity of nilB to homologues in mucosal pathogens has suggested it
might be involved in an interaction with mucus in the nematode vesicle3*. The Xenorhabaus
mrxA-encoded pilin protein is another surface structure that has been proposed to function
in colonization of the nematode host®°.

Bacterial behaviour and gene regulation

For horizontally acquired symbionts, which may exist for long periodsin seawater or soil, a
rapid and effective adaptation to the specific conditionsinside their host can be crucial. In
pathogenic associations, the expression of suites of genes that encode colonization factorsis
often triggered by the activities of specific transcriptional modulators, such as quorum
sensing systems or two-component regulators’®71, Thus, many studies have targeted such
transcription factors for mutagenesis as a way to affect their downstream regulons. In V.
fischeri, there are two sets of quorum-sensing regulators, Ains-AinR and LuxI-LuxR, that
work sequentially to induce distinct but partially overlapping regulons30:31, mutationsin
either system lead to symbiosis defects. For example, an @nSmutant colonizes the squid
light organ more slowly than the wild type, and when it does finally infect, it is unable to
persist at normal levels’2. Global expression analyses of V. fischeri revealed more than 280
genes that are differentially regulated in the mutant (e.G.R., unpublished observations),
including those that encode the flagellar apparatus3! and the central metabolic-switch
enzyme acetyl-coA synthetase (Acs)’374. These microarray results led to construction of a
V. fischeri acs mutant, which was found to be defective in colonization, indicating an
important role in acetate metabolism for the symbiont population.

V. fischeri LUxIR positively regulates the luminescence (or /ux) genes, aswell as afew
other loci’®, in a cell-density-dependent manner 0. mutation of the /ux/R genes or agene
that encodes luciferase (/uxA), results in a symbiosis persistence defect that could relate to
the inability of these mutants to produce normal light levelsin the host33.76, However, in a
separate microarray-based study, 18 new genes were found to be regulated by the LuxIR
system, and several of these were outer-membrane proteins or secreted proteases®. Thus, it
remains possible that LuxIR, which fully induces its regulon only under the high cell
densities that are achieved in the light organ’’, controls a number of different symbiosis
factors, the activities of which are necessary for along-term, stable colonization of the host.

Nat Rev Microbiol. Author manuscript; availablein PMC 2013 February 22.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Ruby

Page 7

In any case, quorum signalling isa crucial activity in the squid—V7/brio association, as well
asin certain plant-microorganism interactions’8; the role of cell-density sensing in other
beneficial bacteria-animal symbiosesislesswell defined.

Host-induced bacterial -gene expression is another way by which symbionts adjust to lifein
the tissue of an animal. not surprisingly, two-component systems that detect specific
environmental cues and modulate transcription output are important in this adjustment. In a
pioneering effort, Hussa er a/.5° used a bioinformatics approach to identify all the putative
response regulators that are encoded in the V. fischeri genome. Individual mutations were
created in 35 of 40 of these genes, and the resulting strains were compared with the wild-
type parent for colonization competence. of these 35 genes, 12 had a symbiosis defect,
although further examination of these individual regulators is needed to understand the basis
of their effects. For example, in nematode symbioses, HexA, a LysR-like repressor that has
been studied in species of both Photorhabausand Xenorhabaus, seems to control nematode
colonization in Photorhabausbut not Xenorhabaus'®. specifically, among the >100 genes
that are repressed by HexA in Photorhabaus spp. are cipA and ¢ipB, which encode small,
crystal-forming proteins that promote nematode development when expressed /n fransin E.
coli"™. mutation of hexA resultsin astrain that supports the growth of a higher number of
symbionts®, It seems that the primary function of HexA is to enhance bacterial virulencein
itsinsect host, which indicates that there is areciprocal relationship between those
Photorhabalus genes that are required for pathogenesis and those that lead to beneficial
colonization®®,

Theimportance of global changes in symbiont gene expression has a so been revealed by
mutating genes that encode sigma factorsin V. fischeri (rpolN) and Xenorhabadus spp. (rpoS
and rpoE), which leads to defects in flagellar motility8! and resistance to oxidative stress®3,
respectively, thereby indicating that these activities are required for symbiotic colonization.
However, the fact that these transcription factors control the proper expression of dozens of
genes makes it difficult to identify the individual contributions of the many downstream
targets.

In addition to targeted mutagenesis of suspected symbiosis determinants, phenotypic screens
of mutant libraries have provided a powerful tool for identifying both predicted and
unexpected colonization factors and activities. For example, V. fischeri mutants that were
created by random transposon insertion have been screened for strains that are defectivein
phenotypes such as flagellar motility and chemotaxis®283, siderophore production8* and
luminescence®®. subsequent colonization studies have revealed that these phenotypes are all
required symbiosis factors. By contrast, unbiased screening of entire librariesin largescale
colonization studies has revea ed the importance of new factors (for example, REFS
48,53,86,87). Finally, the transfer of genes that encode fluorescent proteinsinto different
strains of bacteria has been applied not only to tag and localize different strains of symbionts
within host tissues, but also to track their transcriptional activity26:88,

Adaptation to host defences

Because all host animals must protect themselves against colonization by inappropriate or
pathogenic microorganisms, a central theme in beneficial bacteria-host interactions is that
the symbiont either avoids damage by the defences of the host or communi cates with host
cells to modulate them89. The ability to modulate host defences might therefore also
contribute to symbiont specificity. Two ways in which invertebrates confront bacteria that
enter their tissues are to produce oxidative or nitrosative stress molecules, or to initiate
phagocytosis. evidence for the avoidance of oxidative or nitrosative stress molecules by the
symbiont came from the colonization defects of mutant strains that were unable to produce
catalase™ or autoinducer 2 (REF. 91). By contrast, Aeromonasspp. do not seem to require a
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functional catalase to colonize their leech host®2. V. fischeri cells effectively avoid
phagocytic haemocytes that are present in the light organ. studies of these haemocytesin
primary culture suggest that prior exposure to symbionts decreases the ability of the host cell
to attach and engulf V. fischeri, but not other bacteria (e.G.R., unpublished observations).
mutation of ompU resultsin an increased susceptibility to phagocytosis, although the
mechanism that underlies this phenomenon is unknown. In arelated case, in which
sensitivity to an immunity factor was encountered in the symbiosis, an AeromonasLPs
mutant was less able to escape killing by complement factors that were present in the blood
meal of the leechb4.

A type Il secretion system (T3ss) which exports effector proteins that moderate host
defences by interfering with the antimicrobial function of the host is emerging as a common
theme in several beneficial symbioses. Leech-associated Aeromonasspp. are the first
extracellular animal symbionts to be shown to use a T3ss to avoid host phagocytosis®e.
specifically, mutation and complementation analyses of ascl, a homologue of inner-
membrane components in other T3sss, have linked this gene to Aeromonassurvival in the
leech crop. Interestingly, wild-type cells did not rescue the T3ss mutant in co-infection
experiments, indicating that the positive effect of the T3ss isrestricted to those bacteria that
can expressit. In asimilar manner, mutation of the /nv (also known as sp8 gene clusters
that encode a Sodalisspp. T3ss eliminated the ability of this bacterium either to invade cells
of the tsetse fly or even colonize cultured cells after introduction by microinjection8é,
subsequent analysis revealed the presence of two separate T3sss in the Sodalisgenome that
have sequential functions during host colonization?3. Photorhabaus spp. also produce a
functional T3ssthat secretes a homologue of Y opT, a protein effector that inhibits
phagocytosis of Yersiniapestisby host phagocytes®®. However, it has not been definitively
shown that this T3ss isimportant to Photorhabaus spp. in host col onization.

Induction of host development

One of the most exciting outcomes of recent studies of bacteria-host interactions is the
recognition that symbionts can play acrucial part in triggering the development of their host.
often these effects lead to dramatic morphological changes that are required for the proper
functioning of the association (for example, REFS 35,95,96). The bacteriain the V. fischeri—
E. scolgpessymbiosis have a remarkably important role in light-organ development®.
several of these developmental events have been linked to specific bacterial gene products
through bacterial mutant analysis: infection by /ux mutants fails to induce the oedemic
swelling that is characteristic of the epithelial cells that line colonized crypts’8, which
suggests that the host tissue normally responds to symbiont bioluminescence or to the
hypoxiathat is associated with luciferase activity¥’. experiments that were designed to
determine which of these factors triggers this developmental response will allow us to better
understand the mechanisms that underlie this interaction.

The striking discovery that developmental regression of the ciliated surface of the light
organ of the juvenile squid isinduced by a bacterial cell-wall monomer®8, which was
previously described as tracheal cytotoxin (TcT), shows how a normal bacteria-host signal
can also serve a pathogenic function. Identification in the V. fischeri genome of homologues
of genes that encode the activities which are necessary for TcT secretion has allowed these
activities to be genetically linked to the developmental biology of this symbiosis. The role of
GacA, acommon bacteria transcriptional regulator, in squid development has also recently
been reported®. specifically, mucus secretion and ciliated-surface apoptosis are not induced
in squid that are colonized by a gacA mutant. Because GacA affects the L Ps structure of the
bacterium, it has been suggested that the developmental defects are linked to outer-
membrane modifications!.
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The proper development of nematode-infective juveniles has also been linked to the
functions of different genesin species of Xenorhabdusand Photorhabadus. The Xenorhabaus
global regulator Lrpis required for normal colonization and subsegquent host maturation
through both its repression (with nilR) of the 17/ genes and its induction of nematode
development16. microarray analyses of the Lrp regulon will help us identify genes that
trigger nematode devel opment. By contrast, the ability of Photorhabadus spp. to promote
nematode growth and development seemsto be largely due to the HexA repressor protein
(discussed above). nematodes that are infected by a Phororhabalus ngrA mutant are unable to
develop from the infective juvenile stage to the self-fertile hermaphrodite stagel®. Because
ngrA is ahomologue of a non-ribosomal peptide-synthesis complex, it has been suggested
that the symbiont produces a peptide signal that induces nematode development3®. Finally,
although the Photorhabadus crystalforming proteins cipA and cipB promote nematode
development through an unexplained mechanism, it is not yet clear whether the analogous
Xmorha;llgduscrystal protein that is encoded by pixA has an important role in the biology of
the host°.

Nutritional and metabolic accommodation

In amutually successful symbiosis, both partners must obtain sufficient organic and
inorganic nutrients to grow and sustain the relationship. not surprisingly, virtually al
symbiotic relationships include a transfer of such materials between the host and the
bacterium, in at least one direction. sometimes, the symbionts must be able to synthesize
missing nutrients owing to the nature of the food, such as blood, that is provided by the host.
The details of this nutritional dependency can often be revealed by following the
colonization of genetic mutants that are defective either in specific biosynthetic or metabolic
pathwayst, or in the ability to adjust to changing nutrient levelst02,

A central question in the Vibrio-squid symbiosisis: what does the host feed its bacterial
symbionts and does this change over the course of the relationship? mutant library screening
for auxotrophs of V. fischeri yielded a collection of strains that were defective in the
biosynthesis of specific amino acids!?3. The colonization levels that were achieved by these
mutants provided a relative measure of the extent to which the host provided each of these
amino acids. The resulting pattern suggested that peptides of atypical protein composition
were available to the symbiont populationl93, By contrast, a similar study of nematode
colonization by Xenorhabaus auxotrophs indicated that two specific amino acids,
methionine and threonine, were of limited availability in the vesicle88. supporting this
conclusion, the Xerorhabaduscrystal protein PixA is methionine rich, and a pixA mutant out-
competes its parent for growth in the vesicle, which suggests that excess methionine
synthesisis ametabolic drain on the symbiont194. Because colonization by Xenorhabaus
spp. requires some or all of the /sc-hsc-fax 1ocus, which encodes activities that synthesize
[Fe-s] centres, it is possible that this bacterium depends on some non-haem redox activity,
such as anaerobic respiration, when in the host19%, Interestingly, studies of the squid—Vibrio
association also suggest that the generation of acetate’® and metabolic pathways which
require anaerobic respiration1% are important to V. fischeri in the light organ.

Asistypical for pathogenic infections'%7, free iron seems to be the main inorganic nutrient
that limits growth in beneficial animal symbioses. severa studies have focused on
identifying the genetic determinants of iron acquisition that allow symbiotic bacteriato
colonize their hosts. In V. fischeri, amutation in the g/nD gene resultsin pleiotropic
phenotypes, including reduced production of at least one siderophore in culture®. When
assayed for colonization, the g/nD mutant failed to persist, but this defect was reversed when
ferric chloride was added to the assay. similarly, the addition of iron rescued colonization by
a putative siderophore-uptake mutant (exbD) of a Photorhabaus species'®8, A putative iron-
regulated promoter element has also been detected upstream of 1grA3°, a gene that could
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function to synthesize either a peptide signal or siderophorel®®, which further indicates that
iron levels are important to Photorhabadus species. Thus, the availability of iron can have
both nutritional and regulatory implications.

Conclusions

The molecular genetics of symbiosisisarapidly expanding field, and new systems are
continually adding to its breadth and impact. It isimportant to continue to develop systems
such as the earthworm nephridia-Acidovorax symbiosist10111 the caterpillar gut-
Enterococcus association®l, the as-yet-uncultured epithelial symbionts of hydrall2 and the
recently described louse fly-Arserngphonusrelationship13, one particularly promising
system is that between a Burkholderiaspecies and its host, the broad-headed stink-bug4. In
this association the bacterium is environmentally acquired at each generation, provides a
clear benefit to the host and is extracellularly located™®. A successful history of molecular
studies of other Burkholderiaspecies makesit highly likely that it will not be long before the
symbiont will be amenable to molecular genetics.

The development of experimental strategies and technological approaches will be important
to the continued growth of the field of symbiosis. creating a community of researchers that
can develop genomic (for example, genomes and microarrays) and molecular genetic
sequencing resources (for example, mutants, vectors and methodol ogy), either within a
single species, or more generally across the field, will quicken the pace of advancein all
systems. similarly, in addition to increasing the number of bacterial symbionts with
sequenced genomes (TABLE 2), efforts to obtain genome sequences for different strains of
the same symbiont species have proven valuable for comparative studies?S.

In most symbioses described herel4, the application of molecular genetics to the animal
partner lags behind efforts with the bacterial symbiont. nevertheless, in the past year there
have been promising resultsin the host using a reverse-genetic RnA interference approach to
silence specific genes!16 and with the application of microarray technology to determine the
differential effect of colonization by mutant symbionts on host gene expression33. Future
studies should focus on devel oping interactive genomics to track patterns of gene expression
simultaneously in both the host and the symbiont. In this way we will not only be ableto
interrogate this conversation, but perhaps learn how to manipulate it.
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Glossary
Bioluminescence The process by which some bacteria and other organisms
produce light as the result of a chemical reaction. During
symbiosis, thislight can be used in behaviours such as
counterillumination, in which the bioluminescence is used to
eliminate the shadow of the host’s silhouette
Gnotobiotic An animal that is born under aseptic conditions and is exposed

only to experimentally introduced microorganisms. Gnotobiotic
animals are used to investigate the symbiotic relationship
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between an animal and one or more of the consortia of
interacting microbial species that normally inhabit its body

Horizontal transfer The process by which an animal or plant obtainsits natural

microbial constituents from the environment at each generation.
By contrast, vertical transfer occurs when a young organism
receives its microbiota from its parent, usually in or on the egg

Expressed sequence One of a series of short nucleotide sequences which represent a
tag (eST) pool of MRNASs that are expressed under a certain

environmental or developmental condition. libraries of eSTs can
be used to identify gene transcriptsin global expression studies

Two-component A stimulus-response coupling mechanism that allows an
regulation system organism to sense and respond to various changesin

environmental conditions

Lipopolysaccharide A major component of the outer membrane of Gram-negative

bacteria. The immune systems of animals generally sense and
react to the presence of lipopolysaccharide

Quorum sensing A system by which bacteria respond to increased population

density by coordinately controlling expression of a specific set
of genes. By sensing the concentration of one of several
continuously secreted signal molecules, including acyl
homoserine lactones, peptides and autoinducer 2, the population
can recognize when it reaches a‘ quorun’.

Auxotroph An organism, or mutant derivative, which is unable to
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Figure 1. Microbial symbioses occur throughout the phylogeny of animals

Experimentally accessible associations, including several that are described in this Review,
occur in al the main phylogenetic groups. These associations span the breadth of animal
diversity, and are represented in cellular-grade, tissue-grade and organ-grade levels of
developmental and morphological complexity.
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(one or a few introduced (one bacterial species)
bacterial species)

Nematode Squid light Earthworm
vesicle organ nephridia

Figure 2. Classes of symbiosis models

Experimental models of microbial symbioses can be characterized into three types.
Gnotobiotic systems (a) have been useful for examining the interactions within the complex
consortiathat are normally present in vertebrate enteric tracts. In these systems, germ-free
host animals are produced, and one or afew bacterial species are introduced to allow an
examination of asimplified relationship. An aternative approach is to investigate consortia
of invertebrates (b), which are often simpler in species composition. Finally, there are
several natural animal models (c) in which only a single bacterial speciesis present.
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b Xenorhabdus—nematode Infect

Escape —_—
carcass_ & %
\

Release bacteria
\ and proliferate/
m, T

Recolonize
—  nematode
d Sodalis-tsetse fly
Horizontal
transfer (rare
Adult fly )
Environment
(other flies?)
Vertical transfer
(common)
Infected egg
Feeding

% Uninfected fly

activit
Vo O%) @ Specifically
0,59 infected fly
o & oOo

(Environmental bacteria)

Figure 3. Simplified life cycles of five symbioses

In each of the symbioses shown, the animal obtains a specific symbiont (or symbionts),
which colonizes the host in a particular location. a | The squid obtains its symbionts from
sea-water populations, which colonize the nascent light organ. b | The nematode brings its
symbiont into the insect host, where both proliferate. The bacteria then recolonize the
nematodes, which escape from the carcass. ¢ | Juvenile leeches obtain symbionts after
hatching from their cocoon (perhaps from the cocoon itself). They then take up residencein
the crop, where they digest their blood meal. d | The tsetse fly can either pass the symbionts
maternally to the eggs or pick up new strains from the environment. e | Specific symbionts
on the food of the fruit fly colonize and persist in the enteric tract.
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Figure 4. categories of colonization mutants

Microbial symbionts that are passed horizontally must negotiate several stages of the
colonization process. Studies of genetically engineered mutant strains have revealed defects
that can be placed in one of several classes. In this example, inoculation with awild-type
strain from the environment allows a few symbionts to colonize, which grow to a specific
population size that is then stably maintained over time. Three broad classes of defects have
been discovered in several symbiotic systems: initiation mutants, which are unable to
inoculate the host; accommodation mutants, which fail to reach the usual population size;
and persistence mutants, which at first colonize normally, but are unable to maintain
themselves.
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Table 1
Examples of Nobel Prize awardsin developmental biology”

veart Recipient (or recipients) Discovery Model organism8
1935 H. Spemann The ‘organizer center’ concept// Newt and frog

1995 E. Lewis, C. Nusslein-Volhard and E. Wieschaus  Homeobox genetic organization Fruit fly and zebrafish
2001 L. Hartwell, T. Hunt and P. Nurse Cyclin regulation of the cell cycle  Seaurchin and frog
2002 S. Brenner, H. Horvitz and J. Sulston Programmed cell death Roundworm

2006  A.Fireand C. Mello RNA interference Roundworm

2007 M. Capecchi, M. Evans and O. Smithies Embryonic stem-cell development  Mouse

Information obtained from Nobel prize.org (see Further information).

JtOf the past 13 Nobel Prizes awarded in Physiology or Medicine, 5 were from the area of developmental biology.

g

In several cases, results from more than one mode!l system were specifically recognized.

I

Thefirst Nobel Prize to be awarded in developmental mechanics (developmental biology).
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