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Abstract
Land-use regression (LUR) models have been developed to estimate spatial distributions of
traffic-related pollutants. Several studies have examined spatial autocorrelation among residuals in
LUR models, but few utilized spatial residual information in model prediction, or examined the
impact of modeling methods, monitoring site selection, or traffic data quality on LUR
performance. This study aims to improve spatial models for traffic-related pollutants using
generalized additive models (GAM) combined with cokriging of spatial residuals. Specifically, we
developed spatial models for nitrogen dioxide (NO2) and nitrogen oxides (NOx) concentrations in
Southern California separately for two seasons (summer and winter) based on over 240 sampling
locations. Pollutant concentrations were disaggregated into three components: local means, spatial
residuals, and normal random residuals. Local means were modeled by GAM. Spatial residuals
were cokriged with global residuals at nearby sampling locations that were spatially auto-
correlated. We compared this two-stage approach with four commonly-used spatial models:
universal kriging, multiple linear LUR and GAM with and without a spatial smoothing term.
Leave-one-out cross validation was conducted for model validation and comparison purposes. The
results show that our GAM plus cokriging models predicted summer and winter NO2 and NOx
concentration surfaces well, with cross validation R2 values ranging from 0.88 to 0.92. While local
covariates accounted for partial variance of the measured NO2 and NOx concentrations, spatial
autocorrelation accounted for about 20% of the variance. Our spatial GAM model improved R2

considerably compared to the other four approaches. Conclusively, our two-stage model captured
summer and winter differences in NO2 and NOx spatial distributions in Southern California well.
When sampling location selection cannot be optimized for the intended model and fewer
covariates are available as predictors for the model, the two-stage model is more robust compared
to multiple linear regression models.

Keywords
Land-use regression; Spatial residuals; Generalized additive model; Cokriging; Traffic air
pollution

© 2012 Elsevier Ltd. All rights reserved.
*Corresponding author. Program in Public Health & Department of Epidemiology, Anteater Instruction & Research Bldg (AIRB) #
2034, University of California, Irvine, CA 92697-3957, USA. Tel.: +1 949 824 0548; fax: +1 949 824 0529. junwu@uci.edu. .

Appendix. Supplementary data Supplementary data related to this article can be found online at doi:10.1016/j.atmosenv.
2012.03.035.

NIH Public Access
Author Manuscript
Atmos Environ. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Atmos Environ. 2012 August 1; 55: 220–228. doi:10.1016/j.atmosenv.2012.03.035.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
An increasing body of literature links exposure to traffic-related air pollutants to mortality
and morbidity (Aguilera et al., 2008;Bassok et al., 2010; Iniguez et al., 2009). Air pollutant
concentrations are influenced by both local sources (e.g., traffic exhaust and industrial
emissions) and regional/background pollutant contributions from atmospheric transport and
chemistry. Developing adequate models for traffic exposures is essential for health effects
studies.

Kriging has been used widely to model spatial dependence of air pollutant concentrations
(Beelen et al., 2009). Traditional kriging estimates pollutant concentrations at un-sampled
locations as the combination of mean predictions from the nearby samples or polynomial
trend models of spatial coordinates with smoothing of the residuals (Johnston et al., 2003).
An increasing number of studies recently have developed land-use regression (LUR) models
to estimate local variability in air pollutant concentrations. These models estimated local
pollutant concentrations using spatially-resolved variables reflecting emission intensity,
proximity to sources, and atmospheric dispersion (Hart et al., 2009; Hoek et al., 2008).
Unlike kriging that takes into account spatial autocorrelation of residuals, most of the
previous LUR models assumed independence of residuals. Many kriging and LUR models
have performed moderately well as assessed by r-square (R2) values, ranging from 0.52 to
0.76 (Hart et al., 2009).

In terms of sampling approach for spatial model development, some studies employed a
location-allocation algorithm for locating monitoring sites (Su et al., 2009a, 2009b). This
approach, in combination with development of a distance decay regression selection
strategy, resulted in a much improved LUR model performance [R2 of 0.88 for nitrogen
dioxide (NO2) and 0.91 for nitrogen oxides (NOx) for models developed in Los Angeles,
California] (Su et al., 2009b). However, the location-allocation approach may be impractical
for many air pollution epidemiological studies due to logistical and funding constraints. The
Multi-Ethnic Study of Atherosclerosis and Air Pollution study arranged the majority of
monitors in clusters of six, with three on either side of a major road at distances of
approximately 50, 100, and 300 m from the road (Mercer et al., 2011). This approach
maximizes the variability of measured concentrations near roadways but may be insufficient
to capture spatial variability of concentrations across the entire study region.

Most existing LUR models were developed using multiple linear regression. Generalized
additive models (GAM) can capture both linear and non-linear relations between covariates
and air pollution concentrations, are semi-parametric and multiple-dimensional, and use
penalized splines (Hastie, 1990). GAM has previously been used to predict spatially-
resolved concentrations of fine particulate matter and NO2 based on land-use, traffic,
satellite, and/or meteorological data in two studies, and both included spatial smoothing
terms of sampling site coordinates as predictor variables in the models (Hart et al., 2009; Liu
et al., 2009).

Although several studies reported moderate spatial autocorrelation in residuals (Hystad et
al., 2011; Liu et al., 2009; Su et al., 2009a), most previous LUR models did not take into
account spatial autocorrelation of residuals, which may moderately or substantially affect
the predicted values for regional pollution surfaces (Mercer et al., 2011; Paciorek, 2010).
Furthermore, most previous LUR models focused on annual average concentrations. An
exception is Mercer et al.’s recent study (2011) that predicted spatial variability of NOx in
three seasons using a two-stage model combining linear LUR with universal kriging
although their model performance was no better than that of most previous studies (R2 up to
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0.75). Some studies added temporal profiles using data from nearby continuous monitoring
stations (Aguilera et al., 2009;Brauer et al., 2010), but the assumption of stable spatial
variability over time may be invalid (Wu et al., 2011). The estimation of seasonally
changing exposures is important when examining health outcomes with shorter periods of
vulnerability (e.g. pregnancy outcomes). In addition, there may be considerable variability
between seasons for coefficient estimates, thus it may be inappropriate to combine seasonal
data to develop a single annual average model to account for spatial variability of pollutant
concentrations over seasons.

In this study, we combined GAM with cokriging of spatial residuals to estimate summer and
winter NO2 and NOx pollution surfaces in Southern California, assuming that spatial
variations in concentrations are substantially influenced by both local variation due to
proximity to emission sources and by global variation due to atmospheric transport (Ainslie
et al., 2008;Beelen et al., 2009; Liu et al., 2009). Local means were predicted by GAM,
while spatial residuals from GAM were assumed to be second-order stationary (Gartan and
Guyon, 2010) and modeled through cokriging with global residuals (representing global
variations) at sampling locations nearby. We compared the GAM plus cokriging model with
four other methods: universal kriging, multiple linear LUR, and GAM with and without
spatial smoothing of coordinates. We also examined the impact of sampling location
selection and different types of predictor variables on the model performance.

2. Materials and methods
2.1. Study domain

The study domain covered Los Angeles and Orange counties in Southern California, with an
area of 160 × 161 km2 and over 12 million residents in 2008. The urban core of the area
(Los Angeles-Long Beach-Santa Ana) had a population density of 2729 inhabitants per km2

and was the most densely-populated urbanized area in the United States (U.S. Census
Bureau, 2000). The region has been one of the most polluted places in the country
(American Lung Association, 2011). Port emissions, trucks, automobiles airports, and
industry contributed to local air pollution problems (Kunzli et al., 2003). The region
encompassed the nation’s largest marine port complex (American Association of Port
Authorities, 2010) and had six major commuter and truck transport freeways. It is also
bordered by mountain ranges and frequently experiences surface inversion with limited
vertical mixing (Lu and Turco, 1994). All of these factors contributed to high pollutant
concentrations in the region.

2.2. Measured NO2 and NOx concentrations
2.2.1. Measurements collected by University of California, Los Angeles
(UCLA)—All NO2 and NOx samples (N = 201) were collected in Los Angeles County
using passive air samplers from Ogawa & Company USA, Inc. (Pompano Beach, FL) in two
continuous weeks in a late summer warm season (September 9–22, 2006) and a mid-winter
season (February 10–23, 2007). The sampling locations were selected using a location-
allocation algorithm that maximized the potential variability in measured concentrations and
the spatial distribution of the health study population (i.e., participants in the Los Angeles
Family and Neighborhood Study) (Su et al., 2009b). Each sampler was deployed for a 2-
week period (maximum variability was 72 h). There were a total of 181 valid measurements
in each season. Co-located samples were collected at 14 South Coast Air Management
District (SCAQMD) stations.

2.2.2. Measurements collected by University of California, Irvine (UCI)—All
NO2 and NOx samples were collected using the same Ogawa samplers as above in south Los
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Angeles County and Orange County in two alternate weeks in the summer (July 10–18 and
July 24-August 1) and the winter (November 13–21 and December 4–12) in 2009. The
sampling sites were residential outdoor locations of 45 pregnant women who enrolled in our
prospective Air Pollution and Birth Outcomes Study and 9 volunteers who were employees
or students at UCI. Co-located samples were collected at 11 SCAQMD stations. Each
sampler was deployed for a one-week period (maximum variability was 24 h). Overall, we
obtained valid measurements at 53 sites in the summer and 64 sites in the winter.

2.2.3. Government-based monitoring data from SCAQMD—Hourly NO2 and NOx
measures were obtained from the SCAQMD monitoring network at 31 sites (including sites
collocated with passive samplers) in Southern California. The measurements were
conducted by federal designated automated chemiluminescence methods using active
instruments. To remove systematic bias between different types of instruments (passive vs.
active), we aggregated hourly active concentrations measures and regressed them against
integrated passive measurements at the collocated SCAQMD sites during the same sampling
periods. We then converted all passive measurements to concentrations based on the
chemiluminescence methods. The correlation coefficients between the passive and active
measurements were all above 0.9 (Supplemental Materials Table S1).

2.3. Spatial data and covariates
2.3.1. Roadway data—We obtained roadway data from the ESRI StreetMap™ North
America 9.3 (http://www.esri.com). This dataset included 2003 TeleAtlas® street polylines,
which – as we previously demonstrated – are more accurate than TIGER 2000-based streets
(Wu et al., 2005). We classified roadways into four categories based on the U.S. Census
Feature Class Code (U.S. Census Bureau, 1993): primary highways, typically interstates,
with limited access (A1); primary roads without limited access, non-interstate roads (A2);
smaller, secondary or connecting roads, usually with more than two lanes (A3); and local,
neighborhood and rural roads, usually with a single lane of traffic in each direction (A4). We
calculated the nearest distance from a sampling site to each roadway type and the total
roadway length within different buffer sizes around the sampling site.

2.3.2. Total traffic and truck volumes—We compiled a comprehensive traffic database
for freeways and major surface streets in the study region based on measurements and
estimated values. Hourly total traffic and truck counts on freeways and highways were
obtained from the California Department of Transportation (Caltrans) Performance
Measurement System (PeMS) (http://pems.dot.ca.gov/). The truck counts from the PeMS
algorithm were not measured but estimated from 5-min aggregated count and occupancy
data (Urban Crossroads, Inc., 2006). We averaged the total and truck traffic counts at the
PeMS monitoring sites for each of our sampling periods and assigned the point PeMS data
to adjacent roadway segments (<300 m) with matching street names, which were then
extended to contiguous road segments (within 15 km) with matching street names. For
surface streets without hourly measurements, we used Caltrans annual average daily traffic
(AADT) counts derived from a combination of tri-annual measurements and estimated
values. We calculated inverse distance-weighted vehicle and truck counts within different
buffer sizes around each sampling location (Wilhelm and Ritz, 2003).

2.3.3. Population density—We obtained block level population data from U.S. Census
2000 (U.S. Census Bureau, 2004). Population kernel density was calculated in ArcGIS
(version 9.3; ESRI, Redlands, CA) using a 5000 m search radius and a 30 m resolution.

2.3.4. Land-use type—We obtained the 2001 land-use data from the Southern California
Association of Government (SCAG) (Aerial Information Systems, 1996; Park and
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Stenstrom, 2008). The SCAG land-use data were first developed using 1990 aerial and
photographs and updated using computer interactive photo interpretation techniques and
digital orthophotography with 1 m resolution (Park and Stenstrom, 2008). We classified the
original 108 land-use types into four major categories: transportation; agriculture, open
space and vacant; industrial; and residential. We calculated the percentage of area for each
land-use category within different buffer sizes (50 m–15 km) around each sampling location.

2.3.5. Remote Sensing data—We obtained 30 m × 30 m ETM+data from Landsat’s
thematic mapper (http://landsat.gsfc.nasa.gov/) for 3–5 cloud-free days in each sampling
period. From the ETM+ data, we extracted land surface temperature (LST) and a normalized
difference vegetation index (NDVI) using Environment for Visualizing Images (ENVI)
software (ITT Visual Information Solutions, Boulder, CO). LST was calculated using the
transform equation between temperature and radiance (YCEO, 2010); NDVI was calculated
using a standard algorithm and the data near infrared band and red band (ENVI, 2011).

2.3.6. Atmospheric stability—We obtained Pasquill atmospheric stability classes every
3 h at approximately 40 km by 40 km spatial resolution from the National Oceanic and
Atmospheric Administration (NOAA) AIR Resources Laboratory archive of the Eta 4-D
Data Assimilation System (EDAS) (http://www.arl.noaa.gov/ready.html). We assigned the
atmospheric stability from the nearest modeling grid to each sampling site. We classified
stability classes E, F and G as stable, A, B, and C unstable, and D as neutral. The percentage
of time with stable air conditions was calculated for each sampling period.

2.4. Modeling approach
2.4.1. Selection of spatial covariates for prediction of local means—The decay
buffering and correlation analysis method (Su et al., 2009a) was used to select optimized
buffer between 50 m and 15 km for all spatial variables besides nearest distance to the
roadways and atmospheric stability. A variable was dropped from further analysis if the
absolute correlation coefficient with the measured concentrations was less than 0.3.

2.4.2. GAM: local mean modeling—The general equation for predicting air pollution
concentrations at the location, u was:

(1)

where  is the estimated concentration at location u,  is the estimate of local mean at u,
determined by spatial covariates, X,  is the estimate of the spatial residual at u,
determined by spatial residuals of neighborhood samples around u, Z∑Nb(u), and εun is a
random residual at u, with normal distribution, εn~N(0,1), and ignored.

We used the GAM package in R statistical software (R version 2.11.1) to conduct the GAM
part (local mean modeling) of our model. Since both NO2 and NOx concentrations followed
a normal distribution in this study (−1 < skewness < 1, Supplemental Materials Fig. S1), no
log transform was required. The following is the GAM equation for local mean:

(2)

where μ0 is the model intercept,  or  are local covariates, fi(…) is the smooth
function consisting of series basis functions (representing the non-linear relationship), df is
degrees of freedom that controls the smooth degree of the curve fit, βj are the linear
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parameters used to construct the linear relationship between  and , and n is the
number of covariates. For normally distribution, the link function is g(μu) = μu. For log
transformed concentrations, we can remove the constraint in [2], . To avoid the
problem of over-fitting, we used small degrees of freedom (2–8) in our models. Smooth
terms of spatial location were not incorporated in the model because we considered spatial
variability in the second stage by cokriging spatial residuals.

We selected the covariates in three steps. To avoid multi-collinearity, we first divided the
covariates into two groups: one group of weakly correlated covariates with variance
inflation factors (VIFs) < 10 and independent groups of highly correlated covariates with
VIF ≥ 10 (O’Brien, 2007). From each group of the highly correlated covariates we selected
one variable at a time and combined them with all the weakly correlated covariates to
construct a combination of covariates for the model. Then Akaike’s information criterion
(AIC) or R2 was used to further backward-select the variables in each combination: the
covariates with p values ≥0.1 were removed until R2 remained the same, improved, or
decreased least when all possible combinations of the remaining covariates were considered.
Finally, the covariate combination with the maximum R2 or minimum AIC was selected as
optimal inputs in the model.

2.4.3. Cokriging of spatial residuals to minimize error variance—Spatial residuals
from GAM were cokriged with global residuals at nearby sampling locations, assuming that
after removal of local means, the space domain is stable:

(3)

where 3 ε = [εus]~N(0,V(θ)), θ is the vector of variogram parameters,Z = [Zui] is the set of
neighborhood samples around u,  is the estimate of spatial residuals at
zui, and is derived by subtracting the GAM-predicted local mean from the measured or
observed concentration at each sampling site, εgs(zui) is the estimate of the global residual or
the total variation of the measured values on a regional scale, deriving by subtracting the
global mean concentration (average of measured concentrations at all sites) from the

measured concentration at each sampling site.  and  are the optimal weights generated
by maximum likelihood based on the estimates of θ.

Spatial residuals are influenced by both local variability (affected by local covariates) and
background/regional variability (affected by global trend). Variogram was used to model the
spatial residuals and regional variability not captured by the GAM. Variogram reflects a
feature’s variability along a certain distance in a spatial field. According to the optimal
principle of unbiased estimation and minimal error variance of cokriging, error variance of
spatial residuals will decrease substantially if variogram of spatial and global residuals is
precisely captured (Goovaerts, 1997). We used theoretical variogram to fit the experimental
variogram of spatial and global residuals and the cross covariance between them. Two
parameters were used to describe the variogram: sill (the maximum value of the variogram
as the lag distance approaches infinity) and range (the distance where the difference of the
variogram from the sill becomes negligible). A longer range and a smaller sill indicate a
more continuous spatial surface. We examined the semi-variogram cloud, tested different
lag sizes and number of lags, and different variogram models to find the best reasonable fit
using ArcGIS’s Geostatistical Analyst.
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2.5. Model comparison
We compared our GAM plus cokriging model with four other methods: universal kriging,
multiple linear LUR, and GAM with and without spatial smoothing terms of coordinates.
Universal kriging estimates local means based on coordinates and incorporates spatial
residuals without use of supplemental information such as local covariate. The multiple
linear LUR assumes a linearly additive relationship between concentrations and spatial
covariates. GAM incorporates non-linear relationships (Hart et al., 2009; Liu et al., 2009).
We also examined the contribution of cokriging to model improvement by comparing the
GAM plus cokriging model with the GAM with and without spatial smoothing terms of
coordinates.

Since certain models may be more vulnerable to less-thanoptimal siting of monitors than
others, we compared the models using all the data and the UCLA data alone since the UCLA
sites were optimally sited through a location-allocation algorithm (no separate models were
built for the UCI data because of the small number of sites). We examined whether simple
models (e.g. multiple linear LUR) perform as well as more complex models (e.g. GAM plus
cokriging) in the context of an optimized monitoring protocol and which model(s) perform
better with more arbitrary placing of monitors due to study restrictions. In addition, we
compared our modeled annual average concentrations with those from previously published
LUR models based on the same UCLA data (Su et al., 2009b). Finally, we examined the
contribution of different types of variables on model performance, particularly the factors
that may not be easily available in other parts of the world such as traffic counts and
atmospheric stability.

2.6. Cross validation
We used leave-one-out cross validation (LOOCV) for model evaluation. LOOCV uses a
single observation from the original sample as the validation data and the remaining
observations as the training data. This is repeated such that each observation in the sample is
used once as the validation data. We used four measures to compare the performance of the
models: R2, inter-quartile range (IQR) of prediction errors, the square root of the mean of
the squared prediction errors (RMSPE), and box plots of precision errors. A higher R2 value,
a smaller IQR and RMSPE, a mean and IQR close to 0, and a narrower confidence interval
(CI) were used to identify a better model.

3. Results
3.1. Distance decay correlation analysis

Five types of covariates were selected for training the model: atmospheric stability, NDVI
and land surface temperature, distance-weighted vehicle and truck counts, three land-use
types, and roadway variables (nearest distance to roadways and road lengths) (see
Supplemental Materials Table S2 for Pearson’s correlations of all the covariates and their
optimal buffering distances).

The four models for summer and winter NO2 and NOx each had different sets of predictors
(Table 1). NDVI had a moderate predictability in all models, explaining 9.5e25.4% of the
variances in measured concentrations. Atmospheric stability was a statistically significant
predictor for summer NO2 and NOx (variance explained: 13.8–14.3%) but not for winter
concentrations. Residential land-use for summer NOx and winter NO2 and NOx had
moderate predictive power (variance explained: 7.1e11.8%). Other land-use patterns
(transportation, and farm and open fields), length of local roads (A4) within 15 km, and
nearest distance to major freeways (A1) and local streets (A4) were included in different
models resulting in a range of variances explained. As expected, annual average daily traffic
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counts had less predictive power than the average daily traffic volume integrated over each
sampling period from hourly measurements on freeways and highways (R2: 0.35–0.40 vs.
0.59–0.78 for NO2; 0.35–0.41 vs. 0.52–0.74 for NOx).

3.2. Variogram modeling of spatial residuals
Global residuals had longer ranges (8969–17,105 m vs. 2199–3020 m) and higher sills
(15.7–25.6 ppb vs. 5.1–8.5 ppb for NO2 and 269.5–320.0 ppb vs. 84.0–137.5 ppb for NOx)
than local spatial residuals, indicating a global spatial variability at a regional scale
(Supplemental Materials Table S3). Cross covariance between spatial and global residuals
was moderate. Variogram of global residuals in the summer had a shorter range (8969 m vs.
10,526 m for NO2; 10,861 m vs. 17,105 m for NOx) and higher sills (25.6 ppb vs. 15.7 ppb
for NO2; 320.0 ppb vs. 269.5 ppb for NOx) than those in the winter (Supplemental Materials
Fig. S2 and Table S3). Similarly, variogram of spatial residuals in the summer had a slightly
shorter range and slightly higher sills than those in the winter, indicating a higher spatial
heterogeneity in the summer than in the winter.

3.3. Comparison of different models
Among the five models, the GAM plus cokriging model had the highest cross validation R2

(0.88–0.92), IQR closest to zero (−0.31–0.09 ppb), and the smallest RMSPE (1.67–7.83
ppb) (Table 2). For prediction errors, this model also had a narrower 95% CI, closer-to-zero
median, and fewer outliers (Fig. 1). The GAM plus cokriging model improved the cross
validation R2 for about 16.7–26.0% over GAM with spatial smoothing, 22.2–35.3% over
GAM without spatial smoothing, 33.8–58.6% over universal kriging, and 39.7–53.3% over
multiple linear LUR (with coordinates as additional predictors) (Supplemental Materials Fig.
S3). GAM with spatial smoothing outperformed GAM without spatial smoothing with 7.0–
21.0% higher R2 and smaller RMSPE. In addition, we found that incorporating the
coordinates moderately to substantially improved the performance of the linear LUR (Table
2), likely because the coordinates accounted for partial spatial variability not captured by
other variables included in the model. Besides seasonal predictions (Table 2), the GAM plus
cokriging model also had the best performance in comparison with the other four models
(Supplemental Materials Table S4) for annual average concentrations using all the
measurement data.

3.4. Prediction of summer and winter pollution surfaces
Noticeable differences were observed across season for the spatial patterns of pollution
surfaces (1 km × 1 km) predicted by the GAM plus cokriging model. For both NO2 and
NOx, pollution surfaces were steeper in the summer and more continuous in the winter (Fig.
2). In addition, the concentrations were substantially lower in Orange County than Los
Angeles in the summer but not in the winter (Supplemental Materials Fig. S4). Despite the
heterogeneity of spatial distributions by season, we obtained high levels of agreement
between the predictive and measured values in the two sub-regions (Supplemental Materials
Fig. S4).

3.5. GAM plus cokriging model vs. multiple linear LUR (UCLA data only)
For seasonal predictions, the GAM plus cokriging model was slightly or moderately better
than multiple linear LUR with coordinates (0.88–0.94 vs. 0.79–0.83) (Supplemental
Materials Table S5). For annual average predictions, despite differences in the selection of
spatial covariates in our study and Su et al. (2009b) study, similar prediction performance
was observed between our GAM plus cokriging model, our multiple linear model, and Su et
al.’s multiple linear model (R2: 0.92 vs. 0.87 vs. 0.87 for NO2; 0.91 vs. 0.87 vs. 0.92 for
NOx) (Supplemental Materials Table S5).
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4. Discussion
We developed two-stage models to estimate NO2 and NOx concentrations in Southern
California. Our GAM plus cokriging model performed well in predicting summer and winter
concentrations (R2 = 0.88–0.92). This study adds to the literature on air pollution exposure
assessment in several ways: (1) it is one of the first studies to account for spatial residuals by
cokriging them with global residuals; (2) we compared the performance of the two-stage
model with four other commonly-used methods; (3) we demonstrated the importance of
developing models to capture substantial differences in spatial distributions of pollutants
between seasons (summer and winter), which is important for studies of short-term or sub-
chronic health effects; and (4) we examined the influence of sampling site selection and
different types of spatial covariates on model performance.

Cokriging spatial residuals with global residuals moderately to substantially improved the
predictions over the other four methods. Several previous LUR studies examined spatial
autocorrelation of residuals. Liu et al. (2009) observed residual spatial auto-correlation using
semi-variogram. Su et al. (2009b) and Hystad et al. (2011) tested spatial auto-correlation of
the residuals using Moran’s I. Paciorek (2010) summarized the general phenomenon of
spatial auto-correlation in residuals of regression models. However, most LUR models did
not utilize spatial residual information, with an exception of the study of Mercer et al.
(2011).Su et al. (2009a, 2009b) partially accounted for spatial autocorrelation by adding a
census tract cluster variable or using coordinates as predictors in the models. However, their
models did not directly incorporate spatial residuals and did not consider spatial variability
of global residuals, which could influence predicted concentrations with regional
contributions (e.g. NO2 and fine particulate matter). Traditional universal kriging models
residuals with variogram, but it relies on coordinates to predict local means and does not
incorporate potentially important covariates such as traffic, land-use, and meteorology.
Mercer et al. (2011) developed a two-stage model combining prediction of local means by
linear LUR with universal kriging of the residuals. Our two-stage models achieved higher
R2 than that reported by Mercer et al. (2011) (0.88–0.92 vs. 0.75) for both seasonal and
annual NOx predictions. The consideration of non-linearity and large-scale variability may
at least partially account for the better performance of our model.

Interestingly, the cross validation R2 for the GAM plus cokriging models were similar to the
multiple linear LUR results reported by Su et al. (2009b) using only UCLA data
(Supplemental Materials Table S5). The use of a location-allocation algorithm approach for
site selection might partially account for the good performance of the simple linear LUR.
However, it may be difficult to generalize the location-allocation sampling approach
because it requires intensive effort in data collection and sometimes may not be practical
(Mercer et al., 2011). For example, because of study constraints, the UCI study collected
samples at subjects’ homes with less-than-ideal placement of sampling sites for spatial
model development. Nevertheless, our two-stage model seems to have been able to
overcome some of the problems of non-optimal sampling locations and achieved good
performance for the entire study region (R2: 0.88–0.92). The two-stage model may provide
better results than the other models when resources are limited or when investigators have to
rely on existing data or convenience and non-optimal sampling locations.

We found the spatial distribution of NO2 and NOx being more continuous in winter than in
summer, similar to the study of Mercer et al. (2011). In this region the atmosphere is less
stable in the summer than in the winter, which leads to more rapid disperse of pollutants in
the summer and consequently faster decrease in concentrations within a short distance of
sources. Our results are also consistent with previous studies that showed narrower impact
zones (e.g., 300 m downwind) of primary traffic emissions in the daytime with good mixing
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(Zhu et al., 2002) and a wider impact zone (e.g., as far as 2600 m) before sunrise with stable
atmosphere (Hu et al., 2009). The NO2/NOx ratios predicted by our models were expected:
lower ratios near roadway sources and higher ratios in areas with high ozone concentrations
(Supplemental Materials Fig. S5).

Variables that may not be readily available in other regions (e.g. total traffic counts, truck
counts, NDVI, and LST) individually increased R2 by about 6–16% in multiple linear LUR
and 1–7% in the two-stage models (Supplemental Materials Table S6, S7 and S8). These
covariates did not contribute substantially to the performance of GAM plus cokriging model
(Table S8), partly because the two-stage model incorporated spatial autocorrelation of
residuals that accounted for a significant portion of variance explained (>22%). Accounting
for the spatial autocorrelation of residuals somewhat compensates for the loss in prediction
power due to missing covariates. This has significant implications because in many locations
around the world, researchers may not have access to the variables we employed. Our results
suggest that one can probably still develop reliable spatial models for NO2 and NOx as long
as sufficient sampling data and some limited covariate data are available. Although
incorporating the influence of residuals may mask the importance of certain prediction
variables not accounted for in the models, it is a practical approach for improving exposure
assessment in epidemiologic studies when data on important prediction variables are not
available (Mercer et al., 2011).

When possible, we used spatial variables specific to each sampling period. Likely due to
data limitations, few previous investigators included hourly vehicle and truck count data in
their models. We found the variables ‘vehicle and truck counts on free-ways and highways’
based on hourly averages to be stronger predictors than ‘annual average daily traffic counts’
(r: 0.52–0.78 vs. 0.35–0.41). Estimated hourly truck counts had similar correlation with
pollutant concentrations as hourly vehicle counts (r: 0.60–0.68 vs. 0.59–0.65). NDVI and
LST were found to be good predictors for local means of pollutant concentrations. LST may
reflect population density and emission sources (e.g. traffic exhaust) while NDVI may
reflect less urbanized areas with fewer emission sources.

Atmospheric stability in the summer explained 16.3% and 17.2% of variation in NO2 and
NOx concentrations, respectively, but had less predictive ability in the winter. Only a few
previous studies explored the usefulness of these data for predicting exposure to traffic-
related air pollutants (Kwon et al., 2006). We acknowledge that there may be substantial
uncertainties in the atmospheric stability data since they were derived from model outputs
rather than upper air measurements. In addition, there were less differences in the stability
class estimates for the limited number of EDAS modeling grids (N = 12) in our study area in
the winter than in the summer, which partially explained the poor predictive power of
stability class in the winter.

This study has several limitations. First, the measured concentrations were derived from
slightly different approaches (i.e. two alternate one-week measurements at UCI and two-
week measurements at UCLA in two seasons) and from different years (2006, 2007 and
2009). To minimize potential bias from different monitoring period lengths, we used
SCAQMD measurement data as the benchmark and standardized the UCLA and UCI
measurements to SCAQMD values. Second, the 2001 SCAG land-use data may be
associated with uncertainty and errors. Park and Stenstrom (2008) reported that the SCAG
data may contain varying degrees of mixed land-use information and thus may not be as
precise as the high resolution Landsat data. However, in this study we only used four land-
use categories (i.e. transportation; agriculture, open space and vacant; industrial; and
residential) and the buffer size of the land-use covariates in the final models ranged from 2
km to 15 km. We expected that the uncertainty of the SCAG land-use data had limited
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effects on the covariates of area ratios for different land-use types within the relatively large
area. Third, although measures were taken to minimize over-fitting (e.g. restricting the
degrees of freedom for each covariate to 2–8 in GAM and no use of the coordinates of the
sampling sites in GAM), our two-stage model may still potentially over-fit the data. Finally,
we modeled summer and winter seasons separately rather than systematically integrating
temporal and spatial variability in the models using more advanced techniques such as those
used in Szpiro et al. (2010). This is partly because of the limited number of monitoring sites
with long-term NO2 and NOx measurements in our study region. More importantly, we
focused on temporal variability over longer periods (e.g. season and trimesters during
pregnancy), thus the more comprehensive spatial-temporal modeling with a higher temporal
resolution is beyond the scope of the current paper.

5. Conclusion
We developed a two-stage model that combined GAM with cokriging of spatial residuals to
estimate spatial variability of NO2 and NOx in summer and winter seasons in Southern
California. Our models generated reasonably accurate predictions for NO2 and NOx
pollution surfaces and captured summer and winter differences in NO2 and NOx spatial
distributions. Compared to multiple linear regression models, the two-stage model was more
robust in predicting concentration measurements when sampling locations may have been
selected in a less-than-optimal manner and when fewer spatial covariates were available as
predictors for the model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The study was supported by the National Institute of Environmental Health Sciences (NIEHS R21ES016379) and
the Health Effect Institute (HEI 4787-RFA09-4110-3 WU). Collection of the NO2 and NOx data by UCLA
researchers at the 181 sampling sites was funded by California Air Resources Board Contract No. 04-323. We
thank the study subjects and volunteers who participated in the air pollution exposure sampling. We also thank Jane
Berner from California Department of Transportation who helped us retrieve the PeMS traffic count data.

References
Aerial Information Systems. Aerial Information Systems. Redlands, California: 1996. Southern

California 1990 Aerial Land Use Study: Land Use Level III/IV Classification.

Aguilera I, Sunver J, Fernandez-patier R, Hoek G, Aguirre-alfaro A, Nieuwenhuijsen JM, Herce-
garraleta D, Brunekreef B. Estimation of outdoor NOx, NO2, and BTEX exposure in a cohort of
pregnant women using land use regression modeling. Environmental Science & Technology. 2008;
42:815–821. [PubMed: 18323107]

Aguilera I, Guxens M, Garcia-Esteban R, Corbella T, Nieuwenhuijsen MJ, Foradada CM, Sunyer J.
Association between GIS-based exposure to urban air pollution during pregnancy and birth weight
in the INMA sabadell cohort. Environmental Health Perspective. 2009; 117:1322–1327.

Ainslie B, Steyn D, Su GJ, Buzzelli M, Brauer M, Larson T, Rucker M. A source area model
incorporating simplified atmospheric dispersion and advection at fine scale for population air
pollution exposure assessment. Atmospheric Environment. 2008; 42:2394–2404.

American Association of Port Authorities. Port Industry Statistics: North American Port Container
Traffic (1990-2009). 2010

American Lung Association. State of the AIR 2011. American Lung Association; Washington, DC:
2011.

Li et al. Page 11

Atmos Environ. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bassok A, Hurvitz MP, Christine Bae C-H, Larson T. Measuring neighbourhood air pollution: the case
of Seattle’s international district. Journal of Environmental Planning and Management. 2010;
53:23–39.

Beelen R, Hoek G, Pebesma E, Vienneau D, de Hoogh K, Briggs D. Mapping of background air
pollution at a fine spatial scale across the European Union. Science of the Total Environment. 2009;
407:1852–1867. [PubMed: 19152957]

Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air
pollution impacts on birth outcomes. Environmental Health Perspective. 2010; 116:680–686.

ENVI. ENVI-User’s Guide: Transform. 2011.

Gartan, C.; Guyon, X. Spatial Statistics and Modeling. Springer Secience & Business; New York:
2010.

Goovaerts, P. Geostatistics for Natural Resources Evaluation. Oxford University Press; New York:
1997.

Hart EJ, Yanosky DJ, Puett R, Ryan J, Dockery WD, Smith JT, Garshick E, Laden F. Spatial modeling
of PM10 and NO2 in the Continental United States, 1985–2000. Environmental Health
Perspectives. 2009; 117:1690–1696. [PubMed: 20049118]

Hastie, TJ. Generalized Additive Models. Chapman and Hall; New York: 1990.

Hoek G, Beelen R, Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D. A review of land-use
regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment.
2008; 42:7561–7578.

Hu SS, Fruin S, Kozawa K, Mara S, Paulson SE, Winer AM. A wide area of air pollutant impact
downwind of a freeway during pre-sunrise hours. Atmospheric Environment. 2009; 43:2541–
2549.

Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, Donkelaar A, Lamsal L,
Martin R, Jerrett M, Demers P. Creating national air pollution models for population exposure
assessment in Canada. Environmental Health Perspectives. 2011; 119:1123–1129. [PubMed:
21454147]

Iniguez C, Ballester F, Estarlich M, Llop S, Fernandez-patier R, Agirre-Alfaro A, Esplugues A,
Valencia. Estimation of personal NO2 exposure in a cohort of pregnant women. Science of the
Total Environment. 2009; 407:6093–6099. [PubMed: 19740523]

Johnston, K.; Hoef, MJ.; Krivoruchko, K.; Lucas, N. ESRI. , editor. ArcGIS 9: Using ArcGIS
Geostatistical Analyst. 2003.

Kunzli N, McConnell R, Bates D, Bastain T, Hricko A, Lurmann F, Avol E, Gilliland F, Peters J.
Breathless in Los Angeles: the exhausting search for clean air. American Journal of Public Health.
2003; 93:1494–1499. [PubMed: 12948969]

Kwon J, Weisel C, Turpin B, Zhang J, Korn L, Mordandi M, Stock T, Colome S. Source proximity
and outdoor-residential VOC concentrations: results from ROIPA study. Environmental Science &
Technology. 2006; 40:4074–4082. [PubMed: 16856719]

Liu Y, Paciorek JC, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5
concentrations using satellite data, meteorology and land use information. Environmental Health
Perspectives. 2009; 117:886–892. [PubMed: 19590678]

Lu R, Turco RP. Air pollutant transport in a coastal environment .1. 2-Dimensional Simulations of sea-
breeze and mountain effects. Journal of the Atmospheric Sciences. 1994; 51:2285–2308.

Mercer DL, Szpiro AA, Sheppard L, Lindstrom J, Adar DS, Allen WR, Avol LE, Oron PA, Larson T,
Liu L, Kaufman DJ. Comparing universal kriging and land-use regression for predicting
concentrations of gaseous oxides of nitrogen (NOx) for Multi-Ethnic Study of Attherosclerosis and
Air Pollution (MESA AIR). Atmospheric Environment. 2011; 45:4412–4420. [PubMed:
21808599]

O’Brien MR. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity.
2007; 41:673–690.

Paciorek JC. The importance of scale for spatial-counfound bias and precision of spatial regression
estimators. Statistical Science. 2010; 25:107–125. [PubMed: 21528104]

Park M, Stenstrom KM. Classifying environmentally significant urban land uses with satellite
imagery. Journal of Environmental Management. 2008; 86:181–192. [PubMed: 17291679]

Li et al. Page 12

Atmos Environ. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Su GJ, Jerrett M, Beckerman B. A distance-decay variable selection strategy for land use regression
modeling of ambient air pollution exposures. Science of the Total Environment. 2009a; 407:3890–
3898. [PubMed: 19304313]

Su GJ, Jerrett M, Beckerman B, Wilhelm M, Ghosh KJ, Ritz B. Predicting traffic-related air pollution
in Los Angeles using a distance decay regression selection strategy. Environmental Research.
2009b; 109:657–670. [PubMed: 19540476]

Szpiro AA, Sampson DP, Sheppard L, Lumley T, Adar DS, Kaufman DJ. Predicting intra-urban
variation in air pollution concentrations with complex spatio-temporal dependencies.
Environmetrics. 2010; 21:606–631.

Urban Crossroads, Inc.. PeMS Data Extraction Methodology and Execution Technical Memorandum
for the Southern California Association of Governments Southern. California Association of
Government; Irvine: 2006.

U.S. Census Bureau. A Guide to State and Local Census Geography. Association of Public Data User;
Princeton, NJ: 1993.

U.S. Census Bureau. [Retrieved February 10, 2012] List of United States urban areas. 2000. from:
http://www.census.gov/geo/www/ua/ua2k.txt

U.S. Census Bureau. 2000 Census of Population and Housing, Summary Tape File 3A. U.S. Census
Bureau; Washing, DC: 2004.

Wilhelm M, Ritz B. Residential proximity to traffic and adverse birth outcomes in Los Angeles
County, California, 1994–1996. Environmental Health Perspective. 2003; 111:207–216.

Wu J, Funk TH, Lurmann FW, Winer AM. Improving spatial accuracy of roadway networks and
geocoded addresses. Transactions in GIS. 2005:585–601.

Wu J, Wilhelm M, Chung J, Ritz B. Comparing exposure assessment methods for traffic-related air
pollution in an adverse pregnancy outcome study. Environmental Research. 2011; 111:685–692.
doi:10.1016/j.envres.2011.1003.1008. [PubMed: 21453913]

YCEO. Converting Landsat TM and ETM+ Thermal Bands to Temperature. Yale Center for Earth
Observation; 2010.

Zhu YF, W.C. H, Kim S, Shen S, C. S. Study of ultrafine particles near a major highway with heavy-
duty diesel traffic. Atmospheric Environment. 2002; 36:4323–4335.

Li et al. Page 13

Atmos Environ. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.census.gov/geo/www/ua/ua2k.txt


Fig. 1.
Box plots of precision errors for five models of NO2 (a) and NOx (b) in summer and NO2 (c)
and NOx (d) in winter (error bars indicate 95% confidence intervals; circles indicate outliers)
(MSR: GAM plus cokriging of spatial residuals; GAM_SM: GAM with spatial spline term
for coordinates; GAM_NSM: GAM without spatial spline term for coordinates; U_Kriging:
universal kriging; MLR: multiple linear LUR).
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Fig. 2.
Prediction of NO2 and NOx distribution (1 km × 1 km) in summer and winter using GAM
plus cokriging of spatial residuals.
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