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Increasingly, theoretical studies of proteins focus on large systems. This trend demands the develop-
ment of computational models that are fast, to overcome the growing complexity, and accurate, to
capture the physically relevant features. To address this demand, we introduce a protein model that
uses all-atom architecture to ensure the highest level of chemical detail while employing effective
pair potentials to represent the effect of solvent to achieve the maximum speed. The effective poten-
tials are derived for amino acid residues based on the condition that the solvent-free model matches
the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model
is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found
to reproduce properly the native state and its population. Small discrepancies are observed for other
folding properties and can be attributed to the approximations inherent in the model. The transfer-
ability of the generated effective potentials is investigated in simulations of a longer peptide with 25
residues. A minimal set of potentials is identified that leads to qualitatively correct results in compar-
ison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show
that the transferable model correctly reproduces the experimentally observed tendency of polyala-
nines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken
together, the reported results suggest that the proposed model could be used to succesfully simu-
late folding and aggregation of small peptides in atomic detail. Further tests are needed to assess
the strengths and limitations of the model more thoroughly. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4790160]

I. INTRODUCTION

Continuing progress in the development of com-
puter technology and availability of fast and hardware-
customizable simulation packages1 make it possible for
present-day computational studies of proteins to focus in-
creasingly on large systems.2 Of particular interest in this
context are large multi-domain proteins, such as chaperons
or motor proteins,3 protein complexes,4 and proteins that un-
dergo aggregation.5 The success of computational approaches
to large systems depends on the usual trade-off between the
complexity of the employed protein models and their speeds.
Atomically accurate models are the slowest. When combined
with the explicit solvent representation, they typically allow
for simulations on nanosecond time scale.6–8 To extend the
accessible simulation time, models with reduced representa-
tions are needed. The pertinent question in designing such
models, which vary widely in complexity,9–13 is that “What
level of simplification is justified for the given problem?”.
Growing body of evidence shows that both folding and ag-
gregation pathways are very sensitive to the chemical detail
of the protein’s primary sequence. A conservative F-to-A mu-
tation at a critical location in the myosin motor protein, for
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example, is seen to completely abolish the motor function by
decoupling the active site from the force-generating region.14

Aggregation studies of amyloid β peptide15 report a compa-
rable by magnitude effect, where A-for-I or V-for-I mutations
cause substantial redistribution in the equilibrium population
of various oligomeric species. The small chemical differences
between the concerned residues in both cases suggest that
atomistic protein representation is required to properly repro-
duce the observed behavior, if not quantitatively then at least
qualitatively.

The simplification at the atomic level concerns only the
solvent in which proteins are modeled. Solvent, most often
water, can be treated in a variety of ways, but most frequently
it is completely removed and replaced by effective potentials
�G acting on the protein molecule and known as the sol-
vation free energy.16 Although a large number of solvation
models have been introduced for biomolecular simulations,17

the scheme that separates �G into electrostatic, �Gel, and
non-polar, �Gnp, components based on certain physical prin-
ciples is among the most successful. Within this scheme,
very accurate approximations are available for �Gel de-
rived with the help of continuum electrostatics model,18, 19

whereas the theory of non-polar solvation �Gnp is relatively
less developed.20–23 The most widely accepted22, 24 non-polar
solvation model is based on solvent-accessible surface area
(SASA). Importantly, both these models, electrostatics and
non-polar, contain multi-particle interactions that lead to very
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slow computations. Implicit solvent simulations of large pro-
teins using these models may run even slower than the corre-
sponding simulations in explicit solvent.25

An alternative to the physics-based solvation free en-
ergy is statistical potentials.26 Instead of providing a univer-
sal solvation model that fits all proteins, these potentials are
derived specifically for the given system of interest and de-
pend on its thermodynamic state. Most importantly, the sta-
tistical potentials can be chosen short-ranged and pair-wise
additive, a property that adds no cost to the computations
which already contain dispersive interactions. Simulations
employing such potentials thus run at the maximum speed
compatible with the chosen protein architecture. While not
without limitations, the pair-wise approximation has been
used successfully in a variety of condensed matter, colloidal,
and polymer systems.27, 28 In particular, the statistical pair po-
tentials were recently derived for electrolyte solutions,29 nu-
cleic acids,30 small peptides,31, 32 lipids,33 and a host of syn-
thetic polymers.34–38

In the studies of large proteins and their assemblies the
statistical approach is relevant in at least two contexts. First,
it permits the studies of large proteins composed of a re-
peat fragment, if the fragment is sufficiently small to allow
for the derivation of effective potentials from explicit solvent
simulations. Examples of such systems are homo polypep-
tides, including polyalanine (poly-A), polyglutamine (poly-
Q), and polyasparagine (poly-N), all of which are biologically
relevant.39, 40 Second, statistical potentials can be derived for
short peptides in order to study their aggregation. Although
a variety of recently introduced models can simulate sponta-
neous self-assembly of peptides into β-rich aggregates,41–45

only a small number of them can do so in atomic detail.46–52

Of these latter studies, only one model50–52 has the speed
and accuracy necessary for the simulation of self-assembling
multi-layered β-sheets reminiscent of protofibrils observed
experimentally.53, 54

In this paper we introduce a model for simulations of
long polypeptides and their assemblies based on the reduced
atomic pair-interaction design (RAPID) strategy. As its name
implies, the proposed model uses all-atom protein architec-
ture coupled with a standard protein force-field.55 The elec-
trostatic component �Gel of the solvation free energy is in-
cluded through a distance-dependent dielectric constant. The
remaining part, which includes non-polar energy and possi-
ble errors in �Gel, is represented by pair potentials applied
to hydrophobic moieties of the peptide. The potentials are de-
rived systematically by matching pair distribution functions
among hydrophobic sites obtained in implicit and explicit
solvent simulations. The model is tested for polyalanine de-
capeptide solvated in water. The peptide is shown in explicit
solvent simulations to remain mostly in random-coil confor-
mations with small population of α-helical states. The same
characteristics of the conformational ensemble are observed
in the implicit solvent model. Small discrepancies between
explicit and implicit treatments are seen in the distribution of
the helical structure along the sequence. The transferability
of the derived implicit solvation model is tested in simula-
tions of larger peptides. A model with a minimal number of
potential energy terms is identified that satisfactorily repre-

sents folding of polyalanine chain with 25 residues. As a final
test, multi-peptide systems are simulated. In agreement with
experiment,40, 56 8 chains of varying lengths are observed to
form double-layer β-sheet as the most populated state, prov-
ing that the proposed model is suitable for theoretical studies
of protein aggregation.

II. METHODS AND MODELS

A. Structure-based methods for deriving
effective potentials

The protein solvation energy will be computed in this
work using methods of structure-based statistical potentials
developed in the theory of soft matter systems.57 The main
goal is to find an effective pair potential ueff(r) that repro-
duces known pair distribution function g(r). Historically,
the effective potentials were first derived for simple liquids
with known experimental structural functions.58–61 In these
systems, the pair-wise approximation, Ue = ∑

i,j ueff (rij ),
where the summation runs over all pairs of particles, is
designed to mimic the actual potential energy function
that may contain multi-body contributions, UT (�r1. . ., �rN )
=∑

i,j u2(rij )+∑
i,j,k u3(rij , rik, rjk)+. . . , where �r1, . . ., �rN

are the coordinates of N particles and u2 and u3 are two- and
three-body interactions. More recently, the same method-
ology has been applied to the problem of constructing
simplified models of soft-matter systems that are too com-
plex to be studied in atomic detail,30–33 or the so-called
coarse-graining. In this approach, the potential energy UT is
replaced with the free energy, which, in addition to the direct
physical interactions among selected degrees of freedom,
also includes the effect of the degrees of freedom that are
integrated out in the course of the coarse-graining. The split-
ting of UT into multi-body contributions is not unique but can
be introduced in a consistent way. To facilitate the discussion
of the model further down the text, we will assume that the
interacting particles resulting from the coarse-graining have
full translational freedom. As free energy, UT depends on the
thermodynamic variables of the studied system, including
the density of the coarse-grained particles. The splitting into
multi-body terms can be accomplished by analogy to the
simple liquids in the zero-density limit. Let u2 be associated
with the free energy of only two coarse-grained particles,
u3 be taken to represent free energy of three particles not
captured by the two-particle term while higher-order terms be
designed similarly to the three-body term. In this way, a com-
plete set of density-independent multi-body potentials (up to
the order N, uN) can be obtained. The resulting potential UD

=∑
i,j u2(rij ) + ∑

i,j,k u3(rij , rik, rjk)+. . . + uN (�r1, . . ., �rN )
has to be corrected with the term δN (�r1, . . ., �rN ) = UT − UD

in order to match the target free energy UT = UD + δN.
The correction term encapsulates the dependence of the free
energy on density and vanishes in the low-density limit.
The proposed scheme allows for both simple liquids and
coarse-grained systems to be treated on equal theoretical
footing.

The uniqueness theorem62 establishes a one-to-one
correspondence between a pair potential and the pair
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distribution function it generates. Thus, the effective poten-
tials ueff(r) can be derived from known g(r) (available either
from experiments or high-resolution simulations) by solving
the inverse problem of statistical mechanics: “Starting from
the known structure g(r), find the corresponding potential
u(r).” A number of numerical implementations have been de-
vised to address this problem, including the older approaches
based on the integral-equation theory of liquid state60 and the
more recent ones61, 63 that rely on numerical Monte Carlo in-
version. We will use the Monte Carlo based methods here be-
cause of their superior accuracy demonstrated in applications
to a wide range of systems, including electrolyte solutions,29

nucleic acids,30 peptides,31, 32 lipids,33 and a host of synthetic
polymers.34–37 In a multi-component system, the potential
uαβ (rij) acting between particle i of species α and particle j
of species β will be determined iteratively using the follow-
ing recurrent relationship:58, 59, 61

u
αβ

l+1(rij ) = u
αβ

l (rij ) − λlkT log

(
g

αβ

R (rij )

g
αβ

l (rij )

)
, (1)

where index l numbers successive iterations, g
αβ

R (r) is the ref-
erence pair distribution function obtained in a higher-level
atomic simulation, k is the Boltzmann constant, T is the sim-
ulation temperature, and g

αβ

l (r) is the distribution function
obtained for the current iteration. We note that this relation-
ship ignores the effect of the pair distribution function of one
type on the potential derived for the pair of atoms of another
type. It is known that the lack of such cross-correlation may
cause slow convergence in multi-component systems.64 To
overcome this problem we (a) designed the initial guess of
the potential to be of high quality (judged by the distribution
functions), and (b) introduced coefficient λl that was varied
manually between 0 and 1 in the course of the iterations in
order to control the convergence rate. The exact numerical
value of λl does not affect the converged potential as in that
case g

αβ

R (r) = gαβ(r) and the logarithm in Eq. (1) vanishes.
We also performed several independent tests using different
sets of initial potentials to check the convergence of the algo-
rithm, as discussed in Sec. III.

As an approximation to the free energy, the effective po-
tentials ueff(r) depend on the thermodynamic parameters of
the studied system such as density and temperature. The den-
sity enters through multi-body interactions (including the ex-
plicit dependence in the correction term δN), which are ap-
proximated at the pair-wise level. In the condensed phases,
where collisions among more than 2 particles are common,
the multi-particle potentials play an important role. As the
density decreases, however, their influence diminishes since
multi-particle configurations become much less frequent than
binary collisions. In the limit of low density (the gaseous
phase), the contribution of the multi-body potentials is negli-
gible. The effective potentials then report on the properly de-
fined two-body potential u2(r). This convergence can be used
to extract density independent u2(r) from density-dependent
studies.

For the sake of completeness, we note an alternative ap-
proach to coarse-graining that is based on a force-matching
algorithm of Ercolessi and Adams.65 Introduced originally

FIG. 1. Effective intra-molecular potentials in homopolymers. The depen-
dence on how far the residues are separated along the sequence drops for suf-
ficiently long sequences. One potential then describes both intra- and inter-
peptide interactions.

to derive classical potentials from quantum mechanical sim-
ulations, this method was further developed by Voth and
Izvekov66 and applied to a large class of biomolecular sys-
tems, including peptides,67 sugars,68 and phosphilipids.69

B. Effective potentials for homopolymers

The fact that the effective potentials depend on ther-
modynamic parameters has important consequences for the
application of coarse-graining to polymers. Let us consider
for simplicity generic homopolymers created by polymeriza-
tion of some chemical compound, for instance, amino acids
in polypeptides. Although all the units in such a polymer
are chemically equivalent, they have to be treated as distinct
species during coarse-graining because of the chain connec-
tivity. Consider an illustration in Figure 1 showing a polymer
with particles numbered from 1 to N. Focusing on particle 1,
it is easy to see that the local density created by particle with
number 2 will be different from the density of particle number
3, particle number 4, and so on. The same argument applies
to any particle I, generating a total of N(N − 1)/2 potentials
specific to each pair of residues, ui, j, i = 1, N − 1, j = i + 1, N.

In general, all of these potentials have to be treated as dis-
tinct. However, the difference between some of them will be
small or unimportant. Consider the nearest neighbors terms
ui, i+1. Clearly these potentials will depend on the exact loca-
tion of the affected pair in the sequence. Because of the finite
length of the polymer, u1,2 at the beginning of the sequence,
for instance, will be different from uN/2, N/2+1 in the middle of
the sequence. As a boundary effect, however, the difference
will not strongly impact the overall conformational statistics
of the polymer in the limit of large N, so it can be neglected.
We will assume that the same arguments apply to all other
neighbors and treat the potential ui, j as depending only on
the number of residues separating i and j, ui−j. This assump-
tion reduces the number of independent potentials from N(N
− 1)/2 to N − 1.

Further, it is easy to see that not all of these potentials
are different. Let us focus on the potentials applied to parti-
cle 1 once again, as shown in Figure 1. The second neighbors
along the chain will create a lower effective density than the
first neighbors. This trend will continue for longer neighbors,
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which will exhibit increasingly low density with the separa-
tion from residue 1. Starting at certain position, the neighbors
will become de-correlated, indicating a distance longer than
the persistence length.70 Such neighbors will effectively ap-
pear the same to the first particle, implying that they should
interact with the same potential. For sufficiently long dis-
tances (along the sequence), starting at numberKmax, there
should be a convergence in the effective potentials35, 36 such
that ui−j = u1,Kmax , i − j ≥ Kmax − 1. An important differ-
ence here with the liquids is that the limiting effective po-
tential in polymers is not equal to the density-independent
pair potential acting between constituent units of the polymer,
u1−Kmax (r) �= u2(r). Although the density of remote neighbors
goes to zero, the relative contribution of multi-particle config-
urations does not, due to the chain connectivity. Every time
a neighbor j > Kmax interacts with the particle 1, it also in-
teracts with the particles strongly correlated to it, such as 2,
3, and so on. Unlike liquids, therefore, the impact of multi-
particle potentials in polymers never vanishes. Consequently,
the effective potentials derived for polymers will always con-
tain multi-particle contributions.

Both the convergence length Kmax and the total number of
unique potentials depend on the basic properties of the stud-
ied polymer such as the chemistry of amino acid residues,
the length, and the thermodynamic state. If a polymer is used
for the extraction of effective potentials, its size Nt must be
greater than Kmax. Only in this case will the derived potentials
be transferable, that is, applicable to polymers of a larger size
N > Nt.

In polymer melts, the effective potentials for residues
located on different chains will depend, in general, on the
polymer density; here the same arguments apply as discussed
above for the interactions within one chain. Under high dilu-
tion, however, the inter-chain contacts will behave the same
way as the intra-chain contacts of particles with large separa-
tion, as shown in Figure 1. The potential derived for u1,Kmax ,
therefore, can be used in the studies of multiple polymer
chains in the low density limit. For finite polymer densities,
the effective potentials may deviate from u1,Kmax , in which
case they have to be derived separately in multi-polymer ex-
plicit solvent simulations using the same formalism as applied
to intra-chain potentials.

C. Application to polyalanine peptides

We apply the structure-based theory described above to
polypeptide chains composed of alanine amino acid. The pep-
tide is modeled in full atomic detail, as shown in Figure 2 for
the number of residues N = 10, A10. The total solvation en-
ergy �G is split into two parts: electrostatic contribution �Gel

and non-polar solvation �Gnp. The electrostatic contribution
together with the direct Coulomb interactions Uc are mod-
eled as Uc + �Gel = ∑

i<j

qiqj

ε(rij )rij
, where qi is the charge of

particle i, rij is the distance between particles i and j, and ε(r)
is the distance-dependent dielectric constant. The distance de-
pendence in ε(r) accounts for the screening of charges at large
separation and represents an approximate way to treat solva-
tion free energy. This model meets our criterion of pair-wise

FIG. 2. All-atom representation of alanine decapeptide (A10) considered in
this work to extract effective inter-residue potentials. Gray spheres show the
interaction sites for the non-polar potentials.

additivity and is nowadays widely used in simulations of bio-
logical molecules.47, 71 Tests were conducted for several types
of known72, 73 and newly designed distance dependences, in
which the dielectric constant grew from around 1–3 at r ∼ 1 Å
to 40–80 at r ∼ 10–15 Å. After parametrization, the results
were found to be independent of the particular model. The
results presented in the remainder of the paper were obtained
for the linear model ε(r) = Dr,73 where r is measured in Å and
the proportionality constant D = 3 was determined from the
maximum correlation between the solvation energy predicted
by this model and the energy obtained by solving Poisson-
Boltzmann (PB) equation for A10 peptide, as discussed in de-
tail in Sec. II D. The main purpose of the chosen electrostatics
model is to separate out the long-range contribution from the
total free energy.

The non-polar contribution to the solvation energy
is modeled with the help of effective potentials, �Gnp

= ∑
α,i<j uα(rij ), where the summation runs over all pairs of

particles, indices i and j, and all types of contacts, index α.
There are 9 types of contacts, 1–2 through 1–10, in a pep-
tide with 10 residues. The non-polar solvation applies to all
hydrophobic moieties present in the system. In the case of
polyalanine these are the side chain groups centered on the
Cβ atoms, as shown in Figure 2. Additionally, the N-terminal
acetyl (ACE) blocking group contains a hydrophobic methyl
group, which is also added to the solvation model. Although
this group is chemically identical to the side chains, geometri-
cally it is distinct from them. Consequently, it has to be treated
as a separate interaction site with its own set of potentials,
u0−i(r), where i runs from 1 to 10. In total, 19 different poten-
tials are needed to describe the non-polar solvation of a de-
capeptide: 9 potentials are operating among side chains and
10 act between the N-terminal and the side chains.

D. Computational details

All simulations reported in this work were performed
by GROMACS1, 74 molecular modeling package. The peptides
were modeled with the optimized liquid state (OPLS/AA)
force field55 with neutralizing ACE and NH2 groups added
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at the carboxy and amino termini. All simulations were per-
formed using replica exchange protocol75 with the tempera-
tures chosen equidistantly between two limiting values in in-
verse temperature. Replica exchanges were attempted every
250 time steps. The time step was set at 2 fs. The bonds in-
volving hydrogen atoms in the protein were constrained ac-
cording to the LINCS76 algorithm.

Explicit solvent simulations were performed using TIP3P
model77 of water. The chemical bonds in water molecules
were held constant by the SETTLE78 algorithm. Nose-Hoover
thermostat79 with a 0.5 ps time constant was employed to
maintain constant temperature. A single cut-off of 0.8 nm was
used for the van der Waals interactions, with the neighbor lists
updated every 10 time steps. Smooth-particle mesh Ewald
(PME) method80 was used to treat electrostatic interactions.

Implicit solvent simulations were performed using
Langevin dynamics algorithm with the friction constant of
0.5 ps−1. For the sake of computational efficiency, all non-
bonded interactions, including the effective potentials, are as-
sumed to be zero, or truncated at a cut-off distance Rc. In our
simulations, Rc is set to 1.2 nm, which is large enough to in-
clude microscopic details of the effective interaction between
two small hydrophobic molecules, such as the side chain of
alanine, in water. Multiple trajectories and models were con-
sidered, as discussed in Sec. III.

The electrostatic solvation energy was treated by
distance-dependent (DD) dielectric constant model, ε(r)
= Dr [Å], and the proportionality coefficient D was deter-
mined in the following way. One hundred peptide conforma-
tions, including the native state, were selected at random from
the explicit solvent trajectory for A10. The electrostatic sol-
vation energy was estimated for these states in the continuum
approximation by solving the Poisson-Boltzmann equation in
CHARMM.81 The solvation energy appropriate for the DD
model was estimated as the difference between the total elec-
trostatic energy in that model and the electrostatic energy in
vacuum. To be consistent with the non-polar part of the sol-
vation energy, a cut-off of 1.2 nm was employed. The corre-
lation coefficient between PB and DD data was estimated as
a function of D. Following a strong variation for small D < 1,
the correlation coefficient reaches a plateau of about 0.91 for
D > 3. A correlation of 1 indicates complete functional de-
pendence between two variables. The slope of the linear fit
between DD and PB results was also determined as a func-
tion of D, and was seen to decrease from around 0.9 for small
D ∼ 1 to 0.2 for D > 5. The slope determines the electro-

static contribution to the free energy difference between two
conformational states. As such, it should approach 1 for the
accurate representation of the free energy landscape. We find
that both properties, correlation coefficient and slope, can not
reach values close to 1 for the same D. As a way of compro-
mise, we chose D = 3 based on the condition that this value
keeps the correlation coefficient high while maximizing the
slope.

The length of the performed simulations was determined
so as to ensure that the relevant pair distribution functions are
converged. Two specific convergence tests were performed.
First, the running average of g(r) was computed as a func-
tion of simulation time for each contact. The time when g(r)
stopped changing noticeably, τ c was identified as a tentative
convergence time. Second, the simulation was continued for
the amount of time τ c and the resulting distribution function
was compared with that obtained in the first half of the trajec-
tory. If no differences were observed, the final g(r) was com-
puted over the length of the entire trajectory, 2τ c. Otherwise,
the simulation was continued until the mentioned tests were
passed. The number of conformations used for the computa-
tion of g(r) was varied to assess the sensitivity of the method
to statistical errors. Lower numbers of conformations resulted
in more noisy g(r) which in turn led to more noisy, but other-
wise consistent, effective potentials. Severely undersampled
data led to problems with spline interpolations and conver-
gence of iterations and are not reported here. The summary of
all performed simulations is shown in Table I.

The secondary structure analysis of the multi-chain tra-
jectories was performed using the protocol of Kabsch and
Sander.82 What is referred to as β-structure and β-content in
the discussion of the aggregation simulations is the amount
of β-sheet and β-bridge structure added together. The re-
ported probability is normalized so that it reaches the max-
imum value of 1 in the actual β-sheet conformation.

III. RESULTS

A. Implicit model with the maximum
number of potentials

1. Derivation of effective potentials

Replica-exchange simulations in explicit solvent were
conducted to obtain reference pair distribution functions gR(r)
for alanine decapeptide. These distribution functions were
used to obtain 19 effective inter-residue potentials discussed

TABLE I. Summary of all simulations reported in this work.

Replica
Simulation Temperatures Number of Size of the exchange

Simulation time (ns) (K) replicas simulation box (nm) probability (%)

Alanine decapeptide (A10) in explicit solvent 126 300–600 44 3.7 23–43
A10 in all implicit solvent models 80 250–600 12 8 28–52
Alanine polypeptide with 25 residues (A25) in explicit solvent 400 300–600 80 5.6 25–45
A25 using model M6/5 200 280–600 24 11.56 55–67
8 chains of peptide with 6 residues 1000 260–500 24 15 41–60
8 chains of peptide with 4 residues 1000 250–500 24 15 35–64
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FIG. 3. Pair distribution functions for different contacts as indicated in the graph, obtained in the explicit and implicit solvent simulations at T = 300 K.
The two data sets are hardly distinguishable. An agreement of the same high quality is observed for the distribution functions involving the ACE methyl
group. To illustrate the degree of convergence in the explicit solvent simulations, the panel for contact 1–6 shows the data for the first, broken line, and the
last, dotted/broken line, 60 ns of the trajectory. Differences between the two parts are noticeable only upon magnification, as shown in the inset for the first
maximum.

in Sec. II. The iterations were started from an initial state gen-
erated with the help of Lennard-Jones potentials that produce
g(r) with maxima at approximately correct locations. After 30
iterations, the computed g(r)s stop changing visibly. Figure 3
shows the distribution functions for the nine inter-residue con-
tacts 1–2 through 1–10 obtained in explicit and implicit sol-
vent simulations at T = 300 K, the temperature for which
the effective potentials were derived. The reference distribu-
tion functions are sufficiently converged, as can be seen from
the panel of contact 1–6, which shows the data obtained for
the first and the last 60 ns segments of the trajectory. The
agreement between the explicit and implicit sets is remark-
ably good, with all the main features correctly reproduced for
all contacts. Same quality agreement is seen for the ten distri-
butions involving the ACE methyl group (data not shown), in-
dicating that the employed model with 19 potentials is quanti-
tatively correct as far as pair correlations among hydrophobic
groups are concerned.

To test the convergence of the distribution functions,
three independent sets of fitting simulations, sim1 through
sim3, were performed. The simulations were started from
different initial guesses of the effective potentials and took
from 20 to 30 iterations to reach convergence (determined as
the point where further iterations did not lead to improved

distribution functions). All three simulations produced g(r)s
that are indistinguishable to the eye, indicating that the so-
lution is stable. The potentials obtained in these tests do not
coincide exactly, however. As illustrated in Figure 4(a), for
u1−10(r), different initial points produce slightly different po-
tentials. As noted previously,61, 83 this is a consequence of
the numerical nature of the applied procedure, since theoret-
ically there is one-to-one correspondence between potentials
and the corresponding distribution functions.62 It is seen that
the region most affected by the numerical errors is short dis-
tance, r < 0.5 nm, where the pair distribution functions are
subject to strong statistical noise. As a consequence, parti-
cle interaction energies in that region obtained from fitting
are not reliable. In addition to different starting points, differ-
ent iterations within one starting point also lead to noticeable
differences in potentials, as shown in Figure 4(b), for u1−7(r),
obtained in iterations 22 and 30 of sim3. Although small devi-
ations are seen over the entire interaction range [0:1.2 nm], the
most prominent differences are observed for small r, where
the depth of the first minimum varies by ∼1 kJ/mol between
iterations, or ∼20%. Since the distribution functions gener-
ated in the concerned simulations are indistinguishable, the
applied structure-based procedure can determine effective in-
teractions only up to a certain error.
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2. Folding properties in explicit and implicit solvents

All conformations saved in the explicit solvent simula-
tions were clustered according to Cα root mean square devia-
tion (RMSD) among structures as a measure of similarity. A
single α-helical conformation was observed as the most pop-
ulated, or native, state. The distribution of RMSD computed
for all structures with respect to the helical state showed a
maximum at 0.1 nm and a minimum at 0.17 nm. The latter
value was used as a cut-off to determine the population of the
native state, leading to the estimate of 0.1. The same analysis
was performed for the implicit solvent simulations. Clustering
revealed the same native state for all three fitting runs, which
was identical to the native state of the explicit solvent simula-
tions. The progression of the population computed over suc-
cessive iterations is shown in Figure 5. In all three runs, wide
swings between 0.05 and 0.3 are seen in the initial 10 iter-
ations, followed by small fluctuations. The magnitude of the
fluctuations does not decay with time, as seen for sim1 contin-
ued for 50 iterations. This is a direct consequence of the nu-
merical errors intrinsic in the applied procedure, which limit
the accuracy with which the population can be determined.
Figure 5 shows that the fluctuations occur between 0.1 and
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FIG. 5. Population of the native state is determined in successive iterations
of three independent fitting simulations. Convergence to the average value of
0.12 is seen in all three cases. The population observed in explicit solvent
simulations is 0.1, in close agreement with the implicit solvent.
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FIG. 6. Probability of each residue to be in a helical segment is computed
in this work in explicit and implicit solvent simulations. The implicit solvent
model noticeably underestimates the “helicity.”

0.14 with the average of 0.12, which is in a very good agree-
ment with the value of 0.1 estimated in the explicit solvent
simulations. Thus, even with the errors included, the implicit
solvent model predicts essentially the same probability of the
native state as the explicit solvent. This is quite encourag-
ing given that the probability includes high-order correlations
among particles, in addition to the two-particle correlations
used in the derivation of the model.

Since the peptide has a helical native state, it is instructive
to analyze its folding in terms of a coil-helix transition. We
use the formalism of Lifson and Roig (LR) for that purpose,
which is a widely accepted helix-coil model.84, 85 Depending
on the values of dihedral φ, ψ angles, residues in that model
may remain in two states: helix or coil. We will assume that
the helical residues are defined by −90◦ < φ < −30◦ and
−77◦ < ψ < −17◦ while all other values indicate the coil
state.86 The statistical weight of the helical residues depends
on whether they are part of helical segments. A helical residue
is part of a helical segment if its immediate neighbors along
the sequence, one residue preceding it and one residue fol-
lowing it, are also helical. This definition measures a corre-
lated conversion of at least three residues into a helical state
and precludes the terminal residues from being in helical seg-
ments. The helicity of each residue, or fraction of helix pop-
ulation, is defined as the probability to remain in a helical
segment. Figure 6 shows this probability computed in the ex-
plicit and implicit solvent simulations. The implicit solvent
data are consistent among all three simulations, with the in-
dividual probabilities differing by no more than 2 percentage
points. The explicit solvent probabilities agree well with those
of the implicit solvent at the qualitative level. The maximum
at residues 4 and 5, a small shoulder at residue 2 and a gradual
decrease of probabilities at the C-terminal, all these features
are shared by the two sets of data. From quantitative perspec-
tive, the population in the implicit solvent is underestimated
by 4–6 percentage points, depending on the residue.

Figure 7 shows the distribution function of the radius of
gyration over Cα atoms, Rg, obtained in implicit and explicit
solvent simulations. The three implicit solvent runs again
agree very well. In comparison with the explicit solvent, they
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FIG. 7. Probability distribution of the radius of gyration over Cα atoms in
explicit and implicit solvent simulations, shown in linear, (a), and log-log,
(b), scales. Small discrepancy between implicit and explicit solvent data are
seen in panel (b) in the tail of the distribution function.

reproduce correctly the main maximum at around 0.5 nm and
the slowly decaying tail at large Rg. A small discrepancy is
found in the tail region that is visible only on the log-log scale.
As shown in Figure 7(b), a shoulder in the explicit solvent
curve at Rg = 0.75 nm is not reproduced in the implicit sol-
vent data. Instead, a slightly larger population is seen for Rg
> 0.8 nm. This effect is of small scale, however, as it af-
fects an already insignificantly populated area of the confor-
mational space.

B. Transferable implicit solvent model

1. Model with a minimal number of potentials

It is expected that not all effective potentials obtained
for the decapeptide are unique. As argued in Sec. II based
on general considerations, there should exist a maximum
number Kmax such that u1−k(r) = u1−Kmax (r), k ≥ Kmax. To
examine the change in u1−k(r) over the contact number k,

a quantity, dU1−i =
√∫ rmax

rmin
(u1−i+1(r)−u1−i (r))2dr

rmax−rmin
, i = 2, 9, that

compares how much the two potentials u1−i + 1(r) and u1−i(r)
differ over the range [rmin, rmax] where they are defined, was
computed. According to our arguments, dU1−i should drop to
zero at i = Kmax. Figure 8 shows dU1−i as a function of index i,
panel (a), and an analogous property dU0−i computed for the
potentials acting between ACE and the side chains, panel (b).
Multiple simulations/iterations are plotted to determine the re-
producibility of the results. There is a significant scatter in the
curves, especially for short-range neighbors with i = 2 and 3,
that can be attributed to the numerical noise in the derivation
of the potentials. A common trend in all plotted data is the
rapid decline in both dU1−i and dU0−i after i = 4. Due to nu-
merical reasons, these quantities never reach zero, which is
expected. But for sufficiently long neighbors, indicated by ar-
rows, the convergence to a plateau is observed. According to
Figure 8, potentials for the side chains with contact number
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FIG. 8. Convergence of effective potentials for side chains, panel (a), and
ACE and side chains, panel (b), to the limiting, density-independent shape in
the limit of long-range contacts. Quantities dU1−i and dU0−i measure how
much two potentials with contact numbers i + 1 and i differ. Arrows indicate
where the dependence drops almost to zero. Multiple simulations and itera-
tions are shown. The difference for the two shortest contacts, 1–2 and 1–3,
for side chains and 0–1 and 0–2 for ACE group, is too large to be shown on
the given scale.

7 and greater can be treated as identical. The same number
for dU0−i seems to be 6. The model with such properties has
6 unique potentials u1−k(r), k = 2, 7, and 5 unique potentials
u0−k(r), k = 1, 5 (potential u0−6(r) is set equal to u1−7(r) in
the long-range limit so it is not unique); in the remainder of
the paper this model will be referred to as M6/5.

By design, M6/5 has 11 different types of inter-particle
distances. Accordingly, 11 different potentials were re-
derived from the explicit solvent trajectories assuming that the
contacts 1–7 through 1–10 and 0–6 through 0–10 are treated
as equivalent. The potentials, plotted in Figure 9, show strong
dependence on the contact number for the nearest neighbors
and the next nearest neighbors, u1−2(r) − u1−4(r) for the side
chains and u0−1(r) − u0−3(r) for the side chains and ACE
group. For some of these potentials, the distribution func-
tions contain no data for r < Rc, prompting the truncation
at a distance below the cut-off. Two potentials correspond-
ing to the nearest-neighbor terms, u0−1(r) and u1−2(r), have
spikes at short distances which are an artifact of the numerical
tabulation.87, 88 The spikes have different appearances in dif-
ferent fitting simulations and do not affect the corresponding
pair distribution functions. Starting at neighbors’ three parti-
cles apart, u1−k(r), k ≥ 5, and u0−k(r), k ≥ 4, the potentials
begin to develop common appearances. The most significant
common features are the first minimum at r ∼ 0.33 nm and a
broad maximum at r ∼ 0.65 nm. The minimum corresponds
to close-contact configurations of the residues, while the max-
imum represents a barrier to contact formation/dissociation.
The barrier is partly due to the solvation effects by water,89

but it also contains averaged contributions from the peptide
hydrophobic groups as well as the main chain atoms. At less
than 3 kJ/mol, the desolvation barrier is too low to alter the
dynamics of individual contact formation significantly.
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FIG. 9. Effective potentials obtained for model M6/5.

2. Transferability tests

Figure 8 suggests that the peptide length of ten amino
acid residues is sufficient to observe the convergence of the
effective potentials to their limiting, long-range shape. As ar-
gued in Sec. II, the converged potentials properly capture the
density dependence, and therefore, should be transferable to
peptides with larger numbers of residues. We test this pre-
diction directly by investigating polyalanine chain with 25
residues (A25). In addition to model M6/5, we also consider
models M4/3, M5/4, and M7/6, which are constructed in anal-
ogous way to M6/5 and contain 7, 9, and 13 unique potentials,
respectively. Specifically, model M4/3 has 4 inter-side chain
potentials and 3 potentials for the interactions of ACE with the
side chains, model M5/4 has 5 inter-side chain potentials and
4 potentials for the interactions of ACE with the side chains,
and model M7/6 has 7 inter-side chain potentials and 6 poten-
tials for the interactions of ACE with the side chains. All these
models produce indistinguishable pair distribution functions,
when considered after a sufficiently large number of fitting
iterations.

Explicit solvent simulations of A25 show that this pep-
tide remains mostly a random coil, much like A10 discussed
earlier. The helicity contents resolved for each residue are
shown in Figure 10(a). The level of structuring is seen to be
the same as for A10, with probabilities reaching ∼0.15, ex-
cept for residues 17–21, where they are slightly higher. Un-
like A10, a minimum is observed for residues 12–13. The
results of the implicit solvent models fall into two groups.
The first group contains M4/3 and M5/4, and produces he-
licity in roughly good numerical agreement with the explicit
solvent, with the exception of the minimum, which is not re-
produced. The second group comprises M6/5 and M7/6, and
displays lower helical probability overall but has a shape that
better matches the explicit solvent results. Both models have
a flat region between residues 5 and 17, with M7/6 displaying
a shallow minimum. The implicit solvent should not be ex-
pected to perform better for A25 than it does for A10, for
which it was originally derived. Therefore, taking into ac-
count the level of agreement between implicit and explicit sol-
vents in A10, we conclude that the models in the first group,
M4/3 and M5/4, are qualitatively wrong.
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FIG. 10. Distribution of helicity across residues, panel (a), and distribution
of the radius of gyration, panel (b), for polyalanine peptide with 25 residues.
Panel (b) uses log-log scale for better visibility. Data of simulations in explicit
solvent together with several implicit solvent models are shown. The models
with fewer than 11 potentials are not transferable.

This conclusion is further reinforced in the analysis of the
distribution function of the radius of gyration, P(Rg), shown
in Figure 10(b). It is seen that models with at least 11 po-
tentials generate P(Rg) in good qualitative agreement with
the explicit solvent. This includes the main maximum at Rg
∼ 0.7 nm, which is correctly predicted to have a majority pop-
ulation, and a small maximum at Rg ∼ 1.1 nm, which is seen
to have a minority population. In contrast, M4/3 and M5/4
predict P(Rg) with only one, the second, maximum. Instead
of populating collapsed coil states, these models predict ex-
panded states, in direct contradiction to the explicit solvent
simulations.

Both properties shown in Figure 10 indicate that the mod-
els with fewer than 11 effective potentials, M4/3 and M5/4, do
not properly capture the density dependence in the context of
polyalanine peptides, and thus, are not transferable. The non-
transferability has quite dramatic consequences for the sam-
pled conformational states, including the size of the peptide
and its secondary structure. Models M6/5 and M7/6, on the
other hand, produce results that are qualitatively correct, al-
though the agreement with explicit solvent simulations is not
as good as for A10. Both models are transferable in the sense
that they provide a proper balance of different forces acting in
the peptides across multiple length scales. The minimal trans-
ferable model suggested by our simulations is M6/5.

C. Application to multiple chains

1. Reversible aggregation of alanine tetra-peptide

To test the suitability of the minimal model for the studies
of peptide self-assembly, two polyalanine systems with differ-
ent number of residues N = 4 and 6 were considered. Eight
polypeptide chains were modeled in a simulation box with the
size of 15 nm, yielding a mM peptide concentration. The same
concentration range was investigated in experimental studies
of a similar alanine-rich peptide with a few charged residues
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FIG. 11. Time traces obtained in the simulation of 8 tetra-alanine chains that
was started from a stacked anti-parallel β-sheet (shown in the inset) as the
initial conformation. Panel (a) shows the amount of β-structure as a function
of time (note the log scale of the x axis). The initial β-sheet disappears in
the first 10 ns of the simulation and never re-emerges. Panel (b) shows radius
of gyration Rg computed over Cα atoms. Aggregated conformations, Rg < 1
nm, are in equilibrium with the disaggregated states, Rg > 1 nm. After the
first 10 ns, only non-β-sheet aggregates remain.

added for solubility purposes.56 The average distance between
peptides at the chosen concentration is more than 40 Å, which
is larger than the distance of 21 Å between neighbors 1 and
7 (the shortest fragment that yields transferable potentials) in
the fully stretched peptide conformation. The polymer solu-
tion thus can be considered dilute, justifying the use of the
inter-peptide potentials derived from the single-chain simula-
tions.

Both peptides, tetra-alanine and hexa-alanine, experience
a transition into aggregated state at sufficiently low tempera-
ture. Figure 11 shows time evolution of the radius of gyra-
tion Rg over Cα atoms (computed after clustering the chains),
and the total amount of β-structure (definition explained in
Sec. II) observed for N = 4 at T = 260 K in a trajectory started
from two stacked in-register anti-parallel β-sheets, shown in
the inset, as the initial conformation. The observation tem-
perature is chosen below the transition temperature of both
peptides. The initial β-structure disappears rapidly and ir-
reversibly. After approximately 10 ns, the β-content drops
from 100% to 20% and remains at that level throughout the
remainder of the simulation (see Figure 11(a)). The loss of
β-structure is not accompanied by the loss of aggregation,
however. Figure 11(b) shows that the small Rg < 1 nm that
initially corresponds to the β-sheet conformations persists
well beyond the time point at which the β-structure melts.
This indicates that aggregates of a new type are formed in
the course of the simulation and that these aggregates are
random-coil in structure. The aggregated states remain in dy-
namic equilibrium with the disaggregated conformations. The
fact that the β-sheets convert into disordered aggregates and
never reappear suggests that the latter represent a lower free
energy state in our model. This conclusion is confirmed in

0

2

4

6

8

0 200 400 600 800
0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

R
g 

(n
m

)
 β

 c
on

te
nt

 β
 c

on
te

nt

Rg (nm)

Time (ns)

(a)

(b)

(f)(c)

(e)

(d)Traj 1 Traj 2

FIG. 12. Time traces of two trajectories generated for the system composed
of 8 chains of alanine hexa-peptide. (Panels (a)–(c)) Trajectory 1 corresponds
to anti-parallel β-sheet initial conformation. (Panels (d)–(f)) Trajectory 2
shows the data for a disaggregated, random-coil initial conformation. Radius
of gyration, panels (a) and (d), and the amount of β-structure, panels (b) and
(e), are shown as a function of time in the two trajectories. 2D plots of these
two quantities are shown in panels (c) and (f).

two additional trajectories (data not shown): one started from
a random-coil disaggregated state and the other from an in-
register, parallel β-sheet conformation, both of which lead to
the disordered aggregates as the most populated species. Col-
lectively, our simulations indicate that the tetra-peptide aggre-
gates mostly into random-coil states.

2. β propensity of aggregates increases
with the length of the peptide chain

Figure 12 shows the same quantities, generated at the
same temperature and peptide concentration, as Figure 11 but
for N = 6. In addition to the trajectory started from a β-sheet,
panels (a), (b), and (c), the data obtained for the trajectory
started from a disaggregated random-coil conformation, pan-
els (d), (e), and (f), are also shown. The behavior of the ra-
dius of gyration (Figure 12(a) and 12(d)) demonstrates that
the system is mostly aggregated in both trajectories at the cho-
sen temperature. Comparison with Figure 11(b) clearly shows
that the peptide with six residues aggregates more abundantly
than the peptide with four residues. The β-content in the first
trajectory, Figure 12(b), drops from 100% to about 80% in
the first few nanoseconds but remains little changed in the
remainder of the simulation. At approximately 200 ns, con-
formations with a low ∼10% population of β-structure be-
gin to appear. The second trajectory, Figure 12(e), produces
only non-β conformations. Figure 12(c), depicting 2D map
of the β-content against Rg, shows that the non-β confor-
mations sampled in the first trajectory are both aggregated,
small Rg, and disaggregated, large Rg. Conformations rich in
β-structure can also be either small, complete β-sheet, or
large, Rg > 2 nm, corresponding to a β-sheet with one disso-
ciated β-strand. The second trajectory, Figure 12(f), samples
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both compact and expanded states but without β-structure.
The disordered aggregated conformations, therefore, are seen
in both trajectories but constitute a majority only in the second
trajectory, while in the first trajectory their population is low.
To determine which of the two states, β-sheet or disordered
aggregates, constitutes the true free energy minimum, we con-
ducted a third test simulation in which half of all replicas were
assigned β-sheet conformation, while the other half were as-
sumed to be aggregated random coils. This setup permits the
two conformations to compete directly with one another, thus
allowing us to determine the lower free energy state. A pop-
ulation shift toward β-sheet was observed in the test, indicat-
ing that β-sheet is the more stable structure. Thus, the pep-
tide with 6 amino acids aggregates mostly into β-sheet states
at low temperature. This is in contrast to the tetra-peptide,
which aggregates predominantly into disordered conforma-
tions. The lack of β-sheet formation in the second trajectory
(Figure 12(e)) indicates that this structure is kinetically hin-
dered. Slow nucleation is not uncommon in the fibril forma-
tion of many peptides.90 Primary structure composed of only
one amino acid, like in the studied system, is known to induce
frustration91, 92 in the free energy landscape. The frustration is
most likely the main reason for the observed slow relaxation.

The aggregation behavior observed for our tetra- and
hexa-peptide models is consistent with the recent experi-
mental studies of alanine-rich peptides (with a few charged
residues added for solubility reasons).40, 56 Like the experi-
ments, our simulations find that polyalanines aggregate into
β-sheet structure more readily with the growing length of the
peptide chain. The length dependence is an important char-
acteristic of the aggregation process and it is clear that the
proposed model is able to capture it.

IV. CONCLUSIONS

In this paper, we introduced an approach to conduct sim-
ulations of large proteins and protein complexes in atomic de-
tail using pair-wise decomposition of the solvation free en-
ergy. The strategy derives effective potentials that mimic the
presence of solvent using as input the pair-distribution func-
tions of amino acid residues generated in explicit solvent sim-
ulations. We showed that our approach correctly reproduces
folding of a small all-alanine peptide with 10 amino acid
residues. The potentials that result from the matching of pair-
distribution functions represent free energy and thus depend
on the thermodynamic properties of the studied system such
as temperature and density. The variation with the density
is strong for the nearest neighbors along the chain but van-
ishes for larger separation among the residues. We showed
that a segment comprised of 7 residues, and characterized by
11 different potentials, constitutes the minimal model capable
of capturing the correct density dependence. Simulations of
a longer alanine peptide with 25 residues lead to qualitatively
correct conclusions compared to explicit solvent data, proving
that the model is transferable. When tested on systems with
multiple chains, the model predicts that longer alanine-based
peptides self-assemble into β-sheet structures reminiscent of
amyloid fibrils more readily than do the shorter ones. This
result is again qualitatively correct compared to experiment.

Our tests demonstrate that the derived potentials can be used
in computational studies of peptide aggregation to routinely
generate microsecond replica-exchange trajectories for atom-
ically accurate models, a speed that compares very favorably
to that of similar recent studies conducted in explicit solvent
over nanosecond time scale.8, 93

While the introduced model produces qualitatively cor-
rect results for the native state, there are some differences with
the explicit solvent in the broader folding landscape, in par-
ticular, the distribution of the helicity along the chain and the
radius of gyration. The discrepancies are due to the various
approximations inherent in the model, which need to be crit-
ically assessed in order to better understand the model’s lim-
itations and in order to formulate strategies for improvement.
We note the following features and assumptions upon which
the model is built that may negatively affect its accuracy:

(1) The non-polar energy is applied to selected degrees of
freedom only, Cβ atoms of the side chains. This is an ap-
proximation, which could have adverse effects if overall
peptide conformation was able to change substantially
for the fixed configuration of the side chains (and the
methyl group of ACE). Given the rigid geometry of the
peptide bond and the fact that there is only one heavy
atom in the side chain, this seems unlikely.

(2) The neglect of the boundary effect in inter-residue po-
tentials, or ui,j = uj−i approximation. This effect is local,
specific to each residue, and thus cannot explain why the
implicit solvent underestimates the helicity globally, for
each residue of the chain.

(3) Truncation of the effective potentials. The truncation
distance of 1.2 nm is sufficiently long to include all im-
portant features in the potential of mean force between
two hydrophobic moieties in water. It is thus not ex-
pected to cause artifacts.

(4) The solvation free energy is assumed to be pair-wise
additive. At the level of pair correlations, this assump-
tion is correct, ensured by the use of the procedure re-
lying on g(r). There is no guarantee, however, that this
approximation describes fully multi-body correlations.
Using helicity as an example, to be in a helical state,
a particular residue requires that two adjacent residues
are helical as well. Accordingly, helicity measures a cor-
related probability among at least three particles. Same
arguments apply to the radius of gyration. Since these
probabilities are not well reproduced by the implicit sol-
vent, it is possible that the cause of the discrepancy is
the pair approximation. We note that some multi-body
contributions are present in the model through the den-
sity dependence of the potentials. However, they may
not be enough to reproduce multi-particle correlations
with quantitative accuracy. This issue needs to be fur-
ther researched in direct estimates of the multi-particle
potentials and their contribution to the conformational
statistics.

The limitations discussed above in reference to the fold-
ing statistics also apply to simulations of protein aggrega-
tion. Here as well, the contribution of multi-body potentials
is the most difficult one to assess. Like in any atomistic
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force-field with fixed charges, the multi-body effects in our
model may turn out to be important for certain aspects of the
aggregation process. Researching these effects, however, will
be more challenging than in folding simulations. Unlike fold-
ing, ab initio simulations of complete aggregation reaction in
explicit solvent are currently out of reach and will remain so
in the foreseeable future, even for relatively small systems
and even with the help of various accelerated sampling tech-
niques. The progress in this area, therefore, will have to be
guided mostly by comparison with experiment.
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