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Abstract
Detecting nonlinear correlations between time series presents a hard problem for data analysis. We
present a generative statistical modeling method for detecting nonlinear generalized
synchronization. Truncated Volterra series are used to approximate functional interactions. The
Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are
estimated via l1 and l2 regularized maximum likelihood regression. The regularization manages
the high number of kernel coefficients and allows feature selection strategies yielding sparse
models. The method's performance is evaluated on different coupled chaotic systems in various
synchronization regimes and analytical results for detecting m:n phase synchrony are presented.
Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal
local field potentials recorded in different parts of macaque visual cortex.

I. INTRODUCTION
Many natural systems generate complex collective dynamics through interactions between
their component parts. A prominent example is the transient neural dynamics of the brain
which presumably involve strong functional couplings between cortical regions.
Determining the nature of such interactions is not easy. At the most general level, the
problem is one of detecting generalized synchronization [16] between time series x(t) and
y(t). That is, detecting the existence of a functional, potentially nonlinear, time delayed or
other stable relationship such that y(t) = F[x](t) is predictable. Strictly speaking, generalized
synchronization results from interactions between systems that create stable attractors in
their total phase spaces, i.e. given x(t) the response system y has to be stable. Lag and other
forms of synchronization are subsets of this problem, and systems may transition from
phase, via lag, to complete synchronization as coupling strengths increase [14].

When the interactions are nonlinear, or the coupled systems themselves complex or chaotic
[8, 18], standard linear methods, such as cross correlation or coherency, may not be able to
detect an interaction. Nonlinear methods are therefore necessary. Existing approaches are
usually based on reconstructing the phase space of the underlying system by finding an
appropriate time-delay embedding [20]. Recent methodologies include the Joint Probability
of Recurrence (JPR) method [10]. JPR is based on the evaluation of trajectory recurrence
probabilities in small neighborhoods of the reconstructed phase space. The JPR is
mathematically similar to another technique, the Synchronization Likelihood [19], which is
derived from generalized mutual information concepts and popular in neuroscientific
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research areas. Although JPR and SL can detect nonlinear synchronization in many data sets
(see e.g. [9, 13, 17]), it can be hard to determine the appropriateness of the embedding
space. Further, such methods do not yield information about the functional form
(nonlinearity) of the interaction.

Here we propose a different approach, directly estimating a functional which describes
nonlinear interactions between two time series x(t) and y(t). In particular, we predict time
series y(t) from x(t) using a Volterra series operator F on x(t). The kernels of F are expanded
using a set of basis functions, the coefficients of which fit using maximum posteriori
regression. After obtaining an estimated signal yE = F[x] the degree to which y can be
predicted from x is determined by computing the correlation coefficient r(yE, y) on an
independent validation data set. Modeling F using a Volterra series is a canonical choice,
since Volterra series are well-known for their versatility in nonlinear system identification
(see e.g. [15],[3]). They allow F to approximate arbitrary continuous functionals and flows
of many non-autonomous dynamical systems, in particular systems with memory. The
existence of non-zero second order or higher terms indicates nonlinear interactions.
Furthermore, in agreement with the stability condition of generalized synchronization, a
steady-state theorem for Volterra series (see [3]) asserts that for x(t) → xs(t) within the
radius of convergence of F, the response system is stable, i.e. F[x](t) → F[xs(t)](t) as t →
∞.

We call F the Functional Synchrony Model (FSM) and apply our method to several coupled
chaotic systems for which generalized nonlinear synchronization is known to exist. We
recover the nonlinear interactions with much greater accuracy than with either linear
approaches, or the JPR method. We also demonstrate the existence of nonlinear coupling
between local field potentials recorded in macaque visual cortex during stimulation by
natural scenes movies.

Interactions between time series  are modeled using a truncated Volterra series
operator of order n with a history dependence (memory) of K time steps:

(1)

where Yj is the jth order Volterra functional

(2)

Restrictions of this model form, particularly for modeling m:n phase synchronization are
discussed below. To flexibly capture a wide variety of interactions, we expand the Volterra
kernels hj in a set of basis functions B = {bm(k) |m = 1, …..,M} as

(3)

with parameters . Inserting eq. (3) into (2), we yield

(4)
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Denoting , the ϕm1,…..,mj are nonlinear basis
functions in  that constitute the covariates of our model, given by

(5)

The covariates are symmetric in {m1, ….., mj}, i.e. for all permutations π(m1, ….., mj),
ϕπ(m1,…..,mj) represents the same covariate and can be factored out in the model, yielding
new coe cients aj (as sums of the former ) and a corresponding reduction in summation
indices

(6)

Furthermore, the covariates can be factored out into products of simple convolutions,

(7)

Consequently, all higher order covariates are simply products of 1st order covariates ϕmi.

In this paper we expand the kernels using cubic basis splines. This basis spans a vector space
of piecewise polynomial functions with smooth nonlinearities, and is uniquely determined
by a knot sequence τK on the memory interval [0,K]. Using the de Bohr algorithm [2] on τK,
all basis splines are fully specified and can be constructed recursively. The first order
functional is thus given by a linear combination of basis splines, corresponding to a
piecewise polynomial operating on x(t) as a finite impulse response filter. Higher order
kernels weight monomials of x, e.g. x(t −k1)x(t−k2), which intuitively represent interactions
between different points t−kj in time. Other bases, for example wavelets, could of course
have been used.

Regardless of the basis chosen, the final model in eq. (6) is linear with respect to the
coefficients aj. Thus the coefficients can easily be determined by maximum likelihood based
linear regression. Indexing all covariates and coefficients in eq. (6) and eq. (1) with the set

[1, ….., A], we define a design matrix for time series  as

(8)

and a vector of coefficients . We can now state a linear regression problem with
nonlinear basis functions as Φ(xa = y.
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To select a sparse set of relevant coefficients and ensure the model generalizes to validation
data, we use Elastic Net regularization, interpolating l1 − l2 norm with a hyperparameterβ
[5]. Interpreted in a Bayesian maximum posteriori framework, changing the interpolation
and regularization effectively changes the assumed prior distribution of model coefficients.
While the l1 norm corresponds to an isometric Laplace prior, the l2 norm is normally
distributed. As a result, the l1 norm promotes sparse coefficient vectors, assuming few
independent covariates carry most of the information, whereas the l2 norm is known to foster
clusters of correlated covariates. After fitting the model to training data, we test its
generalizability by using it to predict an independent validation data set. Model accuracy is
judged using the correlation coefficient between the signal and the prediction. Our statistical
framework would also allow other goodness of fit measures, such as Akaike information
criterion or likelihood based cross validation, to be used.

II. RÖSSLER-LORENZ SYSTEM
To study the performance of our method in a setup of two unidirectionally coupled
nonidentical systems, we first consider a Rössler system driving a Lorenz system, which is a
standard benchmark in the literature. We will also use this example to walk through the
fitting procedure in detail. The equations of the drive system are

(9)

while the response system is given by

(10)

where u(t) = x1 + x2 + x3. With σ = 10, r = 28, , the driven Lorenz system is
asymptotically stable [8] and thus in a regime of generalized synchronization with the
Rössler system.

The systems' third coordinates x3, y3 are chosen as time series x(t), y(t) respectively, with
10000 data points sampled at Δt = 0.02. The linear correlation coe cient is r(y, x) = −0.168,
corresponding to the projection of the complex generalized synchronization manifold onto
(x3, y3), shown in figure 1a1. We try to predict y(t) as yE(t) = F [x](t) with a 2nd order
Volterra series model F. To fully specify the model, we merely need to choose a knot
sequence τK over a memory interval of K time steps. By visual inspection of the time series,
K = 350 is chosen to span at least a full period of both systems. Accordingly, τK is chosen to
cover the interval [0, 350] with 22 equidistantly spaced knots, each corresponding to the
onset of the nonzero compact carrier of a particular cubic basis spline. A density of 22
splines is deemed sufficient for our model to capture the variations in the signals x(t), y(t).
The resulting set of basis splines is shown in figure 1c1. We can now construct a design
matrix (eq. 8) with 10000 × 276 entries, where A = 276 denotes the number of covariates,
consisting of a 0 order constant, as well as 22 1st order and 253 2nd order covariates, as
given by eq. (6). Using an isometric normally distributed prior distribution of coefficients (β
= 0.01), we assume all covariates share a similar amount of information. Accordingly, using
a mild regularization parameter λ = 0.001 the feature selection procedure finds 275
covariates to be constitutive for our model yE = F[x].
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The model fit yields a correlation coefficient r(y, yE) = 0.98 on an independent validation set
of size 10000. Thus, generalized synchronization is detected with perfect accuracy.
Moreover, the resulting model is fully predictive with respect to y(t). Figure 1a2 shows that
our method “linearized” the synchronization manifold. The lag correlation plot in figure 1b1
shows the correlation of the two signals as a function of varying delay shift τ between the
signals, where τ = 0 corresponds to r(y, yE) = 0.98. The periodic relationship between the
two chaotic oscillators is apparent. Figure 1b2 depicts the 2nd order Volterra kernel, i.e. the
nonlinear aspects of the model that are necessary to capture the interaction. Here, the
periodicity is also present, in form of alternations across the diagonal. While the
regularization produced only two local clusters of covariates as main constituents of the
model, the very regular weighting within the clusters reflects the assumptions encoded in the
coefficient prior. Note that due to the symmetry of the kernels (see eq. (6)) only the “upper
triangular” part of (τ1, τ2) space is populated by model covariates. Adding additional white
noise to the data, our method also shows a strong noise robustness across an increasing
variance σ2 (fig. 1c2).

To compare our method against the JPR, we chose embedding space parameters producing
results on this data set comparable to [10]. The JPR is clearly outperformed and suffers
greatly from the additive noise (fig. 1c2). These effects may be countered by increasing the
∊-neighborhoods in which the recurrence probabilities are evaluated, however, lacking any
goodness-of-fit measure for the parameter set this may also increase the number of false
positives and render the results meaningless.

III. MACKEY-GLASS NODES
Our second example involves generalized synchronization between delay-coupled Mackey-
Glass nodes described by the equation

(11)

The data is sampled from a ring containing up to n = 16 Mackey-Glass nodes, displaying
chaotic dynamics, where node i receives delay-coupled input from node i−1, with a total
delay of τd = 300 in the whole ring. The existence of generalized synchronization for the
case of xi driving xi−n/2 can be demonstrated using the auxiliary systems approach [1].

Figure 2a shows the delay-embedded chaotic attractor (nonlinear synchronization manifold,
brown) of two coupled Mackey-Glass nodes, where driving time series x(t) correspondes to
node xi, and target y(t) corresponds to xi−n/2. The blue graph shows the transformation to a
linear manifold after application of our method. We use a 2nd order model, with non-
uniform knot sequence τK supporting local maxima in the autocorrelation function of the
Mackey-Glass ring that occur due to the system's delay-feedback. In total, 28 b-splines are
used to cover the interval [0, 350], encompassing the total delay-time τd in the ring. With β
= 0.99, feature selection yields a sparse set of 158 predictive covariates that we apply to data
sets of size 30000 or higher. While detection is possible with less than 10000 data points,
yielding a fully predictive model on this complex data set needs more data to generalize and
capture the strong nonlinear components of the interaction.

Figure 2b summarizes the resulting correlation r(yE, y) (blue) for functional Volterra series
models of order j ≤ 3. Performance is plotted against an increasing number n of nodes in the
ring. A fully predictive model is found for n = 2, while detection of significant nonlinear
interaction (significance determined using bootstrapped confidence intervals) is still possible
for n ≤ 16, where no linear correlation r(x, y) is measurable in the data. In comparison, the
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JPR (dashed green line) failed to detect the interaction in rings larger than n = 2 for all tested
embedding space and recurrence parameters which we chose manually as well as
automatically using mutual information and false nearest neighbours criteria. Note, however,
that much less data points (up to 10000) could be used for the recurrence based method,
which draws heavily on computational resources since it has to compute an N × N
recurrence matrix (where N is the number of delay-embedded data points) for both time
series.

IV. COUPLED RÖSSLER SYSTEMS
Our third example application is to two identical coupled Rössler systems, described by the
equations

(12)

We use ω1 = 0.98, ω2 = 1.02 corresponding to a phase coherent regime of the two slightly
dissimilar chaotic oscillators. These coupled three dimensional systems exhibit a wide range
of synchronization dynamics as a function of the coupling strength μ [11], transitioning
from an unsynchronized regime to complete synchronization via (1:1) phase synchronization
as μ is increased from 0 to 0.15.

Using the first coordinates (x1, x2) as the driving (x) and target time series (y) respectively
with 15000 data points sampled at Δt = 0.02, we can detect nonlinear interaction even for
very weak coupling (μ = 0.034) with a 2nd order model and a memory of 500 time steps,
encompassing a full period of the nonlinear oscillators. Lacking further information about
the interaction, we choose a dense equidistant knot sequence for 52 cubic b-splines.
Consequently, many covariates will contribute only little information to the model. This is
accounted for by imposing strong regularization and choosing a sparse prior for feature
selection (β = 0.99), resulting in a total of 109 informative covariates for the model.

At μ = 0.034, x and y lie on a highly complex manifold (fig. 3a1) and the correlation
coefficient between x and y is zero. Our Volterra series approach ”linearizes” the
synchronization manifold between the model prediction and the data (fig. 3a2) and
accurately describes the functional interaction, yielding r(yE, y) = 0.97. Figure 3b shows the
corresponding first and second order Volterra kernels. Both kernels are highly sparse, and
strong quadratic interactions between x(t) at different times during the memory period prove
necessary to predict y(t). The interaction can, in fact, be described over a broad range of
coupling strengths, as demonstrated in Figure 3c. The method yielded fully predictive
models for nearly all μ as indicated by correlation coefficients r(yE, y) near 1 for μ ∈ [0,
0.15].

V. PHASE SYNCHRONY
A drawback of the current formalism is that Volterra series impose restrictions for modeling
phase synchrony. By definition, two nonlinear oscillators x, y are phase synchronized if for
their phases ϕi it holds that |nϕx−mϕy| < ∊, with n, , . The generative model may
thus have to scale ϕx by a fraction to yield ϕy. In theory, Volterra series cannot achieve this,
as a result of the periodic steady state theorem [3]: Periodicity present in x(t) must reoccur in
the Volterra series F[x](t). The case of n:1, however, is possible by increasing the frequency
of the input signal by a factor n, retaining the orginal slower periodicity in the resulting
faster signal.
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To illustrate the Volterra series response to a single frequency component of an oscillatory
signal, consider for example the harmonic complex oscillation u(t) = αkeiωkt. The truncated
Volterra series response breaks down into the components of the kernel functions, given by
the covariates specified in eq. (7). Higher order covariates are products of 1st order
covariates ϕm which constitute linear time-invariant systems such that u(t) is an
eigenfunction. Consequently, ϕm[u](t) = eiωkt αkHm(iωk), where Hm(iωk) is the frequency
response of ϕm given by the discrete Laplace transform of the corresponding 1st order kernel
basis function bm. For an nth order covariate Φ(n) it follows that

(13)

Hence, the phase dynamics of u(t) are scaled by a factor n, which suggests that an nth order
Volterra series operator can account for n:1 phase synchronization.

We confirmed this hypothesis using white noise jittered cosines (σ2 = 0.4) with n:1 phase
relationships for n ≤ 5. All models were fully predictive with r(yE, y) ≈ 1. Following [4], we
also applied the method to two identical Rössler systems coupled in a drive-response
scenario and locked in 4:1 phase synchronization. The drive oscillator is described by

(14)

The response oscillator is governed by

(15)

with phase and amplitude defined as

(16)

The phase synchronization was verified for m = 4, n = 1 by checking the frequency locking
condition ΔΩ4:1 = 4Ω1 − ω2 < 10−6, where Ωi = 〈ϕ〉 for i = 1, 2 the mean frequency averaged
over 80.000 data points sampled at Δt = 0.01.

Using the first coordinates x1, x2 as time series x(t), y(t) with 30000 data points each (fig.
4a1) we fit a 4th order model F[x](t) = yE(t). We set β = 0.95 to enforce sparse solutions
since it is expected that a few 4th order features are most informative. An equidistant knot
sequence with 14 knots in [0, 1000] is chosen to cover at least one full amplitude of each
system. The feature selection process yields 117 mostly 4th order covariates. The resulting
model is fully predictive with r(yE, y) = 0.97, as compared to r(x, y) = 0.02 in the original
signals, and clearly captures the periodicity, as can be seen in the delay-shifted correlation
coefficient plot (fig. 4b2). Figure 4b1 shows original time series x(t), y(t) in comparison to
the prediction yE(t) plotted against time t. We compare this result against the recurrence
based phase synchronization index CPR ∈ [0, 1] [10], which essentially quantifies the
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coincidence of maxima in two generalized autocorrelation functions for x and y and
represents a complimentary tool to the JPR. Our best result for a particular choice of
parameters yields CPR = 0.5 on a corresponding data set of size 5000. The low index is
explained by the fact that for phase synchronization with m, n ≠ 1, fewer coincidences of
maxima in the generalized autocorrelation functions of x, y occur.

VI. LOCAL FIELD POTENTIALS (LFPS) IN MACAQUE VISUAL CORTEX
Finally, we demonstrate the applicability of our method to noisy and unprocessed data from
biological systems. To this end, we apply our method to LFP data recorded from electrodes
located in macaque primary visual cortex (V1).

The monkey was watching a short (2.8 sec) natural scenes movie with 600 repetitions (for
details about the experimental setup, see [7]). V1 is retinotopically organized, so the
different electrodes recorded signals generated by neuronal populations receiving input from
distinct parts of the visual field. However, it has been hypothesized that there are strong
lateral interactions between different parts of V1 which combine information about different
parts of the visual stimulus. We use our methodology to detect nonlinear interactions
between electrode signals with near zero linear correlation coefficient. In particular,
recordings of pairs of analyzed channels were made from the opercular region of V1
(receptive field centers 2.0° to 3.0° eccentricity) and from the superior bank of the calcarine
sulcus (10.0° to 13.0°eccentricity), respectively. The distance regarding the receptive field
position is therefore of the order of 7° eccentricity and thus much larger than the receptive
field sizes of the projection neurons. Therefore, the populations recorded by both channels
have no common bottom-up input.

No significant interactions could be detected prior to stimulus onset. Post stimlus onset we
analyzed both the induced potential (IP, unaltered LFP recordings) and the evoked potential
(EP, the signal average across all trials). Here, the EP signals contained 2800 data points
(the length of one experimental trial) in both, validation and training set. These were
obtained by randomly selecting subsets of several hundred trials for averaging. IP data sets
were substantially larger as time series from individual experimental trials were chosen
randomly to be concatenated and used as a single data set.

In Figure 5b1 we use the LFP of one electrode (x), to predict the LFP of another (y) at
various time lags, and show the resulting performance of our method. The data shown has
close to zero linear correlation between the two LFPs (lag 0) for both EP (rEP (x, y)) and IP
(not shown). In contrast, the correlation coefficient between the model prediction and LFP is
substantial, for both the IP (rIP2(yE, y)) and the EP (rEP2(yE, y)). Performance was
substantially improved when second order models were used, indicating significant
nonlinear interactions. This can be seen by comparing the performance of the 2nd order
model for predicting the EP (rEP2(yE, y) ≈ 0.89) with a first order model (rEP1(yE, y) ≈
0.53). The second order interactions (Volterra kernel) are visualized in figure 5b2. Figure 5a
shows the corresponding interaction manifolds of the EP tetrode signals x and y (brown)
which is clearly linearized by the method (blue). Similar results were obtained using other
LFPs from both this, and a different monkey. Although it is known that the neuronal
populations generating the two LFPs are directly stimulated by different parts of the visual
field, our result that there are strong nonlinear interactions between the populations suggests
that V1 neurons may combine information from different parts of the visual field. While the
possibility of spatial correlations in the natural scene stimulus causing the synchronization
(due to a common factor) is not directly discernable in this setup, we have nonetheless
shown that our method could present a powerful tool to investigate these phenomena, as the
result would not have been detectable by linear methods.
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VII. CONCLUSION
In summary, we have presented a statistical modeling framework for the detection of
nonlinear interactions between time series. Interactions are modeled as Volterra series
expanded in basis functions and fit using l1 and l2 regularized maximum likelihood. The
method is computationally efficient and yields sparse analytic models of the interaction
which generalize to new data. When compared to the Joint Probability of Recurrence
method (CPR respectively) our approach showed higher detection capabilities (often close to
fully predictive) for all tested data and synchronization regimes. This was despite our
carefully evaluating different JPR (CPR) embedding-space parameters, both manually and
algorithmically selected (false nearest neighbours, mutual information criteria) and only
comparing the best results with our method. While our main goal is the detection of
generalized synchronization, we showed analytically and experimentally how the method
generalizes to m:n phase synchronization, the detection of which represents a hard problem
in nonlinear data analysis.

One drawback of the current formalism is that it does not capture auto-structure from the
target signal y(t). Perhaps more critically, the Volterra series operator cannot model m:n
phase synchronization in rare cases of both m, n > 1. Both auto-structure and full m:n phase
synchronization could be captured by also fitting a second Volterra functional G[y], so that
F [x](t) − G[y](t) = 0. Using nonlinear synchronization as a formalization of complex
interactions is intriguing with respect to information processing in the brain where
oscillatory and synchronization phenomena are frequently reported [21]. Theoretical studies
[12] also show the existence of generalized partial synchronization in a variety of artificial
neural networks. In this context, Volterra series could be a natural model of neural transient
interactions [6].
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FIG. 1.
(Color online) Identification of nonlinear interaction in a coupled Rössler-Lorenz system.
a1): Nonlinear synchronization manifold between original sampled data x and y (the
systems' 3rd coordinates) in generalized synchronization with correlation r(x, y) = −0.168.
a2: Linearized manifold between yE and y, where yE(t) = F[x](t) is the output of a 2nd order
Volterra model, yielding r(yE, y) = 0.98. b1) Delay-shifted (by τ) correlation coeffcients.
b2) 2nd order kernel corresponding to a2). c1) Set of cubic b-splines corresponding to b2),
used in eq. (3). c2) Performance of the method (FSM, r(yE, y) ∈ [−1, 1]) for Rössler-Lorenz
system with additive white noise over increasing variance σ2, compared against correlation
r(x, y), as well as the JPR ∈ [0, 1].
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FIG. 2.
(Color online) Performance on generalized synchronized Mackey-Glass delay rings. a1):
Nonlinear time-embedded GS manifold of ring with two nodes x and y. a2): Linearized
synchronization manifold between yE (2nd order model) and y. b) Results for Mackey-Glass
rings of varying size. Shown are prior correlation in data (r(x, y), dashed), JPR (light
dashed) and our method (FSM, solid) using Volterra series models up to order 3.
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FIG. 3.
(Color online) Identification of nonlinear interaction between coupled Rössler systems. a1):
Nonlinear synchronization manifold between original sampled data x and y (the systems' 1st

coordinates) at onset of phase synchronization (μ = 0.034) with correlation r(x, y) ≈ 0. a2):
Linearized manifold between yE and y, where yE(t) = F[x](t) is the output of a 2nd order
Volterra model, yielding r(yE, y) = 0.97. b1) 1st order kernel corresponding to a2). b2) 2nd

order kernel corresponding to a2). c) As μ increases, the system transitions from
unsynchronized, via phase (μ > 0.04) to generalized chaotic synchronization (μ > 0.08).
Performance of the method (FSM, r(yE, y) ∈ [−1, 1]) for various coupling strengths μ is
compared to correlation of the raw data r(x, y), as well as the JPR ∈ [0, 1].
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FIG. 4.
(Color online) Identification of interaction between unidirectionally coupled Rössler systems
in 4:1 phase synchronization (eq. 15). a1): Nonlinear synchronization manifold projected
onto first coordinates x1, x2 of the two systems (brown). a2): Linearized synchronization
manifold after application of a 4th order Volterra series operator (blue). b1): Time domain
plots of original signals x(t) (green (light gray)) and y(t) (orange (gray)) compared to the 4th

order model prediction yE(t) (red (dark gray)). b2): Delay-shifted (by τ) correlation plots of
original signals r(x, y) (brown, thick) and model performance r(yE, y) (blue, thin).
Bootstrapped confidence intervals are shown as dashed lines in light blue.
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FIG. 5.
(Color online) Two macaque V1 LFP recordings x and y recorded from electrodes with
different retinotopy. a) Interaction manifolds of the EPs. a1: Nonlinear manifold between x
and y. a2: Linearized manifold corresponding to rEP2(yE, y) in b1). b1) Lagged correlation
coefficient between EPs of x and y (rEP (x, y)), and between a 1st order (rEP1(yE, y)) and 2nd

order (rEP2(yE, y)) model yE = F[x] and predicted tetrode y. For the IPs correlations are
shown between a 2nd order model yE and y (rIP2(yE, y)). Lighter coloured areas show the
bootstrapped confidence intervals of the respective models. b2) Shows the 2nd order kernel.
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