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Abstract
Objective—To evaluate the association of risk and age at onset (AAO) of Alzheimer disease
(AD) with single-nucleotide polymorphisms (SNPs) in the chromosome 19 region including
apolipoprotein E (APOE) and a repeat-length polymorphism in TOMM40 (poly-T, rs10524523).

Design—Conditional logistic regression models and survival analysis.

Setting—Fifteen genome-wide association study data sets assembled by the Alzheimer's Disease
Genetics Consortium.

Participants—Eleven thousand eight hundred forty AD cases and 10 931 cognitively normal
elderly controls.

Main Outcome Measures—Association of AD risk and AAO with genotyped and imputed
SNPs located in an 800-Mb region including APOE in the entire Alzheimer's Disease Genetics
Consortium data set and with the TOMM40 poly-T marker genotyped in a subset of 1256 cases
and 1605 controls.

Results—In models adjusting for APOE ε4, no SNPs in the entire region were significantly
associated with AAO at P<.001. Rs10524523 was not significantly associated with AD or AAO in
models adjusting for APOE genotype or within the subset of ε3/ε3 subjects.

Conclusions—APOE alleles ε2, ε3, and ε4 account for essentially all the inherited risk of AD
associated with this region. Other variants including a poly-T track in TOMM40 are not
independent risk or AAO loci.
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The association of the apolipoprotein E (APOE) polymorphism with late-onset Alzheimer
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disease (AD) is one of the strongest and most robust genetic risk factors for a common
disease. Compared with the common APOE ε3 allele, ε4 increases the risk and lowers the
age at onset (AAO) of AD in a dose-dependent fashion whereas the ε2 allele confers a
protective benefit.1,2 Although the frequency of ε4 varies among different ethnic groups, the
ε4/AD association is evident in diverse populations,3 with a few notable exceptions.4–6 The
strength of the association is greatly influenced by age and sex.3 Recent genome-wide
association studies (GWAS) have repeatedly reported association signals in APOE and
genes in its vicinity,7–9 but the evidence favoring additional AD risk variants in this region
is much weaker after accounting for the strong linkage disequilibrium that extends over 3
Mb including these other proposed AD loci.8 Nonetheless, interest in this region remains
high because several of these genes have a plausible role in AD pathogenesis.

Roses et al10 reported an association between a variable length poly-T polymorphism
(“poly-T”) at rs10524523 in the gene encoding the channel-forming subunit of the
translocase of the mitochondrial outer membrane (TOMM40) and risk for and AAO of AD.
These investigators used an evolutionary network approach to build phylogenies that
provided evidence of selection for variable lengths of the poly-T repeats between cases and
controls. The number of poly-T repeats at the rs10524523 locus were grouped into 3 alleles
consisting of short (s) (<21), long (l) (21–29), and very long (v) (≥30). Phylogenetic tree
analysis indicated that the APOE ε4 allele tracks with the l allele, whereas the APOE ε3
allele tracks with the s and v alleles. The l allele was associated with a 7-year earlier AAO of
AD in a small sample (N=34) of APOE ε3/ε4 subjects. Support for an independent role of
TOMM40 in AD was obtained from a study showing association of the v/v genotype with
lower performance on learning and lower gray matter volume among 117 APOE ε3/ε3
adults.11 A more recent study of this polymorphism in a much larger sample failed to
confirm the original findings after adjusting for the effect of APOE ε4.12

In this study, we conducted a comprehensive association study of AD with markers in the
APOE region using data from nearly 23 000 subjects assembled by the Alzheimer's Disease
Genetics Consortium (ADGC) for a GWAS that identified several new AD risk loci.8 We
also evaluated association with the TOMM40 poly-T polymorphism by direct genotyping of
1256 AD cases and 1605 controls and by analysis in the entire GWAS data set of several
poly-T proxy single-nucleotide polymorphisms (SNPs).

METHODS
STUDY POPULATION

The primary sample used was 15 GWAS data sets assembled by the ADGC. Details of
ascertainment and diagnostic procedures for each data set have been extensively described
elsewhere.8 Data from a total of 11 840 AD cases and 10 931 cognitively normal elderly
controls were available for this study. All subjects were recruited under protocols approved
by the appropriate institutional review boards.

GENOTYPING
GWAS Genotyping—Genotyping for the 15 ADGC cohorts was performed using various
genotyping arrays containing between approximately 310 000 and 1.5 million SNPs for each
data set.8

APOE Genotyping—APOE genotypes in the Adult Changes in Thought (ACT) Study, the
National Institute on Aging (NIA) Alzheimer's Disease Centers (ADCs), the Multi-Site
Collaborative Study for Genotype-Phenotype Associations in Alzheimer's Disease Study,
the Mayo Clinic, the NIA Late-Onset Alzheimer's Disease Study, and the University of
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Miami/Vanderbilt University/Mt. Sinai School of Medicine data sets were determined based
on allelic combinations of SNPs rs7412 and rs429358. APOE genotyping was performed in
the Multi-Institutional Research on Alzheimer's Disease Genetic Epidemiology Study cohort
using the Roche Diagnostics LightCycler 480 instrument (Roche Diagnostics) LightMix Kit
ApoE C112R R158 (catalog number 40-0445-16) from TIB MOLBIOL.13APOE genotypes
in the Translational Genomics Research Institute series 2, the Alzheimer's Disease
Neuroimaging Initiative (ADNI) Study, the University of Pittsburgh, and Washington
University cohorts were obtained by pyrosequencing14 or restriction fragment length
polymorphism analysis.15,16APOE genotypes in the Rush University Religious Orders
Study/Memory and Aging Project data set were determined using high-throughput
sequencing of codon 112 (position 3937) and codon 158 (position 4075) of exon 4 of the
APOE gene on chromosome 19.

Poly-T Genotyping—Three ADGC cohorts were genotyped for poly-T: ACT (290 AD
cases, 1271 controls), ADC (831 AD cases, 282 controls), and ADNI (137 AD cases, 162
controls). Poly-T genotypes were determined using a modified short tandem repeat
genotyping assay. This assay used a polymerase chain reaction primer set (Ch19_50094815-
F: VIC-GCTGACCTCAAGCTGTCCTC that labeled with VIC fluorescent dye and
Ch19_50095061-R: GGAGGGACAGGGAAAGAAAA) to amplify a 247–base pair
fragment from each subject's genomic DNA. For each polymerase chain reaction, 100 ng of
genomic DNA, 12μM primers, 3.75 μL of Qiagen HotStarTaq Master Mix (Qiagen), and
1mM magnesium chloride were mixed together with a final volume of 7.5 μL. Polymerase
chain reaction was carried out with a profile of 95°C for 15 minutes and then 30 cycles at
95°C for 30 seconds, 55°C for 30 seconds, and 64°C for 30 seconds. Precise length of the
amplified fragments was acquired through an ABI 3130xl Genetic Analyzer and processed
with ABI Gene-Mapper version 4.0 software (Applied Biosystems). To increase calling
accuracy of poly-T counts of each fragment, we also cloned the same genomic fragments of
4 control poly-T variants (ie, 13xT, 16xT, 22xT, and 35xT) into a DNA vector (pBluescript;
Thermo Fisher Scientific) and used them as internal controls to create bins for fragment size
standards. Integrity of the bins was further validated by genotyping poly-T inserts from
plasmid combinations (eg, 16 plus 22, 16 plus 35, and 22 plus 35). Spacing of the bins was
then fine-tuned accordingly. Typically, each allele was associated with a series of peaks and
the highest peak in the series was assigned as the allele of interest. Thus, homozygous and
heterozygous individuals will have either 1 or 2 alleles, respectively. The final calling of
poly-T counts was then determined via manual inspection and cross-checking of the
electropherograms.

As a check on genotyping accuracy, we genotyped 352 samples from the NIA Late-Onset
Alzheimer's Disease Study included in a previous study of the poly-T polymorphism.12

There were no discrepancies between the 2 laboratories in calling the s, l, and v alleles. In
addition, there was complete agreement in the genotypes for 90 ADNI subjects included in
this and the Cruchaga et al12 studies. One genotype was discordant with the genotype
publically available from the ADNI website. Finally, genotypes from 16 subjects were
confirmed by genomic DNA cloning and Sanger capillary sequencing independently at the
University of Washington and the University of Pennsylvania.

GENOTYPE IMPUTATION AND QUALITY CONTROL
The APOE region was defined as SNPs located between map positions 45 000 000 and 45
800 000 base pairs according to the University of California, Santa Cruz Genome browser
(hg19, GRCh37). This region encompasses CEACAM22P and EXOC3L2, which contained
previously identified significant association signals (P<10−4) without adjustment for APOE
genotype.8 Genotypes for all SNPs in this region were imputed with the Markov chain
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haplotyping software17 using reference haplotypes for white subjects in the HapMap phase 2
(release 22) database. This procedure also filled in missing data for the genotyped SNPs.
Individuals with high genotyping call rates (>95%) and SNPs with 95% call rates or better
were used as seeds for the imputation procedure. We excluded SNPs with low minor allele
frequency (<2%), SNPs not in Hardy-Weinberg equilibrium (P<10−6), and SNPs with
potential for undetected strand flips (C/G and A/T coding) to ensure consistency of allele
frequencies between the test and reference haplotypes and to improve the quality of
imputation. Imputation quality was determined as R2, which estimates the squared
correlation between imputed and true genotypes. We applied stringent criteria for quality
control assessment of imputed SNPs (R2≥0.8 in each data set), since inclusion of SNPs with
lower-quality imputation may lead to spurious associations.18 After filtering, 367 SNPs in
the APOE region were available for this study.

ASSESSMENT OF POPULATION SUBSTRUCTURE
We examined population substructure in each data set by analyzing tagging SNPs from the
genome-wide panels using the smartpca module from EIGENSTRAT software19 in a
manner described previously.8 The strength of association of the top 10 principal
components was tested with the outcome (presence of AD and AAO of AD) and also with
the rs10524523 genotype. The top 3 principal components were included in association
models to adjust for hidden substructure, though none of the principal components were
associated with either presence or AAO of AD at P<10−3.

GENETIC ASSOCIATION ANALYSES
Poly-T genotypes were determined in the ACT, ADNI, and ADC data sets as described
previously.10,11 Association of AD risk with poly-T was evaluated using logistic regression
models including a term for poly-T defined as dosage for one of the alleles. We also tested
genotype models assigning v/v as the reference genotype. Linear regression was used to test
association of poly-T with AAO in the case sample. Models for AD risk included covariates
for population substructure within data sets, age (AAO or age at death if deceased and AAO
unknown in cases; age at last examination or death in controls), and sex. Population
substructure and sex were included in models for AAO. The influence of APOE on the
associations with poly-T was evaluated in 2 ways. In the first approach, an additive model
with a term for the number of APOE ε4 alleles (0, 1, or 2) was added to the models.
Significant SNPs were further evaluated in models including APOE genotype as a covariate
and random-effects models allowing for heterogeneity of the association among data sets. In
the second approach, models were evaluated in APOE genotype subgroups; conversely, we
assessed the effect of the APOE ε4 allele within the poly-T subgroups. To capture
information about association with poly-T in other ADGC data sets, we tested association
with genotyped SNPs that were in high linkage disequilibrium (LD) (r2≥0.8) with
rs10524523. All regression analyses were conducted using the R statistical package in each
data set separately, and the results were meta-analyzed using an inverse-variance method as
implemented in the package METAL.20 The respective influences of the APOE and poly-T
loci on AAO were also evaluated by comparing Kaplan-Meier survival curves derived using
R for subgroups of AD cases defined by APOE and poly-T genotypes. Association of all
other genotyped and imputed SNPs from the APOE region with AD risk and AAO was
evaluated in all ADGC data sets using the strategy described earlier.

RESULTS
ASSOCIATION OF POLY-T WITH AD RISK AND AAO

To determine if poly-T genotypes at rs10524523 confer risk for AD or affect AAO for AD,
we genotyped 1256 AD cases and 1605 controls from the ACT, ADC, and ADNI cohorts
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(Table 1). The mean AAO in the ACT cohort was about 12 years higher (83.8 years) than
that in the ADC (71.2 years) and ADNI (71.7 years) cohorts. The distribution of the poly-T
lengths within each APOE genotype subgroup was comparable with the corresponding
distributions reported in the original study,10 and these patterns were similar across data sets
(eFigure 1, http://www.archneurol.com). Nearly all subjects with the s/s or s/v genotypes
had APOE genotypes ε3/ε3 or ε2/ε3 (eTable 1). Similarly, there was a very high correlation
between heterozygosity for the ε4 and l alleles, and nearly all l homozygotes were
homozygous for ε4 (Figure 1).

Without adjustment for APOE ε4, the poly-T l allele was significantly associated with
increased AD risk (meta-analysis P value [meta-P] = 3.9 × 10−33), whereas the other alleles
were protective (meta-P value: s = 5.9 × 10−8 and v = 1.9 × 10−8) (Table 2 and eTable 2).
The dosage of the l allele was associated with an increased risk of AD (odds ratio [OR],
2.83; 95% CI, 2.39–3.36), while those of the s and v alleles were protective (s: OR, 0.69;
95% CI, 0.61–0.79; v: OR, 0.68; 95% CI, 0.59–0.78). However, the effect of the l allele on
AD risk was greatly diminished after adjustment for the APOE ε4 allele (meta-P = .02; OR,
1.70; 95% CI, 1.09–2.65) and not significant in the ε3/ε3 subgroup (meta-P = .45),
suggesting that risk of AD is influenced directly and specifically by APOE genotype and not
the poly-T genotype. The apparent lack of association of ε4 with AD risk in the l-negative
subgroup and l with AD in the ε4-negative subgroup is explained by the observation that
virtually all persons with the ε4 allele also had the l allele. Thus, because very few AD cases
and controls had ε4 but not the l allele, these particular association tests have very little
power.

Analogously, there was evidence of significant association of the l allele with AAO in the
combined sample (meta-P = 1.0 × 10−8) and within each data set without accounting for the
number of APOE ε4 alleles (Table 2 and eTable 3). These data show that each dose of the l
allele is associated with a 2-year earlier onset of AD symptoms. However, this association
was no longer significant after conditioning on the number of APOE ε4 alleles (meta-P = .
12). Specificity of the association of AAO with APOE was supported by the lack of
association with the l allele in the subgroup lacking ε4 (meta-P = .87) and evidence for a
moderate association with the ε4 allele in the subgroup lacking the l allele (meta-P = .022)
(eTable 2 and eTable 3). These results suggest that APOE ε4 has an effect on AAO
independent of the TOMM40 poly-T l allele, whereas the association of the poly-T
polymorphism is more likely due to confounding with APOE.

The effect of poly-T on AAO was further examined by survival analysis in each data set
(Figure 2). Among subjects with AD in the l-negative subgroup, the ε4 allele showed a trend
of association with earlier onset, but the effect of the l allele among subjects lacking ε4 was
inconclusive because of a small sample size (Figure 2A, C, and E). There were no
distinguishable differences in AAO according to poly-T genotype among ε3/ε3 subjects
with AD, which is not surprising because few of these individuals had an l allele (Figure 2B,
D, and F).

Evaluation of the LD structure in this region revealed that in each data set rs10524523 was
strongly correlated only with SNPs in the interval including TOMM40 and APOE (eFigure
2). We identified 5 SNPs (rs157580, rs2075650, rs8106922, rs405509, and rs439401) in
high LD with rs10524523 (eFigure 2) and thus considered these SNPs as proxies for poly-T
in analyses in the other ADGC data sets, which were not genotyped for rs10524523. None of
these SNPs was significantly associated with AD or AAO after adjustment for APOE ε4
(Table 3).
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ASSOCIATION OF AD WITH SNPs THROUGHOUT THE APOE REGION
To evaluate the hypothesis that multiple loci in the APOE region influence risk or AAO of
AD, we tested association using the entire ADGC sample (eTable 4) with all SNPs spanning
the 800-kb region surrounding APOE that encompasses previously reported genome-wide
significant findings in several genes.21 Eight SNPs spanning the entire region were
significantly associated with AD risk at P < .001 in models adjusting for the number of
APOE ε4 alleles, and one of these results (rs445925 located between APOE and APOC1)
was genome-wide significant (P = 4.1 × 10−11). However, significance of these results was
greatly diminished after taking into account heterogeneity across data sets and APOE
genotypes including the ε2 allele (Table 4). In the model including all APOE genotypes,
nominal significance was observed for 3 SNPs (rs29651, P = .04; rs37451, P = .0063; and
rs20756, P = .01), but none of these results remained significant after correcting for the
number of tests. No SNPs were significantly associated with AAO at P < .001 in models
adjusting for dose of ε4 (eTable 5).

COMMENT
Our study of nearly 12 000 AD cases and 11 000 cognitively normal controls was unable to
confirm association of disease risk or variation of AAO of AD symptoms with SNPs in any
gene in the APOE region other than APOE. Although we observed genome-wide
significance with many SNPs in several genes in this region, the residual effect of these
variants dissipated dramatically in models adjusting for APOE genotype.

We also considered the possibility of an independent effect of the TOMM40 variable repeat
length polymorphism (rs10524523), which has been reported as a modifier of AAO,10 by
genotyping and evaluating this association in a subset of 1256 AD cases and 1605 controls.
We were unable to replicate the original finding in models adjusting for APOE genotype or
in subgroups stratified by APOE genotype, even though we used a much larger data set than
others published to date. This result is consistent with negative findings in several other
recent studies.12,22–25 Moreover, association findings were also negative for 5 SNPs in high
LD with rs10524523 evaluated in the entire ADGC GWAS sample. Although Cruchaga et
al12 found a significantly lower frequency of the rs10524523 v allele in cases compared with
controls among APOE ε3 homozygotes in a large case-control series, the effect was in the
opposite direction as reported in the original study.10 In our study, there was no effect in
either direction for s/s homozygotes with an APOE ε3/ε3 genotype. In a subset of 733
subjects from the Cruchaga et al study, there was no evidence of association of rs10524523
with cerebrospinal fluid tau or β-amyloid 42 levels.12 Johnson et al11 reported an association
of rs10524523 with lower performance on learning tests and with decreasing gray matter
volume in a brain region affected early in AD development in a small sample of APOE ε3/
ε3 adult children of subjects with AD, but a study of a larger community-based cohort
between the ages of 79 and 87 years was unable to disentangle the confounding effects of
the rs10524523 l allele and APOE ε4 on poorer performance of verbal memory and abstract
reasoning.26

Since the association of AD with APOE was established nearly 2 decades ago,1,2 numerous
studies have reported significant associations with other genes in the region surrounding
APOE,27–29 whereas other studies concluded that these findings are not true independent
contributors to AD risk.30,31 Attempts to resolve this controversy have been complicated by
very strong LD in this region, which contains many biologically plausible candidate
genes.25,29 However, further insight regarding multiple independent association signals can
be obtained from analyses in other populations (eg, those of black African descent) having a
narrower LD structure in the APOE region. Tycko et al32 excluded independent influence of
APOE or APOC1 promoter polymorphisms on risk of AD in samples of African American
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and Caribbean Hispanic individuals. Logue et al33 identified highly significant associations
of AD with 3 markers within 25 kb of APOE including PVRL2 SNP rs6859 (P = 5.39×10−7)
and TOMM40 SNPs rs157582 (P = 3.26×10−6) and rs10119 (P = 5.95×10−7) in a sample of
513 well-characterized African American AD cases and 504 ethnically matched cognitively
normal controls. However, only rs6859 remained nominally significant (P = .008) after
adjustment for APOE genotype, which was very strongly associated with AD (P =
9.69×10−23).

Our study has several strengths that lead to more conclusive findings than previous
association studies of genes in the APOE region. First, genotypes for the APOE iso-forms in
all ADGC data sets were determined directly using robust methods,8 rather than by
inference using imputed genotypes for the 2 SNPs that determine APOE genotype. The
genotype for 1 of the APOE SNPs (rs429538) imputed in the ADGC data sets using the
1000 Genomes reference panel (October 2011; release ICHG2011) was only modestly
correlated (r2 about 0.5) with the actual APOE genotype (data not presented). Second, our
sample size is several-fold larger than those in any previous study of this issue and had
sufficient power to detect associations with ORs of 1.2 or greater.21 Thus, even if there were
other loci in this region independent of APOE that influenced AD risk or AAO, we would
have detected a signal whereas smaller studies probably could not. Third, we conducted a
comprehensive examination of all markers in the region, including the poly-T repeat in
TOMM40, and tested multiple models to address confounding with APOE.

Although there is some evidence from gene expression, cell biology, and
immunohistochemistry studies supporting a connection of AD to the immediate neighbors of
APOE including PVRL2, TOMM40 and APOC1,31,34–36 results of our study weigh heavily
against the hypothesis of inherited susceptibility to AD due to common variation in genes in
the APOE region other than APOE.
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Figure 1.
Distribution of TOMM40 rs10524523 genotypes (derived from combinations of the short
[s], long [l], and very long [v] alleles) according to apolipoprotein E (APOE) genotype in the
Adult Changes in Thought Study (A), National Institute on Aging Alzheimer's Disease
Centers (B), Alzheimer's Disease Neuroimaging Initiative Study (C), and the combined (D)
data sets.
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Figure 2.
Survival analysis curves for age at onset of Alzheimer disease in the Adult Changes in
Thought Study (A and B), National Institute on Aging Alzheimer's Disease Centers (C and
D), and Alzheimer's Disease Neuroimaging Initiative Study (E and F) data sets. The effect
of the presence or absence of the TOMM40 long (l) allele at rs10524523 and of the
apolipoprotein E (APOE) ε4 allele on age at onset is shown in all subjects (A, C, and E) and
in the APOE ε3/ε3 subgroup (B, D, and E). s Indicates short allele and v, very long allele.
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Table 2

Association of the rs10524523 /allele With AD Risk and Age at Onset

Basic Model
a

Conditional on ε4 Dosage
b ε3/ε3 Subgroup

a

Study OR (95% CI) P Value OR (95% CI) P Value OR (95% CI) P Value

AD

 ACT 2.08 (1.62–2.68) 9.1 × 10−9 0.91 (0.38–2.16) .83 0.49 (0.06–3.85) .50

 ADC 3.86 (2.94–5.06) 1.1 × 10−22 2.05 (1.14–3.7) .016 0.57 (0.18–1.83) .35

 ADNI 3.22 (2.06–5.04) 2.9 × 10−7 2.38 (0.8–7.08) .12 1.68 (0.25–11.25) .59

 Meta-analysis 2.83 (2.39–3.36) 3.9 × 10−33 1.70 (1.09–2.65) .020 0.71 (0.29–1.73) .45

Age at onset β(SE) PValue β(SE) PValue β(SE) PValue

 ACT −1.73 (0.49) 5.3 × 10−4 1.15 (1.59) .47 −0.91 (4.57) .84

 ADC −1.62 (0.45) 3.3 × 10−4 1.75 (1.37) .20 2.04 (4.63) .66

 ADNI −2.77 (0.94) .0037 1.42 (2.66) .59 1.67 (6.36) .79

 Meta-analysis −1.79 (0.31) 1.0 × 10−8 1.48 (0.97) .12 0.78 (2.90) .79

Abbreviations: ACT, Adult Changes in Thought Study; AD, Alzheimer disease; ADC, National Institute on Aging Alzheimer's Disease Centers;
ADNI, Alzheimer's Disease Neuroimaging Initiative Study; APOE, apolipoprotein E; l, long allele; OR, odds ratio.

a
Adjusted for population substructure, age, and sex for AD risk and population substructure and sex for age at onset.

b
Adjusted for population substructure, age, sex, and number of APOE ε4 alleles for AD risk and population substructure, sex, and number of

APOE ε4 alleles for age at onset.
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