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Introduction

MicroRNAs (miRNAs) belong to a recently identified group of 
the large family of noncoding RNAs.1 The mature miRNA is 
usually 19–27nt long and is derived from a larger precursor that 
folds into an imperfect stem-loop structure. The mode of action 
of the mature miRNA in mammalian systems is dependent on 
complementary base pairing primarily to the 3'-UTR region of 
the target mRNA, thereafter causing the inhibition of translation 
and/or the degradation of the mRNA.

Searching through all human genes (~25,000) and/or other 
species for novel miRNA gene targets is a complicated task 
for which fast, flexible and reliable identification methods are 
required. Currently available experimental approaches working 
toward this goal are complex and sub-optimal.2 Inefficiencies 
result from various sources, including difficulty in isolating cer-
tain miRNAs by cloning due to low expression, stability, tissue 
specificity and technical difficulties of the cloning and repression 
assay procedures, while selecting the right 3'UTR to investigate is 
often a challenging task of its own. Computational prediction of 

Computational methods for miRNA target prediction vary in the algorithm used; and while one can state opinions 
about the strengths or weaknesses of each particular algorithm, the fact of the matter is that they fall substantially 
short of capturing the full detail of physical, temporal and spatial requirements of miRNA::target-mRNA interactions. 
Here, we introduce a novel miRNA target prediction tool called Targetprofiler that utilizes a probabilistic learning 
algorithm in the form of a hidden Markov model trained on experimentally verified miRNA targets. Using a large scale 
protein downregulation data set we validate our method and compare its performance to existing tools. We find that 
Targetprofiler exhibits greater correlation between computational predictions and protein downregulation and predicts 
experimentally verified miRNA targets more accurately than three other tools. Concurrently, we use primer extension to 
identify the mature sequence of a novel miRNA gene recently identified within a cancer associated genomic region and 
use Targetprofiler to predict its potential targets. Experimental verification of the ability of this small RNA molecule to 
regulate the expression of CCND2, a gene with documented oncogenic activity, confirms its functional role as a miRNA. 
These findings highlight the competitive advantage of our tool and its efficacy in extracting biologically significant 
results.
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miRNA gene targets from 3'UTR genomic sequences is an alter-
native technique which offers a much faster, cheaper and effective 
way of identifying putative miRNA gene targets. Moreover, by 
predicting the location of a miRNA gene target, these methods 
enable experimentalists to concentrate their efforts on genomic 
regions more likely to contain novel genes that undergo miRNA 
regulation, thus facilitating the discovery process.

Due to the lack of negative data in this specific biological prob-
lem, the performance of current miRNA target prediction tools 
is largely dependent on the overall number of predicted targets. 
Some tools are very efficient in predicting true target sites (high 
sensitivity) but at the same time display an extremely large num-
ber of overall predictions (low specificity).3-6 In contrast, other 
tools display an overall high specificity and a relatively low sensi-
tivity.7-9 In order to provide an estimation of a false positive rate, 
false or mock miRNAs are often generated by randomly shuffling 
the nucleotide sequence of experimentally supported miRNAs.10  
Performing target prediction with these mock miRNAs  
can provide an estimation of the overall false positive rate of a 
miRNA target prediction tool.
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of miRNA targets can be achieved via the use of luciferase assays 
whereby the miRNA is expressed in vitro while simultaneously 
expressing and monitoring the target mRNA linked to a lucifer-
ase reporter gene.32-34 This assay provides an experimental veri-
fication of a direct interaction between the mature miRNA and 
the target gene and furthermore provides evidence that regula-
tion is mediated via the miRNA silencing pathway. However, the 
extent to which this interaction takes place in the intact system in 
vivo cannot be inferred from luciferase assays alone.

In this work, we present an efficient and freely available 
miRNA target prediction tool (Targetprofiler) where profile 
HMMs are trained to recognize certain biological features of 
miRNA::target-mRNA interactions. We validate our computa-
tional methodology using protein repression information from a 
large scale proteomic study (pSILAC)29 as well as experimentally 
verified miRNA gene targets form Tarbase (v5)35 and compared 
our results to several existing target prediction tools. We then test 
Targetprofiler’s ability to identify de novo biologically significant 
interactions by applying it on a recently identified miRNA can-
didate (hereafter denoted c-mir-Ch9)36 that is located in a cancer 
associated genomic region frequently deleted in bladder cancer.37 
Finally we predict cyclin D2 (CCND2), a gene with documented 
oncogenic activity,38 as a key target of c-mir-Ch9 and validate 
this interaction using luciferase reporter assays.

In addition to our scientific findings, this is the first, to the 
best of our knowledge, integrative approach in which the predic-
tion of a putative pre-miRNA is followed by the experimental 
verification of its mature sequence and the computational predic-
tion of a target is experimentally confirmed using reporter assays.

Results

Effect of the conservation score on Targetprofiler’s perfor-
mance. In order to optimize the set of filtering rules applied to 
Targetprofiler’s output, we investigated the effect of these rules 
on the tool’s performance. Specifically, we used Targetprofiler 
to scan all human 3'UTRs for miRNA targets corresponding 
to 5 benchmark miRNAs and 5 mock miRNAs and assess the 
tool’s performance in both cases. It is assumed that the predicted 
miRNA targets for the mock miRNA sequences provide an 
unbiased estimate of the number of miRNA targets predicted 
by chance alone. Thus, to obtain an estimate of prediction accu-
racy (see Materials and Methods) for Targetprofiler we used the 
results from the mock miRNAs as false positive targets. In par-
ticular, using the 5 benchmark miRNAs we generated 5 Mock 
miRNAs as detailed in the Materials and Methods section and 
use both sets as input to Targetprofiler. Performance was assessed 
as a function of varying the conservation score threshold for the 
predicted target site across eight other organisms (see Materials 
and Methods). As shown in Figure 1, the number of prediction 
targets as well as the prediction accuracy was significantly higher 
for true (gray bars) vs. mock (black bars) miRNAs (p = 0.00103, 
using a paired, two-tail t-test). Note that, as one would expect, 
the conservation score is inversely proportional to the number 
of predicted targets and analogous to the prediction accuracy. 
Hence, we could infer that selecting candidate predicted target 

Accurate prediction of novel miRNA gene targets requires 
the consideration of certain characteristic properties of the 
miRNA::target-mRNA interaction. These properties are based 
on either experimental,11-13 or computational evidence14-18 and 
can be used to build a classification scheme or predictive model. 
For example, the foremost nucleotides at the 5'region of a mature 
miRNA sequence are considered crucial for recognizing and 
binding to the target mRNA. Research by Kiriakidou et al.19 
have shown that almost consecutive complementarity of the first 
9 miRNA nucleotides to the 3'UTR of protein coding genes is a 
prerequisite for translational repression. Moreover, Lewis et al.7 
showed that complementary motifs to nucleotides 2–7 of miRNA 
(commonly referrer to as the miRNA seed region) remain pref-
erentially conserved in several species in a statistically significant 
manner.20,21

In general, it is believed that binding of at least seven con-
secutive Watson-Crick (WC) base pairing nucleotides between 
the foremost 5'region of the miRNA and the mRNA target is 
required for sufficient repression of protein production.7,19

Based on the above mentioned evidence, miRNA target pre-
diction programs rely heavily on sequence complementarity of the 
miRNA seed region (nucleotides 2–7) to the 3'UTR sequences of 
candidate target genes for identifying putative miRNA binding 
sites.8,22 Furthermore, most prediction tools make use of thermo-
dynamics and evolutionary conservation at the binding site in 
order to minimize false positives (increase specificity).8,22,23 Some 
tools utilize additional features such as binding site structural 
accessibility,4,24,25 nucleotide composition flanking the binding 
sites26,27 or proximity of one binding site to another within the 
same 3' UTR.26,28

In summary, the general features employed for miRNA target 
prediction are: (1) sequence complementarily at the 5'region of 
the mature miRNA, better known as the seed region and com-
monly characterized by nucleotides 2–7, (2) secondary structure 
of the miRNA::target-mRNA hybrid molecule and the overall 
thermodynamics of the interaction expressed in free energy (ΔG) 
and (3) species conservation observed via the use of full genome 
sequence alignments.

In addition to computational tools, large scale, high through-
put transcriptomic and proteomic methods such as microarrays 
and pSILAC have recently been used, often in conjunction with 
computational tools, for the identification of novel miRNA gene 
targets.29,30 These methods are particularly useful as they can 
provide accurate protein repression data or gene expression data 
that may be correlated or anti-correlated with miRNA expres-
sion. Moreover, if such data are coupled to computational tools, 
it can facilitate rapid and precise detection of novel miRNA gene 
targets, while at the same time giving greater credence to compu-
tational predictions.

Next Generation Sequencing (NGS) data have also been used 
for the prediction of miRNA genes and their mature sequences,31 
however not all small RNA sequences detected by NGS methods 
are miRNAs, unless some miRNA regulatory function can be 
attributed to them. Moreover, multiple small RNA sequences are 
often missed due to technical difficulties of the sequencing meth-
odology such as library construction. Experimental verification 
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for all tools, in accordance to previous data,10 however it should 
be noted that these statistics are irrespective of the use of conser-
vation as a filtering criterion, which is frequently utilized to boost 
performance of target prediction classifiers (see below).

Next, we used the pSILAC data to obtain an indication as 
to how many of our predicted miRNA targets also show down-
regulation of the targeted protein when taking into account dif-
ferent conservation thresholds. As shown in Figure 3 there are 
significantly higher numbers of repressed predicted targets with 
increasing conservation when compared with non-repressed 
predicted targets. In Figure 3A there is a clear difference in the 

sites with higher conservation scores increases the probability of 
selecting a true/positive miRNA target site. This can prove to be 
very useful when selecting predicted target sites for experimental 
verification.

Validation of Targetprofiler using a pSILAC protein repres-
sion data set. Until recently, a common difficulty in assessing 
the performance of miRNA target prediction algorithms was the 
lack of available experimental data that could easily distinguish 
between true and false targets. However, the recent study of 
Selbach et al.29 provides both classes of targets (true and false) for 
five benchmark miRNAs, thus allowing the estimation of both 
the true positive rate as well as the false positive rate of a predic-
tion algorithm. In the study by Selbach et al.,29 it was observed 
that there is a correlation between the log2-fold change of protein 
production with the number of occurrences of the hexamer corre-
sponding to the seed of a miRNA in the 3'UTR. Fold changes are 
calculated for approximately 5,000 proteins after overexpression 
of the 5 benchmark miRNAs. Using a log2 fold change cut-off 
of -0.1 to distinguish between targeted (< -0,1) and non-targeted 
genes (≥ -0.1), the performance of Targetprofiler as well as three 
other target prediction tools for different scoring thresholds is 
assessed and results are presented as a ROC curve (Fig. 2). This 
analysis shows that Targetprofiler achieves a high true positive 
rate for values of false positive rates < 0.4, when compared with 
other tools. This is important as Targetprofiler shows a good bal-
ance between sensitivity (true positive rate) and specificity (true 
negative rate). All tools appear to converge at a false positive rate 
of ~0.4 after which Pictar and Targetprofiler achieve the high-
est true positive rates. A closer look at the area under the ROC 
curves (AUC) for all four tools reveals that Targetprofiler (AUC 
= 0.5724) performs better than random with p-value 0.021223 
using non-directional (two-tailed) test. Similar analyses for the 
rest of the tools compute the following values: DianaMicroT—
AUC: 0.5297, p-value: 0.293396, TargetScan—AUC: 0.5532, 
p-value: 0.054999 and PicTar—AUC: 0.5955, p-value: 0.009049. 
The overall rate of false vs. true positives remains relatively low 

Figure 1. Predicted miRNA targets for all human 3'UTRs when using 5 benchmark miRNAs and 5 Mock miRNAs across different conservation scores 
for the predicted binding sites. (B) Bar chart shows that the number of predictions is significantly higher for the 5 benchmark miRNAs (grey bars) in 
comparison to the 5 mock miRNAs (black bars). (B) The prediction accuracy (gray line) is shown to increase as the conservation score increases.

Figure 2. ROC curves using proteomics data from pSILAC. All target 
sites predicted by Targetprofiler, DianaMicroT, TargetScan and PicTar 
(conserved and non-conserved) displaying a log2 fold change cut-off 
of < -0.1 according to the pSILAC mass spectrometry data were used as 
true positives. The predictions were sorted by classification scores for 
each individual tool and the sensitivity and specificity were calculated 
as described in Materials and Methods in order to calculate the true 
positive (sensitivity) and false positive rate (1-specficity) for different 
prediction thresholds of all the tools analyzed.
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obtained from Targetprofiler using the abovementioned 5 bench-
mark miRNAs with the optimum results from other prediction 
tools. As shown in Table 1, Targetprofiler outperforms all listed 
tools when tested on the pSILAC data set, although the differ-
ence from Diana-MicroT3.0 may not be statistically significant. 
It should be noted that by applying more stringent threshold cri-
teria the number of predictions mapped to pSILAC decreases. It 
is important to obtain a high performance without utterly dimin-
ishing the total number of predictions.

Use of experimentally verified miRNA targets from Tarbase and 
common targets analysis. Finally, we used a data set of experimen-
tally supported miRNA targets from Tarbase 535 to assess the 
performance of our prediction algorithm in comparison to three 
other state-of-the art prediction tools, namely DIANA-microT 

distribution of repressed targets with respect to non-repressed 
targets with increasing conservation (p = 0.07, using a paired, 
two-tail t-test). Moreover prediction accuracy increases with 
increasing conservation scores. The overall prediction accuracy is 
further improved when all filtering criteria are utilized (Fig. 3B). 
The difference between histograms of repressed vs. non-repressed 
targets is even more evident (p = 6.75161E-05, using a paired, 
two-tail t-test). An optimum performance, namely a prediction 
accuracy of 66.9%, is achieved when the data are filtered, for a 
conservation score of 6 and an HMM score of 3.

Comparison to existing Target Prediction Tools. Use of 5 
benchmark miRNAs and data form pSILAC. In order to assess 
Targetprofiler’s performance in comparison to existing state-
of-the-art methods, we next compared the optimum results 

Figure 3. Bar chart of prediction results using the 5 benchmark miRNAs and data form pSILAC. Black bars represent predictions by Targetprofiler found 
in the Refseq database and shown to be repressed by a log2 fold change cut-off of -0.1. Gray bars are those predictions which exceed the fold change 
cut-off and hence are considered as non-repressed. Prediction accuracy (gray line) is shown across various conservation scores. (A) Represents data 
prior to filtering, (B) represents data after filtering. The optimum results (prediction accuracy 66.9%) is obtained when the data are filtered, for a con-
servation score of 6 and an HMM score of 3.

Table 1. Comparison of optimum results from target prediction tools using pSILAC proteomic data

Prediction  
algorithm

Number of predicted  
targets mapped to Refseq

Number of targets 
measured by pSILAC

Number of downregulated targets 
(log2FC <-0.1)

Fraction of downregulated  
targets (log2FC <-0.1)

Reference

TargetScanS 2842 622 381 61.25% 7

PicTar 3289 629 386 61.37% 8

rna22 on 3'UTRs 4112 723 255 35.27% 3

rna22 on 5'UTRs 607 79 20 25.32% 3

PITA top 600 3000 325 139 42.77% 4

PITA top 1000 5000 572 226 39.51% 4

miRbase 3347 658 288 43.77% 5

miRanda 8605 1533 715 46.64% 6

Diana-MicroT 3.0 1678 294 194 65.99% 9

Targetprofiler 1879 290 194 66.90%

Comparing Targetprofiler results with those obtained from different target prediction tools, partly adopted from reference 29. The table shows the 
number of predicted targets by each tool mapped to Refseq and also the number of predicted targets measured by pSILAC. The overall fraction of 
downregulated (log ratio <-0.1) or repressed is an indication of the prediction accuracy of each tool. Targetprofiler shows significant improvement in 
comparison to all of the above tools. The gray row shows the Targetprofiler output when using a relatively stringent threshold (HMM score: 3 and conser-
vation threshold 6).
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probe complementary to the mature sequence (for details see Fig. 
S6).

Computational prediction of c-miR-Ch9 targets. Following 
the experimental verification of the mature miRNA sequence 
of c-miR-ch9, we used Targetprofiler to scan all human 3'UTRs 
for potential targets of c-miR-ch9. The scanning procedure was 
performed as described for the 5 benchmark miRNAs in the 
Materials and Methods section. A total of 33 predicted targets 
for c-miR-ch9 achieved an HMM score of 6.2 (maximum score 
assigned by Targetprofiler = 6.7) or higher (Table S2) and 17 
of these where 8mers (as per Guo et al.39). One of these high 
scoring targets (HMM score: 6.2) was found to be located on a 
3'UTR transcribed from chromosome 12. The miRNA::target-
mRNA was an 8mer and displayed a low free energy (-23.70ΔG). 
Moreover, the seed was fully conserved in seven other organisms, 
excluding chimp. On selecting a miRNA target site for experi-
mental verification it can be informative to obtain an intersection 
of predictions from other available target prediction tools. This 
target site was further confirmed by four other tools (TargetScan, 
StarMir,24 PITA, DianaMicroT) which were used to perform 
target prediction using our novel miRNA sequence. The gene 
corresponding to this 3'UTR was CCND2, a gene with docu-
mented oncogenic activity38 that is known to play a role in the 
G1/S transition of the cell cycle.

Experimental verification of the c-miR-Ch9::CCND2 inter-
action. Since c-miR-Ch9 was found in a genomic region that is 
frequently deleted in various cancer types and CCND2 has a doc-
umented oncogenic activity,38 the predicted interaction appears, 
at least in principle, quite plausible. Thus, we next performed 
experiments using reporter constructs carrying a Firefly luciferase 
reporter to test whether the predicted interaction is functional. 
Given that many of the mammalian targets often contain bind-
ing sites (b.s.) for multiple miRNAs [23], we used constructs 

3.0, Pic-Tar and TargetScan 4.2. As evident by the results in 
Figure 4, all four tools have rather subtle differences in preci-
sion levels for experimentally supported targets. However, the 
precision accuracy (for the same number of predicted targets per 
miRNA) of Targetprofiler and TargetScan appear to be similar (p = 
0.67, using a paired, two-tail t-test) and consistently higher when 
compared with other tools (Targetprofiler vs. DianaMicroT—p 
= 0.094, using a paired, two-tail. t-test and Targetprofiler vs. 
PicTar—p = 0.027, using a paired, two-tail t-test).

As an indication of confidence for any given prediction, it 
is also important to assess the number of commonly predicted 
targets. There are considerable variations between the common 
miRNA targets predicted by Targetprofiler and each of the other 
programs (Table S1). Only 25.58% of the miRNA targets pre-
dicted by Targetprofiler are also predicted by PicTar, while 44.45% 
and 49.17% of the gene targets predicted by Targetprofiler are also 
predicted by TargetScan 4.2 and Diana-MicroT 3.0, respectively. 
In all cases, this leaves a high number of targets (~50%) that are 
unique to Targetprofiler. It is also interesting to note that of the 
pairwise comparisons studied, Targetprofiler displays the most 
common miRNA gene targets (49.17%) to Diana-MicroT rela-
tive to the other two prediction tools. Moreover, Diana-MicroT 
and TargetScan had the highest agreement level (66.32%) than 
any other tool pair.

In conclusion, our comparison analysis showed that: (1) 
Conservation threshold has a significant impact on the prediction 
accuracy of Targetprofiler. (2) The filtering parameters applied 
successfully boost Targetprofiler performance. (3) Targetprofiler 
achieved higher prediction accuracy when compared with other 
publically available tools using both pSILAC as well as experi-
mentally verified miRNAs as benchmark data sets.

Experimental identification of the mature miRNA sequence 
for a novel miRNA candidate. Following the development and 
validation of Targetprofiler, our next goal was to test its ability to 
identify the targets of a novel miRNA gene (c-miR-ch9) recently 
identified and reported in previous work.36 To achieve this goal, 
we first needed to extract the mature (functional) miRNA 
sequence from the potential pre-miRNA of c-miR-ch9 and 
show that this small RNA molecule is expressed. Unfortunately, 
according to recently produced deep sequencing data from HeLa 
cells,31 no small RNA sequence is expressed from the genomic 
location where the pre-miRNA was detected. As a result, no 
prior experimental evidence was found regarding the location 
and/or sequence of the mature miRNA. To address this prob-
lem, we used an adjustment of the primer extension methodol-
ogy for identifying the most probable miRNA mature sequence 
from a putative precursor. Specifically, instead of using one 
primer complement to the mature sequence, which in our case 
was unknown, we designed three different overlapping primers 
that are complementary to the positive strand of the precursor 
sequence, namely the strand producing a small RNA. According 
to the results from primer extension methodology we predicted 
that the mature sequence for the potential miRNA (c-miR-ch9) 
is 5' CUG GCA GGG GGA GAG GUA. In order to verify our 
prediction we performed a northern blot analysis using an LNA 

Figure 4. Number of experimentally supported targets found by Tar-
getprofiler across 3 different HMM thresholds using the experimentally 
supported data set described in Materials and Methods. A comparison 
is made with 3 other tools (DIANA-microT 3.0, Pic-Tar and TargetScan 
4.2) at the same level of predicted targets per miRNA.
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c-miR-Ch9 was previously found to be expressed in HeLa cells 
at relatively high levels,36 there was no need for miRNA precur-
sor overexpression. Firefly luciferase activity was measured and 
normalized against Renilla luciferase activity.

The HeLa transfections were repeated 3 times using triplicate 
samples and the average relative expression is presented in Figure 
5. The reporter construct carrying the wild-type CCND2 poten-
tial triplet binding sites (pGL4-10 + wt-Triplet) and the CCND2 
wild-type-3'UTR (pGL4-10 + wt-3'UTR) appeared to be effi-
ciently downregulated: the luciferase activity dropped to 49% 
(2.0 fold reduction-t-test: 1E-07) and 20% (5.0 fold reduction  
t-test: 2.22E-12), respectively, compared with 100% in the stan-
dardization control (pGL4-10—empty vector). We also assayed 
the mutated constructs pGL4-10 + mut-Triplet and pGL4-10 + 
mut-3'UTR, bearing CCND2 binding sites harbouring muta-
tions in the “seed” element (at position 3, 4, 6 and 7—see Fig. 
S5A). The transfection experiments confirmed that the down-
regulation previously observed was a result of the specific binding 
sites present in the wt-constructs. Luciferase expression was sig-
nificantly increased both for the triplet mutated cassette (pGL4-
10 + mut-Triplet) as well as the mutated-3'UTR (pGL4-10 + 

carrying binding sites that were repeated three times (pGL4-10 + 
wt-Triplet) but also ~1,000 bp of the 3'UTR of CCND2 contain-
ing a single copy of the b.s. (pGL4-10 + wt-3'UTR). Moreover, 
constructs having mutations in the 5' seed site that disrupt the 
native pairing within the binding region of the triplet-cassette, as 
well as within the 3'UTR (designated as pGL4-10 + mut-Triplet 
and pGL4-10 + mut-3'UTR respectively) were also transfected, in 
order to provide a negative control. Furthermore, we performed 
transfection of empty vectors (pGL4-10) as a standardization 
control. All types of cassettes (constructs) prepared were placed 
into the pGL4-10 vector, downstream of the luc gene at XbaI 
site. HeLa cells were subsequently transfected with these reporter 
vectors carrying potential binding sites for c-miR-Ch9. For every 
transfection assay, all constructs were tested in parallel: an empty 
luciferase vector (pGL4-10—Control), a wild-type triplet cas-
sette containing potential binding sites for c-miR-Ch9 (pGL4-10 
+ wt-Triplet), a wild-type 3'UTR containing a single copy of the 
potential b.s. for c-miR-Ch9 (pGL4-10 + wt-3'UTR), a mutated 
triplet cassette containing binding sites with four point muta-
tions (pGL4-10 + mut Triplet) and a mutated 3'UTR contain-
ing the same point mutations (pGL4-10 + mut-3'UTR). Since 

Figure 5. miRNA-sensor assay using luciferase expression as an indicator of miRNA activity after transfection of HeLa cells with various constructs. (A) 
Relative luciferase expression after transfection of HeLa cells with triplet-cassette constructs: pGL4-10—an empty pGL4-10 vector for standardization 
control, pGL4-10 + wt-Triplet—vector containing a wild-type triplet cassette containing potential binding sites for c-miR-Ch9, pGL4-10 + mut-Triplet—
a vector containing a triplet cassette with mutated binding sites for c-miR-Ch9. (B) Relative luciferase expression after transfection of HeLa cells with 
3'UTR constructs. pGL4-10—an empty pGL4-10 vector for standardization control, pGL4-10 + wt-3'UTR—vector containing a wild-type 3'UTR contain-
ing a single potential binding site for c-miR-Ch9, pGL4-10 + mut-3'UTR—a vector containing a single mutated potential binding site for c-miR-Ch9. (C) 
The pGL4-10 + wt-Triplet cassette transfection was repeated with concurrent addition of anti-LNA for our c-miR-Ch9. (D) An average over all transfec-
tion experiments performed (total of 5 experiments with 3 triplicates for every condition).



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

1202	 RNA Biology	 Volume 9 Issue 9

predicts a total of 290 target genes mapped to Refseq and evalu-
ated in the pSILAC experiment, of these 194 (66.90%) show 
downregulation at the protein level. The downregulation may 
be attributed to a direct effect, namely the interaction between 
the mature miRNA and the 3'UTR region of the predicted gene 
targets, or an indirect effect, for example by the downregulation 
of transcription factors implicated upstream of the predicted tar-
gets. Furthermore, a pairwise ROC curve comparison between 
Targetprofiler and three other tools (Fig. 2) reveals that the 
Targetprofiler shows a higher true positive rate at lower levels of 
false positive rate (high sensitivity and high specificity). When 
using experimentally verified miRNA targets from Tarbase, the 
comparison with DIANA-microT 3.0, Pic-Tar and TargetScan 
4.2 reveals that Targetprofiler achieves a significant improvement 
in precision accuracy (Fig. 3). Moreover, we asses the number 
of common predictions or overlap between the top 4 tools. This 
comparison is also important because it proves that each tool is 
unique in its predictions, thus providing a valuable source of com-
putational miRNA target predictions. Overall, our validation 
experiments show that Targetprofiler is a very efficient tool that 
competes with other state-of-the-art tools such as TargetScanS, 
PicTar and Diana-MicroT 3.0.

Targetprofiler is a publicly available tool which includes pre-
compiled predictions for all human miRNAs and gene targets. 
Furthermore, it provides an optimized prediction algorithm for 
ad hoc predictions that makes use of several biologically mean-
ingful features of miRNA::target-mRNA interactions, combined 
with a user friendly interface which allows for user flexibility in 
filter adjustment and assists in the identification of interactions of 
interest. The tool, which can be accessed at http://mirna.imbb.
forth.gr/Targetprofiler.html, allows for user intervention at vari-
ous steps of the prediction pipeline and can take into account 
both conserved and not conserved miRNA targets in accordance 
to user preferences. Moreover, Targetprofiler provides links to 
online expression databases for miRNAs and target genes as 
well as information regarding multiplicity and co-operativity of 
miRNA binding.

Having shown the capacity of Targetprofiler to predict 
miRNA targets with high accuracy, competing with other state-
of-the-art prediction tools, we take our research one step fur-
ther and perform experimental verification on computational 
predictions of biological significance. In previous work36 we 
showed the prediction and verification (via northern blot analy-
sis) of 4 novel potential miRNA gene candidates. As a follow-
up to this work, we utilize our prediction algorithm to identify 
potential targets for one of these miRNAs. The candidate under 
investigation (denoted c-miR-Ch9) is located in a cancer asso-
ciated genomic region commonly deleted in various forms of 
bladder cancer.37 Importantly, supporting evidence from recent 
deep sequencing studies do not report an expression for c-miR-
Ch9 among the identified microRNA expression signatures of 
bladder cancer.40 Computational identification of a highly sig-
nificant and evolutionary conserved target binding site for this 
potential miRNA in the CCND2 oncogene using Targetprofiler 
was the initial incentive for performing reporter gene assays. 
CCND2 is a well known cyclin which functions in the cell 

mut-3'UTR). This shows that miRNA-targeted regulation was 
suppressed due to truncated binding of the miRNA to the targets 
site(s). Specifically, in the case of pGL4-10 + mut-Triplet there 
was a ~2 fold increase (t-test: 2.09E-06) in luciferase activity 
with respect to wt constructs (Fig. 5A). Similarly for pGL4-10 
+ mut-3'UTR a 2.4 fold increase (t-test: 7.2E-06) was observed 
with respect to wt conditions (Fig. 5B). It should be noted that, 
as expected, t-test analysis of pGL4-10 + mut-triplet expression 
vs. pGL4-10 expression showed that there was no significant dif-
ference between the expression of these two constructs (t-test: 
0.663864). In the 3'UTR transfection assays, contrary to the 
triplet cassette assays, the levels of the pGL4-10 + mut-3'UTR 
expression did not achieve similar expression levels as in the 
pGL4-10 (empty) vector. One possible explanation for this is that 
by cloning a large portion of the CCND2 3'UTR we may have 
included other potential miRNA targets sites hence rendering 
this construct subject to additional regulation by other miRNAs.

Three additional transfection experiments performed using 
the pGL4-10 + wt-Triplet constructs together with the anti-
c-miR-Ch9 LNA inhibitor (25 nM) in order to block the pre-
dicted interaction of c-miR-Ch9 with our reporter constructs, 
further confirmed the true nature of this regulation. The co-
transfection of anti-c-miR-Ch9 LNA resulted in 1.5-fold increase 
(t-test: 0.004) in luciferase activity in the pGL4-10 + wt-Trip-
let-plus-LNA transfected constructs with respect to the pGL4-
10 + wt-Triplet (Fig. 5C). Co-transfection of anti-c-miR-Ch9 
and pGL4-10 + wt-3'UTR was also performed and similar fold 
increase (1.5) in luciferase activity was observed in the pGL4-
10 + wt-3'UTR-plus-LNA transfected constructs with respect 
to the pGL4-10 + wt-3'UTR (Fig. S7). An average for all the 
transfection experiments performed (total of 5 experiments with 
3 triplicates for every condition) is shown in (Fig. 5D). Although 
standard error bars show greater deviation from the mean in this 
summary of results, t-test analysis reveals that results remain sta-
tistically significant (pGL4-10 vs. pGL4-10 + wt-Triplet—t-test: 
5.68E-10, pGL4-10 + wt-Triplet vs. pGL4-10 + mut-Triplet—t-
test: 1.68E-05, pGL4-10 + wt-Triplet vs. pGL4-10 + wt-Triplet-
plus-LNA—t-test: 0.005805). As previously reported pGL4-10 
vs. pGL4-10 + mut-triplet expression is not statistically signifi-
cant (t-test: 0.221165). While confirmatory of the role of c-miR-
Ch9 in targeting and regulating CCND2 targets sites, the lower 
luciferase expression observed for pGL4-10 + wt-Triplet-plus-
LNA with respect to pGL4-10 or pGL4-10 + mut-triplet also sug-
gests the possible regulation of CCND2 by additional miRNAs 
in the same target site, which is in agreement with computational 
predictions (see Discussion).

Discussion

This work describes the development of a highly efficient and 
freely available miRNA target prediction tool (Targetprofiler) 
which makes use of a HMM algorithm trained on experimen-
tally supported miRNA gene targets. The tool is compared with 
existing state-of-the-art methodologies uisng two distinct data 
sets and achieves a very high performance. Specifically, when 
using the pSILAC mass spectrometry data from,29 Targetprofiler 
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functional, as in evolutionary terms multiple target sites would 
not exist in the same 3'UTR unless they were of some functional 
purpose. Similarly if a given target site is a hotspot for multiple 
miRNAs then this also increases chances that one of these is in 
fact regulatory for similar reasoning as described above.

Finally, the results reported here are important for two rea-
sons: first, they confirm that our initial small RNA molecule 
shown my northern blot in36 is infact a true miRNA gene and 
second, that this miRNA targets and regulates CCND2. Due 
to its role in proliferation, it is possible that the recently discov-
ered miRNA may function as a tumor suppressor.43 Bladder can-
cer patients which exhibit deletion of the region retaining this 
miRNA may show increased proliferation by their inability to 
regulate CCND2, causing it to act like an oncogene and leading 
to failure of cells to arrest in G1/S and hence uncontrollable pro-
liferation. In vivo proliferation assays using bladder cancer cell 
lines and xenograph implantation using mice models are needed 
in order to explore these hypotheses.

In conclusion, our study uses an integrative approach in 
which the prediction of a putative pre-miRNA is followed by the 
experimental verification of its mature sequence and the compu-
tational prediction of a target for this miRNA is experimentally 
confirmed using reporter assays. Our verified miRNA (c-mir-
Ch9) was approved by the miRBase curation team and assigned 
the official miRNA name — hsa-mir-7150. By capitalizing on 
the advantages of combining computational with experimental 
approaches, this work provides novel, validated computational 
tools along with important experimental findings that are likely 
to open new avenues for miRNA-related cancer research.

Materials and Methods

miRNA sequences. Five benchmark mirs (let7b, mir155, 
mir1, mir16 and mir30a) were used for scanning 3'UTRs. 
Experimentally supported miRNAs and targets from the online 
database Tarbase version 535 were also used for validation. Only 
human data were used to train our algoirthm, which, com-
prised of 100 experimentally verified miRNA target sites and 47 
miRNAs.

Human 3'UTRs. The 3UTR genomic sequences were 
obtained from the UCSC genome browser.44 Alternate tran-
scripts were treated in such a way that overlapping transcripts 
were eliminated and the longest transcript was used to represent 
each alternate transcript group.

Mock miRNAs. Mock or artificial miRNAs were generated 
in order to obtain an indication as to the false positive rate of our 
prediction methodology. These mock miRNAs were produced as 
described in reference 10. Briefly, mock miRNA sequences were 
designed to have approximately the same number of predicted 
target site sequences as the corresponding real miRNA and were 
generated by initially scanning all 3'UTR sequences for sites of 
perfect complementarity to each possible 6 nucleotide (hexamer) 
long motif (excluding motifs corresponding to positions 1–6, 
2–7 and 3–8 of the real miRNAs). The 5 hexamer motifs having 
the closest number of complementary sites to those of the seed of 
the real miRNA were selected. These hexamer motifs were then 

cycle and specifically in the G1/S transition. Moreover recent 
reporter assays have shown that CCND2 is targeted by let-7a 
and that this interaction inhibits proliferation in human pros-
tate cancer cells both in vitro and in vivo.41 Furthermore, bio-
informatics analysis suggested that CCND2 is a putative target 
for miR-154. Subsequent experiments confirmed that miR-154 
directly targets CCND2 in hepatocellular carcinoma (HCC), 
reduces tumorigenicity and inhibits the G1/S transition in can-
cer cells.38

In line with these findings, our luciferase reporter assay results 
show that CCND2 is also targeted by c-miR-Ch9 as depicted 
by the decreased activity of the reporter gene in wild-type bind-
ing site conditions and the increased activity in mutated binding 
site conditions. Moreover, addition of anti-c-miR-Ch9 LNA to 
pGL4-10 + wt-Triplet conditions reduced regulation as shown 
by the observed increase in the reporter gene activity. However, 
luciferase activity in this case did not achieve the ~2-fold increase 
observed in the empty pGL4-10 vector or even the pGL4-10 
+ mut-Triplet constructs. One possible explanation for this is 
that other miRNA(s) compete for this target site. In fact, the 
target site under investigation is also a potential target site for 
3 other known miRNAs (miR-182, miR-96 and miR-1271) as 
predicted by Targetprofiler as well as other target prediction tools 
(TargetScan, Diana-microT). However, using publicly available 
full genome tiling array42 and next generation sequencing data31 
we observed that only miR-182 shows significant expression in 
HeLa cells. Competition between two miRNAs for the same tar-
get site can explain our observed deviations in luciferase activity 
during LNA silencing of c-miR-Ch9.

At this stage we believe that a comprehensive ranking frame-
work may be valuable for the expert experimental biologist who 
has a specific interest in miRNA gene target prediction and veri-
fication. We provide an intuitive way of ranking miRNA gene 
targets according to the features provided by Targetprofiler as 
well as other target prediction tools. Initially, it is necessary to 
view the score assigned to the prediction (in our case the trained 
HMM score). This will provide an initial indication as to the 
likelihood of the prediction. Next the free energy (ΔG) of the 
interaction may provide additional support for the stability of the 
hybrid molecule and further strengthen predictions (the lower 
the ΔG the more stable the interaction). Even manual inspec-
tion of the secondary structure, as provided by Targetprofiler may 
prove to be an asset to the experienced miRNA specialists. As 
previously documented, conservation is a crucial filtering step in 
the miRNA target and gene prediction pipelines. The more evo-
lutionary conserved a stretch of DNA the higher the chances that 
it generates functional, transcribed, RNA sequences. Therefore, 
conservation is yet another parameter which should be taken 
in consideration when selecting a potential miRNA target for 
experimental verification. In this perspective, the cumulative 
score provided by Targetprofiler, which is a combination of the 
HMM score and the conservation score, may prove to be helpful. 
Another additional feature which is provided by Targetprofiler 
is the number of target sites predicted on the same 3'UTR by 
the same miRNA. If a miRNA targets a 3'UTR more than once 
this increases the chances that the given interactions are in fact 



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

1204	 RNA Biology	 Volume 9 Issue 9

RNA-binding proteins binding to the mRNA) as well as the 
overall network of regulation. As detailed for example in refer-
ence 47. miRNAs and corresponding targets can exhibit high 
correlation or high anti-correlation in expression levels, corre-
sponding to the different functional roles attributed to miRNA 
repression. A high miRNA-target correlation in expression lev-
els can be a consequence of the presence of the miRNA in a 
feed forward loop, where the miRNA repression opposes the 
activities of a transcription factor.

Training HMM to recognize features of MiRNA::target-mRNA 
interactions. Profile Hidden Markov Models48 algorithms were 
utilized as previously described.36 We used available structure 
prediction algorithms, namely RNAcofold,45 to capture the sec-
ondary structure of 100 experimentally supported miRNA::target-
mRNA interactions from Tarbase version 5.49 This information 
was used to train the HMM and training was validated using a 
5-fold cross validation procedure. An outline of the methodology 
adopted during training as well as the profile HMM utilized is 
detailed in Figures S2 and S3 respectively. Specifically, the out-
put of RNAcofold is converted into a string representation of Ls 
(loops) and Ms (matches). A multiple sequence alignment (msa) 
of the LM string representation is then constructed whereby all 
miRNA::target-mRNA gene interactions are aligned according 
to their 5' region. The aligned structural sequences are used as 
input to train the profile HMM.

HMM score and validation of predictions using Tarbase 5 
miRNAs. To further validate our prediction methodology we 
utilize the 100 miRNA targets corresponding to 47 miRNAs 
from Tarbase version 5. This experimentally supported target set 
allows for an optimum HMM score to be determined which best 
classifies the true miRNA targets from Tarbase. Using this data 
set we infer an optimum HMM score threshold of 3. A second 
validation of predictions is achieved via estimating the classifi-
cation accuracy on Tarbase miRNA targets, thus allowing the 
comparison with other tools.

Scanning all human 3'UTRs using 5 benchmark miRNAs 
from pSILAC. We scanned all human 3'UTR using our trained 
HMM for miRNA gene targets for 5 benchmark miRNAs (let7b, 
mir155, mir1, mir16 and mir30a) previously used in a large scale 
miRNA target verification assay.29 For details see Figure S4. In 
the abovementioned study, the 5 miRNAs were overexpressed in 
HeLa cells and the intensity of over 7,000 proteins was measured 
using mass spectrometry. Measurements were compared with 
control mock-transfected HeLa cells in order to obtain an indica-
tion as to how many of the proteins are downregulated (directly 
or indirectly) by the 5 miRNA genes. We used this data (referred 
to as pSILAC) in order to obtain an indication as to how many 
of our computationally predicted targets, mapped to Refseq 
and measured by pSILAC, show less than -0.1-fold change in 
intensity.

Statistical measures. The method’s performance was assessed 
using sensitivity, specificity and prediction accuracy.

Sensitivity is a measure of how many samples are classified as 
positive and are really positive (true positives, tp) vs. the number 
of samples that are positive but classified as negatives (false nega-
tives, fn). While specificity is a measure of the samples that are 

used as the seed for the mock miRNAs. The remaining sequence 
of the mock miRNAs was consequently produced by randomly 
shuffling the remaining nucleotides of the real miRNA. The rus-
tling mock miRNA were then used in a similar manner to the 
true miRNAs in order to predict gene targets.

Multiple alignment files (MAFs). The multiple genome 
alignment files have been downloaded from the UCSC Genome 
Browser.44 The file used for human data (hg17) is the alignment 
to 8 vertebrate genomes (Human, Chimp, Mouse, Rat, Dog, 
Cow, Zebrafish and Fugu).

Filtering. Predicted targets are filtered according to a decision 
rule that is based on a combination of the HMM score, the free 
energy (as predicted by RNAcofold45) and the conservation of 
the predicted target site across 8 other organisms. Conservation 
information was derived form the multiz full genome alignment 
files provided by UCSC (http://genome.ucsc.edu/). Filtering was 
assessed for different conservation thresholds, while the score 
and energy thresholds for these parameters were extracted from 
experimentally supported miRNA targets (Tarbase version 5). 
All three filtering parameters were implemented in such a way 
that they filter data synergistically rather than consecutively (for 
details see Fig. S1).

A second set of filtering parameters supported by Targetprofiler 
is associated location of the target site in the 3'UTR. Specifically, 
the tool filters out all target sites that are located within the nucle-
otides present in the first 0.3% from the 5' end or the last 0.2% 
from the 3'end of the 3'UTR sequences.

In addition to filtering rules, Targetprofiler provides support-
ive information regarding the multiplicity and cooperativity of 
binding and expression information for the miRNA and target 
gene. A single miRNA can target more than one gene (multi-
plicity), and a single gene can be controlled by more than one 
miRNA (cooperativity). It is important to note that a given 
target prediction site may be a hotspot for multiple miRNAs 
and that the presence of such a hotspot adds further support 
to putative predictions. Expression information for miRNAs 
and predicted target genes is available through Targetprofiler 
by providing access to the Affymetrix transcriptome for long 
and short RNA fragments available at the UCSC genome 
browser.46 This expression information is not used as a filter-
ing criterion per se, but the user is provided with a link to the 
UCSC genome browser which points to the genomic location of 
all miRNAs and target genes displayed in the results interface 
of Targetprofiler. This allows for manual inspection of tissue 
specific expression information for a miRNA or gene target of 
interest from one of the largest expression databases available 
to date. As shown recently in reference 39. miRNAs in mam-
mals act predominantly to decrease target mRNA stability so in 
this respect we would except to observe anti-correlation in the 
expression levels of miRNA and mRNA targets. However, care 
must be taken if the user intends to use expression information 
to pursue experimental verification of putative targets as the 
main effect of miRNA regulation is thought to be inhibition 
of translation. The extent to which a mRNA is also destabi-
lized and degraded, upon miRNA binding, heavily depends on 
the single mRNA and the cellular context (other miRNAs and 



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com	 RNA Biology	 1205

[2 x SSC, 0.3% SDS] twice for 30 min. An extra washing step 
was performed for LNA probes using 1 × SSC, 0.3% SDS, for 
15 min, at 60°C. For DNA probes, membranes were stripped 
by washing in a high stringency buffer (0.1 × SSC and 0.5% 
SDS) for 30 min at 80°C and reprobed with the negative polarity 
oligonucleotides.

DNA probes:
Positive: TAC CTC TCC CCC TGC CAG
Negative: ACC AGG GGA CAC CGT GTG
LNA probe:
Positive: TAC CTC TCC CCC TGC CAG
Vectors and DNA constructs. To generate reporter vectors 

bearing miRNA-binding sites, we used two mammalian vectors 
phRL-TK (Promega, Madison, US) and pGL4-10 carrying the 
Renilla luciferase gene (hRluc) and firefly luciferase gene (luc), 
respectively. Specific oligonucleotides having XbaI ends and 
containing binding sites (b.s.) in triple repeats for the predicted 
c-miR-Ch9::CCND2 interaction, were generated (Metabion). 
The phRL-TK vector was used for normalization. The oligos 
were cloned into the pGL4-10 vector at the XbaI site down-
stream of the luc gene. For all reporter constructs, two types 
of cassettes were prepared and studied side by side: wild type 
(pGL4-10 + wt—Triplet) and carrying mutations (pGL4-10 + 
mut—Triplet). We further PCR amplified the actual b.s. from 
the 3'UTR of CCND2 including ~500bp flanking regions on 
either side of the b.s. Following PCR mutagenesis of this con-
struct (~1000bp), we cloned both wt-3'UTR (pGL4-10 + wt–
3'UTR) and mut-3'UTR (pGL4-10 + mut-3'UTR) into the 
PGL4-10 vector. The empty vector (pGL4-10) was utilized as 
a control to observe the effect of our miRNA on the construct 
per se. All constructs were verified by sequencing. Additionally, 
anti-c-miR-Ch9 LNA (Exiqon, Berlin, Germany) was used to 
inhibit the expression of c-miR-Ch9. The sequences used in our 
studies are listed in Supplemental Material (Fig. S5). Positions 
of mutations in the mutated constructs are indicated in bold.

Transfection assay. Human HeLa 229 cell lines (LGC 
Promochem, ATCC Number: CCL-2.1) were grown in 
Dulbecco’s Modified Eagle’s Medium (DMEM) at 37°C, in a 
humidified atmosphere of 5% CO

2
. The cells were transfected in 

the 24-well plates in serum-free DMEM by using Lipofectamine 
2000 (Invitrogen) according to manufacturers’ instructions. For 
each transfection experiment, 350 ng of appropriate reporter con-
struct, 50ng of normalization vector and 400 ng of pBSK(+) as 
a carrier plasmid, were used in order to obtain optimal results. 
HeLa cells were also transfected with the empty pGL4-10 vector 
which was used as a reference point. Cells were harvested 48h 
after transfection and assayed both for firefly and Renilla lucif-
erase activity using Dual Luciferase Assay System (Promega). 
The luciferase activity was measured using Dual Luciferase 
Assay System (Promega) with a FB 12 Luminometer (Berthold 
Detection Systems). For the inhibition of endogenous c-miR-
Ch9 miRNA in HeLa cells the transfection of anti-c-miR-Ch9 
LNA (Dharmacon) at varying concentrations ranging from 
25–50 nM was performed, using Lipofectamine 2000 accord-
ing to manufacturer’s instructions. Final expression values form 
transfection assays reported here were calculated by averaging all 

classified as negative and are really negative (true negatives, tn) 
vs. the number of samples that are negative but classified as posi-
tive (false positives, fp).

Sensitivity = tp/(tp+fn)
Specificity = tn/(tn+fp)
The prediction accuracy is defined as the ratio of correct posi-

tive predictions over all positive predictions:
Prediction accuracy = tp /(tp + fp).
In this work, true negatives and false negatives are derived 

from the pSILAC proteomic data while the average number of 
target-mRNAs for mock miRNAs provides an estimation of the 
number of false positive targets predicted.

Mature miRNA prediction by primer extension. We 
designed three overlapping primers (each 15 nts in length) to 
bind to the verified positive strand of the c-miR-ch9 precursor 
sequence. The first primer was designed to bind from the 5th to 
the 19th nucleotide, the second from the 17th to the 31th and the 
third from the 29th to the 43nd. The primers were labeled using 
γ32 ATP and three primer extension reactions were performed 
under the following conditions: (A) incubation of 4 μg of Hela 
total RNA with the respective primer at 65°C for 5 min, followed 
by 1 min on ice; (B) subsequent incubation for 30 min at 16°C; 
(C) gradual increase in the temperature (0.1°C /sec) to 42°C 
and incubation for another 30 min at the later temperature. This 
gradual increase in temperature provides optimum conditions for 
primer extension and prevents the dehybridization of the primer. 
The reaction was terminated by incubation for 5 min at 85°C. In 
order to determine buffer’s, dNTPs’, reverse transcriptase’s and 
RNase inhibitor’s concentrations, we followed the HT SuperRT-
kit manufacturer’s instructions.

Primers:
First, 5–19: ACC AGG GGA CAC CGT
Second, 17–31: CTG CCA GGT TCC ACC
Third, 29–43: TTA CCT CTC CCC CTG
RNA extraction and northern blot analysis. Total RNA was 

extracted from HeLa cells grown in culture using Trizol. Eighty 
micrograms of total RNA were analyzed with DNA oligonucle-
otides probes and 30 μg of total RNA were analyzed using LNA 
oligonucleotides on a 15% denaturing polyacrylamide gel contain-
ing 7 M urea and transferred to Nytran N membrane (Schleicher 
and Schuell). Membranes were probed with standard DNA or 
LNA oligonucleotides. Two DNA oligonucleotides and one LNA 
oligonucleotide were used. One DNA probe was complement to 
the predicted mature sequence and the other was complement to 
the adjacent sequence, which was used as a negative control. The 
LNA probe was complement to the predicted mature sequence. 
Ten picomoles of each DNA oligonucleotide probe and two pico-
moles of the LNA oligonucleotide probe were end-labeled with [γ 
-32P] ATP by using T4 polynucleotide kinase. Prehybridization 
of the ðlters was performed in 7% SDS, 5 × SSC, 1× Denhardt’s 
solution and 0.02 M Na2HPO4 pH 7.2. Hybridizations were 
performed in the same solution at 50°C after the addition of the 
radiolabeled DNA oligonucleotide and at 60°C after the addition 
of the radiolabeled LNA oligonucleotide. Following an overnight 
hybridization, the membranes were washed at 50°C and 60°C, 
for DNA and LNA probes respectively, in low stringency buffer 
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