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/ABSTRACT

A better understanding of the pathophysiology and evolution
of non-small cell lung cancer (NSCLC) has identified a number
of molecular targets and spurred development of novel tar-
geted therapeutic agents. The MET receptor tyrosine kinase
and its ligand hepatocyte growth factor (HGF) are impli-
cated in tumor cell proliferation, migration, invasion, and
angiogenesisinabroadspectrum of human cancers, includ-
ing NSCLC. Amplification of MET has been reported in ap-
proximately 5%—22% of lung tumors with acquired
resistance to small-molecule inhibitors of the epidermal
growth factor receptor (EGFR). Resistance to EGFR inhibi-
tors is likely mediated through downstream activation of
the phosphoinositide 3-kinase /AKT pathway. Simultane-
ous treatment of resistant tumors with a MET inhibitor plus

an EGFR inhibitor can abrogate activation of downstream
effectors of cell growth, proliferation, and survival, thereby
overcoming acquired resistance to EGFR inhibitors. Devel-
opment and preclinical testing of multiple agents targeting
the HGF-MET pathway, including monoclonal antibodies
targeting HGF or the MET receptor and small-molecule in-
hibitors of the MET tyrosine kinase, have confirmed the cru-
cialrole of this pathway in NSCLC. Several agentsare nowin
phase Ill clinical development for the treatment of NSCLC.
This review summarizes the role of MET in the pathophysi-
ology of NSCLC and in acquired resistance to EGFR inhibi-
tors and provides an update on progress in the clinical
development of inhibitors of MET for treatment of NSCLC.
The Oncologist 2013;18:115-122

Implications for Practice: Identification of the role of the HGF—-MET pathway in cancer, and specifically in non-small cell lung
cancer (NSCLC) has led to the development of pharmaceutical agents targeting this pathway. In particular, MET’s role in second-
ary resistance to EGFR-directed therapies has led to the investigation of combining MET-directed agents with erlotinib in patients
with metastatic NSCLC. This article reviews the early development of MET-directed therapies as well as currently ongoing Phase
Il studies.We await the results of these studies, which will determine whether targeting MET in combination with EGFR is a valid

clinical option in patients whose cancers progress following treatment with EGFR inhibitors.

INTRODUCTION

Lung cancer is the leading cause of cancer-related death in
the U.S., with an estimated 220,000 new cases diagnosed
and 160,000 deaths annually [1]. Histologically, the major-
ity of lung cancers (75%—85%) are classified as non-small
cell lung cancer (NSCLC), of which adenocarcinoma (40%)
and squamous cell carcinoma (30%—35%) are the two most
common subtypes [2]. Standard first-line treatment of ad-
vanced NSCLC with platinum-based doublet chemotherapy
is associated with a median survival duration of ~10
months [3, 4], and second-line treatment with single-agent do-
cetaxel or pemetrexed is associated with a median survival dura-
tion of ~8 months [5]. Better understanding of the molecular
pathophysiology and natural history of NSCLC has led to the de-
velopment of targeted agentsthat promise toimprove these out-
comes.

The epidermal growth factor receptor (EGFR) regulates key
cellular pathways involved in tumorigenesis and is frequently
overexpressed in NSCLC. Agents blocking EGFR tyrosine kinase
activity were the first targeted agents to demonstrate clinical
benefit in patients with NSCLC who had failed standard first-
line chemotherapy. Inthis setting, the EGFR tyrosine kinase in-
hibitor (TKI) erlotinib led to a significantly longer overall
survival (OS) time than with placebo (6.7 months versus 4.7
months; p <.001) [6]. Subsequently, EGFR TKlIs were demon-
strated to have clinical benefit in the first-line setting in se-
lected patients. A phase Ill, randomized study in previously
untreated Asian patients with advanced adenocarcinoma
who were nonsmokers or former light smokers reported a
higher 12-month progression-free survival (PFS) rate among
patients treated with gefitinib than among those treated with
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Figure 1. Structure and function of the MET receptor tyrosine kinase.

carboplatin plus paclitaxel (25% versus 7%) [7]. In that study,
subgroup analysis demonstrated that gefitinib resulted in a
significantly better PFS outcome in patients with tumors har-
boring activating EGFR mutations (hazard ratio [HR], 0.48; p <
.001). However, in patients with tumors lacking EGFR muta-
tions, the PFSinterval was significantly longer for patients who
received carboplatin plus paclitaxel (HR, 2.85; p <.001). Thus,
EGFR mutation status was shown to be a strong predictor of
clinical benefit derived from gefitinib in this patient popula-
tion. Two additional randomized trials conducted in Japan in
previously untreated patients with NSCLC also demonstrated
abetter PFS outcome in patients with EGFR mutations who re-
ceived gefitinib than in those who received doublet chemo-
therapy (carboplatin plus paclitaxel or cisplatin plus
docetaxel) [8, 9]. Likewise, a study conducted in China in pa-
tients with confirmed EGFR mutations demonstrated a signif-
icantly longer PFS time in those who received first-line
erlotinib than in those who received gemcitabine plus carbo-
platin (13.1 months versus 4.6 months; p < .0001) [10]. How-
ever, the duration of response to EGFR TKls is often short, and
ultimately all patients develop resistance.

Resistance to EGFR TKIs occurs through both primary and
secondary mechanisms [11, 12]. Primary resistance has been
demonstrated in patients with KRAS mutations, which are mu-
tually exclusive of EGFR mutations, and the presence of KRAS
mutations has been shown to predict lack of response to EGFR
TKls for some tumors [13, 14]. Secondary (acquired) resis-
tance can occurvia secondary EGFR mutations or parallel acti-
vation of downstream signaling pathways. In approximately
half of the patients with acquired resistance to EGFR TKls, a
methionine-for-threonine substitution at position 790
(T790M) in exon 20 leads to acquired resistance to EGFR inhib-
itors, and additional secondary mutations (T854A, D761Y)
have recently been identified [11, 15, 17]. Resistance to EGFR
TKls has also been demonstrated in tumor cells harboring MET
gene amplification [17]. Likewise, expression of the MET re-
ceptor ligand hepatocyte growth factor (HGF) has also been
shown to confer resistance to EGFR-directed therapies [18—
22]. These data suggest that activation of the HGF-MET path-
way may be a potential mechanism of resistance to EGFR TKls.

In the last two decades, preclinical studies have defined
multiple cellular pathways that promote lung cancer tumori-
genesis and progression and, currently, clinical studies are un-
der way to determine how agents that target those pathways
can be most effectively used to treat patients with NSCLC. The
National Cancer Institute’s Lung Cancer Mutation Consortium
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(LCMC) recently reported that 60% of patients with NSCLC had
tumor-specific driver mutations that could be used to guide
treatment with either the currently approved anti-EGFR
agents or agents targeting other pathways, including the MET
pathway [23]. This review summarizes the role of MET in
NSCLC and in acquired resistance to EGFR inhibitors, and it
provides an update on progress in the clinical development of
inhibitors of MET for treatment of NSCLC.

METHODS

To evaluate the role of MET in NSCLC, a systematic review of
the published English-language literature was performed us-
ing PubMed. Keywords included “c-met inhibitor” and “non-
small cell lung cancer.” Additional references were obtained
from the reference sections of articles identified using these
search terms. In addition, abstracts from annual meetings of
the American Society of Clinical Oncology, European Society
for Medical Oncology, and American Association for Cancer
Research were searched to identify recent presentations re-
lated to MET inhibitors being investigated for the treatment of
NSCLC. Publications and abstracts that did not include clinical
trial or mouse xenograft model data were excluded. The dis-
cussion of MET inhibitors in clinical development for NSCLC
waslimited to agentsthat have progressedto phasell or phase
Il clinical trial status.

MET anp MET INHIBITORS FOR NSCLC

MET is a heterodimeric transmembrane receptor tyrosine ki-
nase composed of an extracellular a-chain and a membrane-
spanning B-chain linked via disulfide bonds (Fig. 1) [24]. MET
contains several conserved protein domains, including sema,
PSI (in plexins, semaphorins, integrins), 4 IPT repeats (in im-
munoglobulins, plexins, transcription factors), TM (trans-
membrane), JM (juxtamembrane), and TK (tyrosine kinase)
domains. The soleidentified ligand for MET is HGF, also known
as scatter factor. Binding of HGF to MET triggers receptor
dimerization and transphosphorylation, leading to conforma-
tional changes in MET that activate the TK domain. MET medi-
ates activation of downstream signaling pathways, including
phosphoinositide 3-kinase (PI13K)/AKT, Ras-Rac/Rho, mito-
gen-activated protein kinase, and phospholipase C, that stim-
ulate morphogenic, proliferative, and antiapoptotic activities
common to many growth factors, as well as stimulating path-
ways involved in cell detachment, motility, and invasiveness
(Fig. 2) [24, 25]. The pattern of gene expression observed on
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Abbreviations: EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; GRB, growth factor receptor-bound protein;
HGF, hepatocyte growth factor; MAPK, mitogen-activated protein kinase; MEK, MAPK—extracellular signal related kinase kinase; mTOR,
mammalian target of rapamycin; PAK, p21-activated kinase; P13K, phosphoinositide 3-kinase; PLC, phospholipase C; SHC, SRC homology
2 domain containing transforming protein; SHP, small heterodimer protein; SOS, son of sevenless; STAT, signal transducer and activator

of transcription.

activation of MET resembles the mesenchymal-epithelial
transition [26].

MET was originally isolated from a human osteosarcoma-
derived cell line and has subsequently been shown to be ex-
pressed primarily on epithelial cells [24]. Dysregulation of
MET expression can occur by multiple mechanisms, including
overexpression, constitutive kinase activation, gene amplifi-
cation, paracrine or autocrine activation via HGF, MET muta-
tion, and epigenetic changes [24, 27-29]. Amplification
and/or overexpression of MET and/or HGF have been re-
portedin multiple tumortypesand correlate with poor clinical
prognosis in patients with NSCLC and other solid tumors [30,
31]. Consistent with the role of MET in cell motility and mor-
phogenesis, metastatic lesions typically exhibit higher expres-
sion levels of MET than primary tumors [24]. Taken together,
these data suggest that MET plays an important role in tumor
metastasis.

The critical role of MET in the pathophysiology of NSCLC
has been established based on animal models and human
NSCLC cell lines that demonstrate dysregulation of MET ex-
pression and are sensitive to MET inhibitors. An analysis of hu-
man primary NSCLC tumor samples and NSCLC-derived cell
lines found MET expression in 100% (n = 23) of primary tu-
mors and 89% (n = 9) of NSCLC cell lines [2]. MET was also
strongly expressed in 67% (n = 9) of adenocarcinomas, and
expression of activated phospho-MET was observed prefer-
entially along the invasive fronts of NSCLC tumor tissue. Acti-
vating mutations have been identified in the MET gene that
resulted in MET autophosphorylation and downstream phos-
phorylation of PI3K, 3-phosphoinositide-dependent protein
kinase 1, AKT, mammalian target of rapamycin, and S6K. Inan-
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other study, MET amplification up to 2.5-fold greater than
normal and constitutive MET phosphorylation were reported
in two of nine NSCLC cell lines [32]. In both studies, selective
inhibition of MET with either small interfering RNA or a selec-
tive MET TKI (SU11274) inhibited growth and viability of MET-
expressing tumor cells and abrogated MET-mediated
downstream signaling.

Tivantinib (ARQ 197), a selective small-molecule inhibitor of
MET, effectively abrogated constitutive and HGF-induced MET
phosphorylation in lung cancer cell lines and inhibited phosphor-
ylation of AKT, extracellular signal-related kinase (ERK)-1/ERK-2,
and signal transducer and activator of transcription 3 [33]. Tivan-
tinibalsoinhibited proliferation and induced caspase-dependent
apoptosis in cell lines with constitutive MET activity. Similar re-
sults were observed using RNA interference-mediated depletion
of MET, confirming that cellular responses to tivantinib were
based on selective inhibition of MET.

Murine models of human NSCLC have demonstrated the
antitumor activity of MET inhibitors. Ina study of a divalent hu-
manized anti-MET antibody (h224G11), in vivo growth of
NSCLC tumor xenografts was significantly inhibited in animals
that received anti-MET antibody and near complete inhibition
of tumor growth was observed in animals receiving an anti-
MET antibody plus vinorelbine [34]. In another study, admin-
istration of the MET-specific TKI PHA665752 reduced NSCLC
tumorigenicity in mouse xenografts by 75% and induced re-
gression of established tumors [35]. Administration of
PHA665752 inhibited MET phosphorylation in mouse NSCLC
xenografts, inhibited angiogenesis by >85%, and caused an
angiogenic switch resulting in decreased production of vascu-
larendothelial growth factor (VEGF)andincreased production
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of the angiogenesis inhibitor thrombospondin-1. Administra-
tion of PHA665752 also decreased the number of premalig-
nant lung lesions and induced apoptosis in tumor cells and
vascular endothelial cells within lung lesions in Kras(LA1) mice
[36]. These studies have provided critical proof-of-concept
data and support clinical testing of MET inhibitors for the
treatment of NSCLC.

MET AMPLIFICATION AND ACQUIRED RESISTANCE TO
EGFR INHIBITORS
Acquired resistance to EGFR TKIs is an inevitable consequence
of treatment, and recent studies indicate that it can occurasa
result of secondary EGFR mutations or parallel activation of
downstream signaling pathways, including MET. Approxi-
mately 5%—22% of NSCLC patients with secondary resistance
to EGFR TKIs had evidence of amplification of the MET onco-
gene [11, 17, 37, 38]. In another study, de novo focal amplifi-
cation of the MET-containing region 7931.1 to 7933.3 was
observed in HCC827 NSCLC cells after exposure to increasing
concentrations of gefitinib; four of 18 tumor samples (22%)
from gefitinib-resistant NSCLC patients demonstrated MET
amplification [17]. Amplification of MET was also detected in
nine of 43 (21%) lung adenocarcinoma tumor samples from
patients with gefitinib or erlotinib resistance, compared with
two of 62 (3%) tumor samples from patients who had not been
treated with an EGFR inhibitor [11]. EGFR and MET also show
significant overlap of expression in primary NSCLC samples
[39].

The mechanism by which cells acquire resistance to EGFR

Approximately 5%—22% of NSCLC patients with sec-
ondary resistance to EGFR TKIs had evidence of ampli-
fication of the MET oncogene. In another study, de
novo focal amplification of the MET-containing re-
gion7qg31.1to7qg33.3 wasobservedin HCC827 NSCLC
cells after exposure to increasing concentrations of
gefitinib; four of 18 tumor samples (22%) from ge-
fitinib-resistant NSCLC patients demonstrated MET
amplification.

inhibitors may involve parallel activation of human epidermal
growth factor receptor (HER)-3/PI3K/AKT signaling by MET
(Fig. 3) [40]. Gefitinib treatment of HCC927 cells harboring ac-
tivating EGFR mutations was shown to induce apoptosis, and
this was dependent on downregulation of HER-3/PI3K/AKT
phosphorylation and signaling [17]. In gefitinib-resistant
HCC827 cells, phosphorylation of HER-3 and AKT was main-
tained in the presence of gefitinib; however, treatment of
these cells with gefitinib plus PHA665752 or MET-specific
short hairpin RNA fully suppressed HER-3 and AKT phosphory-
lation and re-established sensitivity to gefitinib. Thus, amplifi-
cation of MET appears to promote resistance to EGFR
inhibitors by stimulating EGFR-independent phosphorylation
of HER-3 and downstream activation of the PI3K/AKT path-
way. In this model, inhibition of MET blocked activation of
HER-3/PI3K/AKT and restored sensitivity to EGFR inhibitors.
Another study also suggested that MET activation may be as-
sociated with resistance to EGFR inhibitors [41].
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Figure 3. Proposed mechanism for acquired resistance to EGFR
inhibitors by MET. (A): In erlotinib-sensitive cells, HER-3 phos-
phorylation by EGFR and downstream activation of PI3K/AKT isin-
hibited. (B): MET amplification phosphorylates HER-3 and
activates PI3K/AKT in erlotinib-resistant cells. (C): MET inhibition
by tivantinib and EGFR by erlotinib prevents phosphorylation of
HER-3 and downstream activation of PI3K/AKT.

Abbreviations: EGFR, epidermal growth factor receptor; HER
human epidermal growth factor receptor; PI3K, phosphoinosi-
tide 3-kinase.

Adapted from Nat Med 2007;13:675—-677, with permission
from Macmillan Publishers Ltd. Copyright 2007.

Recent studies in animal models of NSCLC using inhibi-
tors of MET and EGFR have furthered our understanding of
the interplay between the MET and EGFR signaling path-
ways and the possible synergistic benefits of dualinhibition
of these pathways (Table 1) [39, 42—47]. For example, in
multiple NSCLC xenograft models, including erlotinib-resis-
tant xenografts, the combination of MGCD265 (a small-
molecule inhibitor of MET, VEGF receptor [VEGFR], Tie-2,
and RON) with erlotinib demonstrated significantly greater
antitumor activity than with either agent alone without sig-
nificant added toxicity or drug—drug interactions [45]. In a
study of HGF-Tg-severe combined immunodeficient (SCID)
mice harboring established NCI-H596 tumors, administra-
tion of the anti-MET monoclonal antibody onartuzumab
(MetMab) resulted in roughly 65% tumor inhibition,
whereas erlotinib alone had minimal effects [39]. However,
the combination of onartuzumab plus erlotinib inhibited
tumor growth by roughly 90%.
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Table 1. Dual EGFR—MET inhibition studies in lung cancer xenograft models

Treatment TKI/mAb Target(s) In vivo activity

Tivantinib + erlotinib [42] TKI MET Additive (NCI-H441 lung)

Onartuzumab + erlotinib [39] mAb MET Synergistic

Crizotinib + gefitinib [43] TKI MET, ALK Additive (mutant and wild-type KRAS)

SGX523 + erlotinib [44] TKI MET Additive (lung, breast, pancreatic)

MGCD265 + erlotinib [45] TKI MET VEGFR-1, VEGFR-2, VEGFR-3 Tie-2, RON Additive activity in tumors with EGFR T790M mutations
Cabozantinib + gefitinib or erlotinib [46] TKI MET VEGFR-2 Synergistic activity in gefitinib-/erlotinib-resistant xenografts
SU11274 + erlotinib [47] TKI MET Synergistic

Abbreviations: mAb, monoclonal antibody; TKI, tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.

In studies with transgenic mice overexpressing human
HGF that develop lung tumors when exposed to tobacco car-
cinogens, animals treated with anti-HGF antibody (L2G7) plus
gefitinib developed fewer tumors than mice treated with ei-
ther agent alone [43]. A higher rate of KRAS mutation was ob-
served in lung tumors from mice treated with L2G7 alone than
with combination treatment. However, mice treated with the
MET/ALK inhibitor crizotinib exhibited less formation of both
wild-type KRAS and mutant KRAS lung tumors. Likewise, com-
bined treatment of mice with crizotinib plus gefitinib had an
additive effect on the rate of lung tumor formation. Inan HGF-
overexpressing SCID mouse model, the MET-specific TKI
SGX523 partially inhibited HGF-dependent growth of lung,
breast, and pancreatic tumor xenografts. Simultaneous tar-
geting of MET and EGFR pathways with SGX523 plus erlotinib
demonstrated greater antitumor activity in lung, breast, and
pancreatic xenografts than single-agent treatment in this
model [44].

Dual inhibition of MET and EGFR has also been investi-
gated in models of EGFR-resistant NSCLC. For example, the
combination of cabozantinib (XL184,a MET, VEGFR-2,and RET
inhibitor) and gefitinib inhibited proliferation, EGFR phos-
phorylation, and ErbB3 phosphorylation in gefitinib-resistant
HCC827GR6 cells [46]. Likewise, in mice bearing gefitinib-/
erlotinib-resistant HCC827GR6 NSCLC xenografts, neither
cabozantinib nor erlotinib had an effect on AKT phosphoryla-
tion. However, the combination of cabozantinib and erlotinib
significantly inhibited AKT phosphorylation. Combined ad-
ministration of erlotinib and cabozantinib also resulted in re-
gression of HCC827GR6 xenografts, whereas administration
of either agent alone did not.

These studies suggest a role for MET in acquired resis-
tance to EGFR inhibitors and demonstrate that combined
inhibition of EGFR and MET can overcome resistance to
EGFRinhibitors. Moreover, these studies suggest that com-
bined treatment with EGFR and MET inhibitors may have
greaterantitumoractivity than with eitheragentalone, and
they establish a rationale for testing dual MET and EGFR in-
hibition for the treatment of patients with NSCLC.

CLINICAL DEVELOPMENT OF MET INHIBITORS FOR NSCLC

The preclinical work described above provided rationale for
clinical trials evaluating treatment of NSCLC patients with the
combination of EGFR TKls and MET inhibitors. Clinical devel-
opment of dual MET-EGFR inhibition as second-line therapy
for NSCLC has now progressedinto phase lll development. The
agents that have been most extensively studied include cabo-
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zantinib, ficlatuzumab, onartuzumab, and tivantinib (Table 2)
[48-52].

Cabozantinib was assessed in combination with erlotinib
in a phase Ib/Il trial in 54 patients with NSCLC, most of whom
had received previous erlotinib treatment [48]. Of 36 evalu-
able patients, six patients (17%) achieved a best response of
=30% reduction in tumor burden, including three patients
who had previous erlotinib therapy. Additionally, three pa-
tients (8%) had a confirmed partial response (PR), including
one patient with a MET-amplified tumor. Cabozantinib mono-
therapy is also being assessed in a phase Il trial in pretreated
patients with NSCLC (n = 59); preliminary results include best
responsesofaPR(n=5), stabledisease (SD) (n = 27),and pro-
gressive disease (PD) (n = 10) with a 12-week disease control
rate of 42% [53].

Inaphase Ib study, ficlatuzumab, an anti-HGF monoclo-
nalantibody, was evaluatedin combination with gefitinibin
Asian patients with unresectable NSCLC (n = 15), most of
whom had received previous EGFR TKI treatment (n = 10)
[49]. Best responses among 12 patients in the recom-
mended phase Il dose cohortincludeda PR (n=5),SD (n =
4), and PD (n = 3). All patients who had a best response of
PR were EGFR TKI naive, and the median duration of treat-
ment was 12 weeks (range, 3.6 —-40 weeks). Based on these
results, ficlatuzumab is being studied in combination with
gefitinib versus gefitinib alone in a phase Il study in Asian
patients with NSCLC [54]. The study’s primary endpoint is
the objective response rate; secondary objectives include
safety and tolerability, response duration, the PFSinterval,
the OS time, and an analysis of biomarkers.

The monoclonal antibody onartuzumab has been exten-
sively studiedin patients with previously treated NSCLC. Aran-
domized phase |l trial of onartuzumab or placebo in
combination with erlotinib was conducted in 128 pretreated,
EGFR TKl—naive patients with NSCLC [51]. The intent-to-treat
population did not demonstrate differences between treat-
mentarmsinthe PFS(HR, 1.1;95%Cl,0.7-1.6)and OS(HR, 0.8;
95% Cl, 0.5-1.3) outcomes. In a prespecified subgroup anal-
ysis, however, the combination of onartuzumab plus erlo-
tinib demonstrated a benefit over erlotinib alone in
patients with MET-overexpressing tumors (defined as MET
diagnostic [Met Dx]™ if >50% of tumor cells had staining
2+ or 3+ intensity for MET by immunohistochemistry
[IHC]). Roughly half of the patients in this study (52%) were
Met Dx ", which was associated with worse outcomes. In
Met Dx " patients, the PFS (HR, 0.53; 95% Cl, 0.3-1.0) and
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Table 2. Early phase clinical trial results of anti-MET and anti-HGF agents in patients with NSCLC

Efficacy results

n of NSCLC PFS, HR OS, HR

Study Phase Agents patients Analysis population Response (95% Cl) (95% Cl)
Wakelee etal. [48] 1b/Il Cabozantinib + 54 Largely erlotinib-pretreated 3 cPR (1 patient with MET

erlotinib population amplification)
Tanetal. [49] Ib Ficlatuzumab + 15 NSCLC (EGFR TKI pretreated and 5 PR (EGFR TKI natve patients); 4 SD

gefitinib natve)
Goldmanetal. [50] | Tivantinib + 8 NSCLC SDin 6 of 8 patients with NSCLC

erlotinib
Spigel etal. [51] Il; randomized Onartuzumab + 137 MET Dx ™" tumors (onartuzumab + 0.5 (0.3-1.0) 0.4 (0.2-0.7)

erlotinib erlotinib vs. placebo + erlotinib)
Sequist etal. [52] Il; randomized Tivantinib + 167 ITT population? (tivantinib + 0.7 (0.5-1.0) 0.9 (0.6-1.3)

erlotinib erlotinib vs. placebo + erlotinib)

Nonsquamous tumor histology?®
(tivantinib + erlotinib vs. placebo +
erlotinib)

0.6 (0.4-1.0) 0.6 (0.3-1.0)

?Adjusted using Cox proportional hazard model.

Abbreviations: Cl, confidence interval; cPR, confirmed partial response; Dx ™, diagnostic positive; EGFR, epidermal growth factor receptor; HGF,
hepatocyte growth factor; HR, hazard ratio; ITT, intent to treat; NSCLC, non-small cell lung cancer; OS, overall survival; PFS; progression-free
survival; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor.

The available data suggest that dual inhibition of MET
and EGFR may overcome resistance and improve clin-
ical outcomes. Phase land phase Il studies of different
MET inhibitors have demonstrated the safety and ef-
ficacy of these novel agentsin patients with advanced
NSCLC.

0OS (HR, 0.4; 95% Cl, 0.2—0.7) outcomes were better with
onartuzumab and erlotinib than with erlotinib plus pla-
cebo.Incontrast,in MetDx ™ patients, the PFS(HR, 1.8;95%
Cl, 1.0-3.3) and OS (HR, 1.8; 95% Cl, 0.8—4.0) outcomes
were better in patients who received erlotinib plus placebo
thanin those who received onartuzumab plus erlotinib [51,
55]. Based on these results, a randomized phase Il trial
(ClinicalTrials.gov identifier, NCT01456325) comparing er-
lotinib plus onartuzumab with erlotinib plus placebo in pa-
tients with Met Dx* NSCLC has been initiated.

Tivantinibis currently being investigated in a randomized,
phase lll trial in combination with erlotinib for the treatment
of patients with nonsquamous NSCLC [56]. A phase | trial as-
sessed the safety, pharmacokinetics, and preliminary antitu-
mor activity of tivantinib in combination with erlotinib in
patients with advanced solid tumors, including eight patients
with NSCLC. Fifteen of 32 patients (47%) with advanced solid
tumorshadaPR(n=1)orSD (n = 14), and six of eight patients
(75%) with NSCLC achieved SD [50]. A recently reported ran-
domized, placebo-controlled, phase Il trial investigated erlo-
tinib plus tivantinib in 173 previously treated, EGFR TKI-naive
patients [52]. The median PFS times were 3.8 months for erlo-
tinib plus tivantinib and 2.3 months for erlotinib plus placebo (ad-
justed HR, 0.7; 95% Cl, 0.5-1.0). Exploratory analyses revealed a
benefit with tivantinib among patients with nonsquamous
NSCLC, with superior PFS (adjusted HR, 0.6; 95% Cl, 0.4—1.0) and
OS (adjusted HR, 0.6; 95% Cl, 0.3—1.0) outcomes. Among 50
evaluable patients in that trial, 27 (54%) had tumors that were
MET™ by IHC [57]. Among 33 patients with nonsquamous tu-
mors, 25 tumors (75%) were MET ", whereas only two of 17 squa-
mous tumors (12%) were MET". Among patients with MET ™"
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tumors, treatment with tivantinib plus erlotinib was associated
with better PFS (HR, 0.58) and OS (HR, 0.46) outcomes than with
erlotinib plus placebo; there was no evidence of a worse out-
come in patients with MET~ tumors.

Based on these promising phase Il results, the randomized
phase Il MET Inhibitor ARQ 197 Plus Erlotinib versus Erlotinib
plus Placebo in NSCLC (MARQUEE) trial of dual tivantinib plus
erlotinibtherapyin patients with nonsquamous NSCLC has be-
gun accruing patients [56]. Patients eligible for the MARQUEE
trial must have stage IlIB or IV nonsquamous NSCLC and an
Eastern Cooperative Oncology Group performance status
score of 0 or 1, and must have received one or two previous
lines of systemic anticancer therapy for advanced or meta-
staticdisease, including one line of platinum-doublet therapy.
This trial will also examine biomarker status, including KRAS,
EGFR, and MET, and patients will be stratified according to
EGFR and KRAS mutational status, number of previous thera-
pies, sex, and smoking status.

CONCLUSION

Lung cancer remains the most common cancerintheworld,
and survival rates for patients with advanced or metastatic
NSCLC are still low. However, targeted therapeutic ap-
proaches are improving clinical outcomes. In arecent study
conducted by the LCMC, 60% of patients with NSCLC had tumor-
specific driver mutations that could be used to guide treatment
with agents targeting EGFR, MET, or other pathways. Current
studies have also demonstrated the benefits of EGFR inhibitorsin
selected patients in both the first- and second-line settings.
Moreover, recent studies suggest that MET amplification and ac-
tivation may be involved in acquired resistance to EGFR inhibitors
and may lead to downstream signaling that promotes cell sur-
vival, proliferation, and metastasis.

The available data suggest that dual inhibition of MET and
EGFR may overcome resistance and improve clinical out-
comes. Phase | and phase Il studies of different MET inhibitors
have demonstrated the safety and efficacy of these novel
agents in patients with advanced NSCLC. Ongoing, random-
ized, phase lll trials of onartuzumab and tivantinib in combina-
tion with erlotinib in selected NSCLC patients will provide
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important answers. Selection of patients for enrollment in
these studies is based on either MET overexpression by IHC
(onartuzumab trial) or nonsquamous histology (tivantinib
trial). Both strategies should help select patients most likely to

benefit from dual inhibition.
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