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Abstract

Through decades of research, neuroscientists and clinicians have identified an array of brain areas
that each activate when a person views a certain category of stimuli. However, we do not have a
detailed understanding of how the brain represents individual stimuli within a category. Here we
used direct human brain recordings and machine-learning algorithms to characterize the
distributed patterns that distinguish specific cognitive states. Epilepsy patients with surgically
implanted electrodes performed a working-memory task and we used machine-learning algorithms
to predict the identity of each viewed stimulus. We found that the brain’s representation of
stimulus-specific information is distributed across neural activity at multiple frequencies,
electrodes, and timepoints. Stimulus-specific neuronal activity was most prominent in the high-
gamma (65-128 Hz) and theta/alpha (4-16 Hz) bands, but the properties of these signals differed
significantly between individuals and for novel stimuli compared to common ones. Our findings
show that the brain distinguishes specific cognitive states by diverse spatiotemporal patterns of
neuronal activity, which is helpful for understanding the neural basis of memory and developing
brain—computer interfaces.
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Introduction

Over the last century, neuroscientists have made dramatic progress towards understanding
the patterns of human brain activity that encode the properties of cognitive representations.
Whereas early work suggested that all memory representations are stored in a fully
distributed manner (Lashley, 1950; Pfibram, 1991), modern studies show that the human
brain has a modular organization, such that neuronal activity in different regions represents
separate classes of cognitive information (Warrington and Shallice, 1984; Mitchell et al.,
2008; Farah and McClelland, 1991). This work has identified a number of brain regions
where large-scale neuronal activations occur when people process specific categories of
information, such as faces (Kanwisher et al., 1997), scenes (Epstein et al., 1999), and
animals (Martin et al., 1996), among many others (Mitchell et al., 2008).

In addition to category-wide neuronal patterns, an important additional question concerns
how the brain differentiates individual memories within a category. Although human
neuroscience studies have traditionally not focused on characterizing specific cognitive
states, there is emerging evidence that individual neuronal network states can be probed
using direct human brain recordings (Quian Quiroga et al., 2005; Jacobs and Kahana, 2009;
Chang et al., 2010; Manning et al., 2012; Morton et al., In press). Here our work uses
electrocorticographic (ECoG) recordings from electrodes implanted directly on the cortical
surface of epilepsy patients undergoing invasive monitoring. ECoG electrodes directly
measure the aggregate activity of small neuronal populations with high temporal and spatial
resolutions. This makes them useful for measuring neural correlates of specific cognitive
states, which might be represented by detailed spatiotemporal patterns of neuronal activity.
ECoG is further useful because it simultaneously measures neural activity at multiple
frequencies, which is important because neural oscillations at different frequencies are
linked to distinct physiological processes (Buzsaki, 2006).

Although research suggests that the brain utilizes distributed patterns, most traditional
neuroscience research uses univariate statistical methods, which are incapable of fully
quantifying distributed signals. Here we instead use multivariate machine-learning
algorithms, which have recently emerged as a powerful technique for identifying and
characterizing distributed neural representations. Machine learning methods have most often
been used to probe brain data that were recorded noninvasively, such as functional magnetic
resonance imaging (Haxby et al., 2001; Cox and Savoy, 2003; Norman et al., 2006; Haynes
and Rees, 2006; Kriegeskorte and Kreiman, 2012; Kamitani and Tong, 2005),
electroencephalography (Simanova et al., 2010; Murphy et al., 2011) and
magnetoencephalography (Rieger et al., 2008; Chan et al., 2011). By utilizing machine-
learning techniques in conjunction with ECoG data, our work aims to bring a new level of
detail to our understanding of how the brain represents individual cognitive states.

We analyzed ECoG recordings from patients performing a working-memory task where they
memorize each of the letters in a short list (Sternberg, 1966). Previously we showed that the
amplitude of ECoG activations at 65-128 Hz at individual electrodes distinguished specific
memory items (Jacobs and Kahana, 2009). Here, we extend this work to characterize the
spectral, spatial, and temporal distribution of each stimulus’s ECoG pattern. To foreshadow
our main results, we successfully used machine-learning algorithms to decode the identities
of individual viewed letters using patterns of neuronal activity distributed across space, time,
and frequency. This provides a successful demonstration of using ECoG “mind reading” to
decode a person’s specific brain state. Further, we scrutinized the machine-learning model
computed for each patient to reveal the types of neural signals that distinguish individual
cognitive states. Our results show that individual stimuli are represented by ECoG signals at
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a range of frequencies, with prominent contributions by signals in the theta/alpha (4-16 Hz)
and high-gamma (65-128 Hz) bands.

We analyzed data from 59 patients undergoing invasive monitoring as treatment for drug-
resistant epilepsy. Each patient performed between one and ten testing sessions. We
excluded 16 patients where we collected less than 30 trials per stimulus, leaving a total of 43
patients. Our research protocol was approved by the appropriate institutional review boards
at several hospitals: Thomas Jefferson University Hospital (Philadelphia, PA), University of
Pennsylvania (Philadelphia, PA), University Clinic (Freiburg, Germany), Children’s
Hospital (Boston, MA), and Brigham and Women’s Hospital (Boston, MA). Informed
consent was obtained from patients or their guardians.

Data acquisition

Task

In each patient, we collected ECoG recordings from 15 to 160 electrodes. Electrode
locations varied across patients due to the variations in each patient’s clinical needs, but
there was an especially large number of electrodes in temporal cortex. Recording electrodes
typically consisted of two configurations: grid and strip electrodes, which are placed on the
surface of the neocortex, and depth electrodes, which penetrate through the cortex and
record from deep brain structures like the hippocampus. Electrode locations were computed
by coregistering a postoperative computed-tomography scan with a higher-resolution
magnetic-resonance image and reported in units of Talairach coordinates (Talairach and
Tournoux, 1988; Lancaster et al., 2000). ECoG activity was recorded at a sampling rate of
250-1024 Hz using Bio-Logic, XLTek, Neurofile, Nicolet, or Nihon Kohden recording
systems, depending on the testing hospital. The recording from each electrode was re-
referenced to the average of all signals from electrodes on the same grid, strip, or depth
probe. ECoG recordings were synchronized with the patient’s task behavior via optically
isolated synchronization pulses that were measured on a spare recording channel.

During each ~45-min testing session, patients participated in a working-memory task on a
bedside laptop computer (Sternberg, 1966). In each trial of the task, patients were presented
with a list of one to six letters. During this presentation portion of the trial, first a fixation
cross appeared, and then the letters were displayed sequentially on the computer screen.
Each letter was on screen for 700 ms, followed by 275-350 ms (uniformly distributed) of
blank screen, for a total of a 975-1050 ms interstimulus interval. Patients were instructed to
closely attend to each stimulus presentation and to silently hold the identity of each item in
memory. The letter lists included only consonants to prevent patients from using mnemonic
strategies, such as treating each list as a single pronounceable word. After the presentation
of each list, the response period began when a probe item was displayed after a ~2-s delay.
Then patients responded by pressing a key to indicate whether the probe was present in the
just-presented list or whether it was absent. After the key press, the computer indicated
whether the response was correct, and then a new list was presented. Individual patients
participated in different variations of the task, such that they viewed between 8 and 20
consonants. On average, across all sessions and trials, each patient viewed 584 stimulus
presentations. In cases when a patient participated in multiple task sessions, we pooled data
from multiple sessions together. We were unable to measure patients’ eye movements
because of the limitations of the hospital testing environment, but we frequently reminded
patients to fixate their gaze at the center of the laptop screen.
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Data preprocessing

Because our goal was to characterize neural activity related to recognizing and memorizing
the currently viewed letter, the data analyses presented here concern the presentation portion
of each trial (Jacobs and Kahana, 2009). ECoG recordings were resampled to 500 Hz to
provide consistency across different recording systems. We analyzed ECoG activity in the
0-800-ms time period after each letter presentation using the raw ECoG waveforms (time-
domain representation) and the Hilbert envelope for different frequency bands and time
windows (frequency-domain representation). For the time domain representation, recordings
were down-sampled to 200 Hz, high-pass filtered at 5 Hz, and notch filtered using a zero-
phase-distortion Butterworth filter at 60 Hz (United States) or 50 Hz (Europe) to remove
power-line noise. The data were normalized relative to the 200-ms baseline period before
each stimulus appearance and further down-sampled to 100 Hz. For the frequency domain
representation, we separately analyzed the amplitude of the signal in the following bands:
delta (2-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-30 Hz), low gamma (30-60 Hz),
and high gamma (60-124 Hz). Amplitude measurements in each frequency band were
obtained using bandpass filtering in conjunction with the Hilbert transform (Freeman, 2007).
To perform this procedure, first we filtered the raw ECoG signal in each range using a
second-order Butterworth bandpass filter. Next, we applied the Hilbert transform, which
yields a complex number, and then took the absolute value to extract the instantaneous
amplitude. We smoothed the amplitude measurement from each trial with a 100-ms boxcar
filter to compensate for trial-to-trial jitter (Jacobs and Kahana, 2009).

Stimulus decoding

We were interested in testing whether we could reliably decode the identity of an individual
viewed letter using simultaneous ECoG recordings and, if so, determining the types of brain
signals that represent letter-related information. The task of determining which of many
letters corresponds to a given neuronal pattern is an example of a multi-class classification
problem. We converted this task into a series of two-class classification tasks, as these can
be solved straightforwardly with various multivariate algorithms. Our algorithm that takes as
input two possible letter identities and a multichannel ECoG recording from a patient
viewing a letter in a trial of the task. The algorithm “decodes” the ECoG signal and outputs
a predicted letter, which corresponds to its estimate of the letter that was most likely to be
viewed in that recording. That is, given 7 letters, we solved a binary classification problem
for each of the n(n— 1)/2 letter pairs. This allowed us to identify how well the members of
each pair of letters could be distinguished on the basis of recorded electro-physiological
activity. For each pair of letters, in each of the A subjects, we balanced the data such that we
have an equal number of trials per letter. We then used a five-fold cross-validation technique
in which a decoding model was fitted on 80% of the data and then its performance was
tested on the remaining 20%. This was done using a subsampling procedure where each trial
was randomly assigned to a particular fold, subject to the constraint that all letters are evenly
represented. Decoding performance was averaged over folds.

For each trial, input to the decoding algorithm consisted of either the vectorized (K channels
x 6 frequency bands x 8 time windows) frequency domain representation, the vectorized (K
channels x 80 samples) time domain representation, or the concatenation of both. The time
and frequency domain representations are not necessarily independent since event-related
responses may show up as signal amplitude modulations as well as power modulations in
low frequency bands. We considered the separate representations as well as their
concatenation in order to ascertain how much stimulus-specific information is retained in
either representation relative to the concatenated representation. On average, each
concatenated input vector consisted of 9728 features (ranging from 1920 to 20480 features,
varying according to the number of ECoG electrodes, K; in that patient).
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We used elastic net logistic regression to classify the letter viewed in each trial (Zou and
Hastie, 2005). Given a trial x= (Xl,...,Xp)T, the logistic regression model represents the
probability of an outcome y € {0, 1}, denoting two letters of interest, as a log-linear function

_ _ —a—xTh
of the p predictors. That is, ? =11 =1/ (1+e )and oy=0|x=1-py=1|x
where ais an offset and 6= (41, ...,6y) Ta vector of regression coeffcients. Given a training

set {(xi,yi)}l}.\il, the elastic net logistic regression model was fitted by maximizing the
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The regularization parameter A controls the influence of the penalty term. The parameter a
controls the relative contributions of a ridge penalty (obtained when a = 0) and a lasso
penalty (obtained when a = 1). The ridge penalty typically works well when there is strong
co-linearity between the predictors whereas the lasso penalty produces parsimonious models
and thus performs automatic variable selection. The elastic net has been shown to inherit
desirable properties of both penalization methods (Zou and Hastie, 2005; Carroll et al.,
2009). Particularly, if a group of variables is both strongly correlated and highly predictive
then the elastic net will select all members of that group. In contrast, the lasso will often
select only one member of that group. This is important since we are interested in
identifying a sparse set of features in the data that allow decoding while ensuring that no
such predictive features are being ignored. The mixing parameter a is usually fixed by the
user whereas the A parameter is typically chosen such as to optimize decoding performance
based on a nested cross-validation that operates only on the training data. In this paper, we
chose a = 0.9, which should lead to the creation of sparse models that are robust in the
presence of co-linearity, and used five-fold cross-validation to find the optimal value for A
for each patient. Elastic net logistic regression not only produces sparse, and therefore
interpretable, decoding models but can also be trained very efficiently using a cyclical
coordinate descent method (Friedman et al., 2010).

Quantification of decoding performance

We measured the decoding performance of each model by measuring the accuracy when the
model was used to classify which of two letters correspond to a given ECoG signal. We used
a binomial test to determine whether a particular letter comparison was significant. This test
gives the probability of observing sor more correctly classified trials out of a total of
trials, given that the probability of a succesfull classification is 0.5. There are n(n—1)/2
comparisons for each subject. The results for a particular subject are said to be significant
under the binomial test if at least one of the letter comparisons is significant after a
(conservative) Bonferroni correction. To determine which components of each patient’s
ECoG signals contained useful information for letter decoding, we used the absolute value
of the vector of regression coefficients b, averaged over cross-validation folds. In order to
assess whether outcomes between different conditions were significantly different, we
computed, for each subject, the log mean classification accuracy over letter pairs. We took
only those pairs whose accuracy exceeded 0.55 in either one of the conditions, thereby
ignoring chance level responses for particular letter pairs. We then used the difference
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between the log mean classification accuracy as input to a t-test. Differences were declared
significant for p < 0.05, while correcting for multiple comparison.

Assessing interpatient differences in stimulus representations

Results

We were interested in testing for differences in the types of neural signals that represent
letters between individual patients. To examine this, after computing each patient’s letter-
decoding model, we used a permutation procedure to quantitatively assess whether there are
interpatient differences in the types of features, across time and frequency, that represent
letter-related information. Some variations in the types of features that encode letter-related
information are naturally expected due to random variations. Thus, this permutation
procedure measured whether the apparent interpatient differences in the nature of letter
representations were statistically robust.

We first summarized the features that represented stimulus-specific information in each
patient by computing the patient’s spatiotemporal signature (STS). The STS summarizes the
type of features that were used for decoding in each person. It is computed as the mean
proportion of electrodes, at each timepoint and frequency, that have a significant feature for
at least one letter classification. By comparing STS vectors between individuals, we tested
the hypothesis that there are significant variations between the types of features that
represent letter information in different patients’ brains. We tested for significant
interpatient differences in STSs by computing our test statistic, which is the mean pairwise
Euclidean distance across all possible combinations of STSs from different patients. To
assess significance we calculated this same statistic using 1000 random surrogate datasets, in
each of which we shuffled electrodes between patients and then we recomputed STSs. We
then computed the p value for the entire procedure by measuring the rank of the true test
statistic in the distribution of the random test statistics.

Our main goal was to test whether we could identify neural patterns that differentiated the
encoding of individual stimuli into memory. In the following, we describe decoding results
and identify the types of neural signals—across time, frequency, and space—that
contributed to the decoding.

Decoding performance

We used a regularized logistic-regression classifier to predict the letter viewed in each trial
of the memory task for each of 43 subjects. The classifier was configured to predict each
letter’s identity using both time- and frequency-domain ECoG signals. We successfully
decoded the viewed letter at significantly above-chance levels in 18 subjects (42%; Figure
1A). We focus on this subset of the patients throughout the rest of this paper.

To examine if there was a trend in which certain letters could be decoded especially well, we
separately computed the mean decoding accuracy for each letter, averaged over subjects
(Figure 1B). This analysis revealed that decodability was strongly dependent on letter
identity. In order to gain more insight into this phenomenon, we analyzed data separately for
German- and English-speaking patients, and ordered letters in each language according to
their frequency of occurrence in the patient’s native language (Beutelspacher, 2005; Beker
and Piper, 1982). Overall, rare letters could be discriminated more accurately than common
letters (p < 0.05). This was established by splitting all letters into two groups according to
their letter frequency, and comparing classification accuracy between these groups using a
group-level binomial test. Notably, for German subjects, we found that the most infrequent
letter, ‘Q,” was especially discriminable. In general, the relatively increased discriminability
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of rare letters suggests that these novel stimuli are represented by distinctive patterns of
ECoG activity (see Discussion).

Spectro—temporal characterization of the neural representations of letters

Next, we were interested in characterizing the types of ECoG signals that differentiated

individual cognitive states. By examining the regression coefficients from the machine-

learning models, it revealed the frequencies, time-points, and brain regions where ECoG
activity is particularly informative for distinguishing individual stimuli.

Figure 2A characterizes the distribution of letter-related ECoG information in recordings
from these patients, by showing the frequencies and timepoints where the decoding model
estimated large regression coefficients, aggregating across electrodes, patients, and letters.
Letter-specific information was most evident in ECoG signals at 200 to 300 ms after letter
appearance. This is consistent with psychological studies showing that letter recognition has
a latency on this timescale (Sternberg, 1969). In the frequency domain, we observed
contributions of letter-related ECoG activity at various bands, but this activity peaked in the
high-gamma (65-128 Hz) and theta/alpha (4—-16 Hz) bands. There was a difference in the
timecourses of letter-related theta/alpha and high-gamma activity, with letter-related theta/
alpha activity lasting only until ~400 ms after letter onset whereas the high-gamma signals
lasted until ~500 ms. Note that decoding performance in the delta band may have been
reduced since these low-frequency power estimates might carry information from multiple
events. In the time domain, ECoG signals were less strongly predictive of letter identity and
appeared at a limited range of latencies (~150-300 ms). Thus, oscillatory ECoG signals for
representing letter-related activity were more informative and longer in duration than time-
domain signals. These results indicate that the ECoG signals that represent letter-related
information appear in a fairly limited set of time intervals (~100-400 ms) but are distributed
across a broad range of frequency bands from theta to high-gamma, as well as time-domain
waveforms.

In addition to examining the magnitudes of the model coefficients, a more rigorous way to
understand how particular frequency bands or time windows contribute to the decoding is to
use only features belonging to those bands or windows as input to the classifiers. Figure 2B
compares the proportions of letter pairs that could be significantly decoded (binomial test, p
= 0.05, Bonferroni corrected) using different groups of ECoG signals: each frequency band
individually, all frequencies combined, and time-domain signals. Consistent with Figure 2A,
of any single frequency range, the high-gamma band exhibited the best decoding
performance, followed by the theta and alpha bands. The high-gamma band produced
significantly greater decoding performance than the low-gamma band and the theta band led
to significantly greater performance than the delta band. Further, when we allowed the
model to integrate information from multiple frequencies, decoding performance
significantly increased by 140% compared with the best individual band. This improvement
indicates that brain signals at different frequencies encode independent stimulus-related
information. Likewise, performance was better for the frequency-domain representation
compared with the time-domain representation, though this comparison did not reach
statistical significance.

Figure 2C shows the results of an analogous analysis comparing decoding performance
between different time windows. This analysis revealed that the single time interval with the
most robust decoding performance is 200—300 ms, confirming the pattern indicated in
Figure 2A. When comparing the outcomes for consecutive time windows, differences ceased
to be significant about 500 ms after stimulus presentation. The time-domain signals also
achieved good decoding performance, but we chose to focus on frequency-based signals in
the remainder of this paper because frequency-based signals led to improved decoding
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performance and because they are better understood in terms of underlying neuronal activity
(Buzsaki et al., 1983; Eeckman and Freeman, 1990; Logothetis et al., 2001; Jacobs et al.,
2007).

Subject-specific spatiotemporal patterns

Because our ECoG decoding model is customized for each patient, it provides a coherent
framework for comparing the types of signals that represent letter-related information across
patients. The analyses described above revealed that letter-related activity is most reliably
encoded by ECoG signals at theta/alpha and high-gamma frequencies (Figure 2). We were
interested in determining whether this trend was consistent across patients, as previous work
showed significant variations in the properties of neural oscillations observed from different
individuals (Doppelmayr et al., 2000; Jacobs et al., 2007; Vinck et al., 2010; van Pelt et al.,
2012; Klimesch et al., 2003).

To compare patients’ letter-related ECoG signals, we first computed each patient’s spectro—
temporal “signature” (STS; see Methods). The STS measures, for each patient, the
proportion of electrodes at each frequency and timepoint that contributed towards decoding
at least one letter pair. Figure 3 illustrates the STS for twelve representative patients. In
these plots, the shading at each timepoint/frequency indicates the proportion of electrodes
where ECoG activity contained significant letter-related information. Visually, the spectro—
temporal signatures from individual patients appeared quite different, suggesting that there
is dramatic interpatient variability in the types of brain signals that represent stimulus
information. These examples suggest that some patients exhibit letterrelated ECoG activity
only at low frequencies, others only at high frequencies, and some at both.

We used a permutation procedure to test whether the apparent differences in STSs from
different people were statistically robust, based on measuring Euclidean distance between
STS pairs (see Methods). This analysis revealed that STSs from different people were
indeed more variable than expected by chance. Thus, there are statistically robust
differences in the types of ECoG signals (across time and frequency) that encode stimulus
information between separate individuals (p < 0.001). To control for apparent variations
caused by intersubject differences in the locations of electrode placements, we separately
performed a follow-up analysis that included only electrodes from particular brain lobes.
The intersubject differences remained robust when each lobe of the neocortex was analyzed
separately (p’s < 0.05). Thus, the interpatient differences we observed were not caused by
clinical variations in electrode placement.

Spatial characterization of stimulus representations

We next studied the spatial distribution of letter-related information throughout the cortex.
Although our dataset included patients with electrodes implanted in widespread regions,
there was most extensive coverage in the temporal lobe, especially in the left hemisphere
(Figure 4A). We first computed the involvement of each brain area in representing letter-
related information by computing the mean absolute model coefficient for the electrodes
from each Brodmann area (Figure 4B). This measure peaked in the occipital lobe. This is
consistent with the notion that electrodes in occipital regions, including primary visual
cortex, consistently encode information about many letters because they represent
information related to visual perception (Jacobs and Kahana, 2009).

It is possible that neurons in a region represent letterrelated information in a sparse manner.
In this scheme, only a subset of the electrodes in an area would encode letter information
and each of these sites would represent only a few letters. In our decoding model, these
sparse representations would appear as regions that have a large maximum absolute model
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coefficient within each patient but a low mean absolute model coefficient, because a small
proportion of the potential coefficients were informative for decoding. To identify these
sparse representations, for each patient, we also computed the maximum absolute model
coefficient of all the electrodes within each Brodmann area, collapsing across time and
frequency (Figure 4C). By comparing the mean and maximum model coefficients, one can
isolate the regions that represent letter information sparsely. The primary difference between
Figures 4B&C is that only Figure 4C contains a peak in the left temporal lobe. This suggests
that the left temporal lobe is specifically involved in representing letter information in a
sparse manner Martin and Chao (2001). In contrast, the occipital lobe appears in both
Figures 4B&C. This could indicate that multiple occipital electrodes in each patient
significantly encode letter information. However, we note that our ability to observe sparse
coding in the occipital lobe is relatively lower than other areas due to low electrode
coverage. This low electrode count may have the effect of artificially reducing the difference
between mean and maximum coefficients.

Next we compared whether separate electrodes that significantly encode letter information
in the same patient are representing similar or independent information. Previous fMRI and
scalp EEG studies identified large, homogeneous activations for cognitive stimuli, which
would likely appear at multiple ECoG electrodes (Chao et al., 1999; Morton et al., In press).
Here we tested whether separate ECoG electrodes are measuring the same or independent
letter-related information by comparing decoding accuracy between single electrodes and
different quantities of simultaneous electrodes. Figure 5A shows the decoding performance
that can be achieved by separately examining individual electrodes in each patient. On
average, decoding from the most informative electrode achieves 91% of the peak decoding
accuracy. This number decreases to 34% for the second-most-informative electrode. This
suggests that letter-related information is relatively focused spatially, such that only a small
number of electrodes in each patient contain significant information. Next we examined
whether different electrodes encode independent letter-related information by comparing
performance across different numbers of simultaneous electrodes (Figure 5B; see Methods).
Compared to a model that used all electrodes, accuracy decreased by 36% when only one
electrode was used for decoding. Because decoding accuracy increased substantially with
multiple electrodes, this indicates that the neural representations of individual stimuli are at
least partially distributed, as suggested by theoretical models and empirical findings
(Lashley, 1950; Freeman, 1975; Hoffman and McNaughton, 2002).

For illustrative purposes, we show the structure of our decoding model in detail for two
example patients. Figure 6A&B illustrates the decoding accuracy that can be achieved from
a series of univariate decoding models that separately measure each electrode individually.
Note that the electrodes that elicit significant decoding performance (warm colors) were
spatially clustered. This indicates that individual patients have small clusters of electrodes
that reliably distinguish multiple letter pairs (cf. (Jacobs and Kahana, 2009)). The
subsequent plots (Figure 6C&D) show in detail the model coefficients at each electrode that
produced this significant decoding pattern for several letter pairs. At each of these sites,
decoding is driven by ECoG signals at a diverse set of timepoints and frequencies that is
generally focused in the theta/alpha and high-gamma bands at a latency of about 200-300
ms.

Discussion

By using a multivariate decoding framework to probe human ECoG signals related to
individual brain states, our work has revealed that the brain differentiates individual
cognitive states through a diverse pattern of neuronal signals that are focused in the theta/
alpha and high-gamma bands. Critically, our work used a logistic-regression decoding
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framework, which provided models that were interpretable in terms of the underlying neural
signals. Below we summarize our main findings and describe their implications for our
understanding of how the human brain encodes individual neural representations.

We observed significant levels of stimulus-related information at a wide range of
frequencies, consistent with the recent findings of broadband ECoG signals in the human
brain (Miller et al., 2007, 2009; Manning et al., 2009). However, in particular, the single
frequency band that contained the most stimulus-related information was the highgamma
band. This is consistent with work highlighting the important functional role of this signal
(Crone et al., 1998; Jacobs and Kahana, 2009; Jacobs et al., 2012) and its close link to
neuronal spiking (Manning et al., 2009; Ray et al., 2008). Research suggests that these high-
gamma patterns may reflect broadband fluctuations that are not truly oscillatory in nature
(Manning et al., 2009; Miller et al., 2009). One possibility is that broadband power increases
co-occur with diffuse alpha-band power decreases (Miller et al., 2007, 2009). This alpha-
band variability could cause the appearance of letter-related activity that is specific to the
high-gamma band, as we observed, even though letter-related information is actually
represented by broadband patterns. Thus, an important area of research is to distinguish the
stimulus-related patterns that are related to true brain rhythms from those that instead reflect
nonoscillatory neuronal spiking rates.

We also found a large level of stimulus-related information in the theta and alpha bands.
Although theta oscillations have been shown to play an important and diverse role in
neuronal coding (Buzsaki, 2002), generally these fluctuations are implicated in coordinating
neuronal timing via phase coding (e.g., (O’Keefe and Recce, 1993)), rather than representing
information via amplitude modulations. Thus, it is unexpected that we found here that theta
oscillations vary in amplitude to distinguish individual letters. Fully characterizing the
functional role of theta oscillations in human cognition is an important challenge going
forward; our findings here indicate that theta oscillations have a broader functional role than
thought previously.

A surprising feature of our results was that we were better able to decode rare letters
compared with common ones. This suggests that infrequent letters are represented by
distinctive neural patterns that stand out compared with the ECoG representations of
common stimuli. This result has implications for designing brain—-computer interfaces that
recognize specific brain states, by suggesting that decoding performance will increase when
rare stimuli are used. In addition, this pattern also may help explain the established word-
frequency effects in which humans have better recognition memory performance for rare
stimuli compared with common ones (Gorman, 1961). Our findings provide a neural
explanation for word—frequency effects by suggesting that people’s improved memory for
rare items occurs because these items are represented by distinctive neural patterns that have
only a minimal overlap compared with the neural representations of common items. Thus,
these distinctive neural representations may minimize interference and allow rare stimuli to
stand out. An alternate explanation for these patterns is that the high decodability of rare
letters is driven by a generic brain signal for surprising events (Squires et al., 1975), rather
than detailed neural differences for rare items. Our stimulus set was not designed optimally
to test this, as there are only a small number of truly rare letters, and thus this is an important
issue for future work.

When we compared decoding models between patients, we found significant diversity in the
types of signals that encoded letter-related information between individuals. Previous studies
have reported moderate individual differences in neuronal oscillations, generally focusing on
variations in the frequency or amplitude of a particular functionally defined oscillation, such
as the alpha or gamma rhythms (Klimesch et al., 2003; van Pelt et al., 2012). Here, we found

Neuroimage. Author manuscript; available in PMC 2014 April 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

van Gerven et al.

Page 11

that the ECoG patterns that distinguish individual letters di er dramatically across
individuals, both in the time and frequency domains. Thus, it is likely that these patterns,
ranging from 2 to 128 Hz, reflect physiological signals that are fundamentally distinct. Thus,
stimulus-specific brain patterns are not encoded by a single fixed type of oscillation but
instead reflect a range of diverse electrophysiological brain mechanisms. An interesting area
of future research is determining the factors that cause separate individuals to represent
cognitive information via unique physiological signals and testing the potential behavioral
consequences of these differences. The level of intersubject diversity that we observed might
be unexpected, given a range of fMRI studies that report brain activations with consistent
spatial properties across patients (Kanwisher, 2010), and the finding that neural activity in
one patient can be used to decode activity from a different individual (Mitchell et al., 2008).
One possibility is that many significant interindividual differences in brain function are only
visible with electrical recordings like ECoG, rather than with fMRI.

When looking at individual letter pairs, we found that different letter pairs could be
effectively decoded from activity in multiple frequencies at a small number of electrodes.
These electrodes were mainly located in occipital cortex, but for some subjects these
electrodes could be widely distributed (cf. Subject 1 in Figure 6). These results point
towards the notion that stimulus-specific representations are sparsely encoded across cortex
in a small number of localized areas that, when measured using conventional ECoG
techniques, happen to be targeted by a few electrodes. There may be important distinctive
organizational schemes for the coding of detailed stimulus information within these areas
(Dehaene and Cohen, 2007; Op de Beeck et al., 2008b), but higher-resolution techniques
would be necessary to observe these patterns (Kellis et al., 2009; Worrell et al., 2012). More
broadly, the fact that we found small, localized patterns of stimulus-specific activity seems
to point away from strong distributed theories of brain function proposing that brain states
are represented homogeneously across brain-wide neuronal networks (Lashley, 1950;
PFibram, 1991).

More generally, it might be considered surprising that we were able to decode information
about individual brain states from ECoG electrodes, rather than from microelectrodes that
measure individual action potentials (Quian Quiroga et al., 2005). The ECoG electrodes that
we used record from ~2.5-mm? contiguous areas of cortex. Thus, the fact that stimulus-
specific activity appears in these recordings indicates that there are millimeter-scale clusters
of neurons in the human brain with similar sensitivities to individual stimuli. It has
previously been suggested that there are patterns of synchronized oscillations that represent
cognitive information via amplitude modulations (Freeman and Schneider, 1982; Ohl et al.,
2001), and thus one possibility is that our ECoG electrodes are measuring portions of these
signals. In addition, other studies have identified various topographical organization
schemes for cortical areas that represent distinct types of behavioral information, such as
clusters of neurons corresponding to similar faces or percepts (Bonhoeffer et al., 1991; Op
de Beeck et al., 2008a; Dahl et al., 2009). These types of neuronal clustering patterns could
explain how we were able to measure stimulus-specific activity with standard ECoG
electrodes, if a cluster of neurons with similar patterns of letter sensitivities happened to be
arranged underneath a particular electrode.

Although this work focused only on neural correlates of perceived letters, we think it is
likely that ECoG recordings contain analogous patterns for representing various types of
specific cognitive information. In fact, recent ECoG studies reported a number of other
stimulus-specific signals, including abstract concepts related to a patient’s past experiences
(Jacobs et al., 2012), perceived phonemes (Chang et al., 2010), and perceived words (Kellis
et al., 2010; Pasley et al., 2012). Because these diverse patterns were visible with ECoG
electrodes, it suggests that there are distinct spatial clusters of neurons that represent various
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types of cognitive information in the human brain. It remains to be tested whether there are
specific organizational principles that dictate the spatial organization of the neurons that
represent this information. Previous work found that stimulus-specific information in the
highgamma band is only present at the sites that exhibit an overall increase in activity
compared to the baseline (Jacobs and Kahana, 2009); see also (Mur et al., 2012). Thus, one
promising way to predict the ECoG sites that encode stimulus-specific information is to
identify the sites that show overall increases in high-gamma activity when a patient views
items from that category.

By showing that it is possible to probe the neural representations of individual brain states in
detail, our work has implications for both basic neuroscience research and for brain—
computer interface (BCI) development. Most previous research on the neural basis of
cognition has indirectly tested various theories of brain function by identifying neural
patterns that are associated with large-scale classes of behavior (Polyn et al., 2005). This
work is extremely useful, but we feel that a more detailed type of work is now possible. By
tracking the neural network states that correspond to specific stimuli, we think it will allow
researchers to test computational theories at a higher level of detail than was previously
possible (e.g., (Bedny et al., 2007; Manning et al., 2012)). An important open question
remains whether the neural representation of individual stimuli persists in the absence of
external stimulation, such as during working memory maintenance. We were unable to
address this question using the current experimental design given the short intervals between
individual stimulus presentations. We aim to address this question in future research.
Finally, following the neural representation of individual brain states offers the potential of
allowing brain—computer interfaces (BCIs) to operate more efficiently. Many current BCls
require users to initiate actions by activating one of a fixed number of arbitrary behavioral
states that usually correspond to very broad categories. Instead, by triggering actions based
on the ECoG representations of individual neural network states, it could make these
systems more intuitive by directly decoding the user’s desired action rather than requiring
the use of an intermediate brain state.
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Figure 1.

Decoding results at the group level. A. Decoding performance over all significant subjects
ordered according to minimal pvalues. The central mark in each box denotes the median
classification accuracy. Edges of the box denote the 25th and 75th percentile. Whiskers
extend to the most extreme datapoints not considered outliers. Outliers are plotted
individually. Subjects 1 to 18 showed significant decoding performance (binomial test, p <
0.05, Bonferroni corrected for multiple comparisons). B. Letter decoding accuracy averaged
over subjects that showed significant performance. Letters are ordered according to
ascending frequency of occurrence, separately for German subjects (subjects 1-3, 11, 17 and
18) and English subjects (subjects 4-10 and 12-16). Black horizontal bars denote the
average accuracy with which letters could be decoded from other letters.
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Figure2.

Spectral and temporal contributions to successful decoding. A. The importance map shows
frequency domain and time domain contributions (absolute weights) to successful decoding
as a function of time. Contributions were averaged over channels and summed over
significant outcomes in each subject. Subsequently, results were normalized per subject and
averaged over subjects. Black horizontal bars indicate relative contributions by the
frequency domain and time domain representations. Black vertical bars indicate relative
contributions by the frequency domain representation across time. B. Proportion of letters
pairs that showed significant decoding performance when using subsets of the available
frequency domain and time domain features instead of all features. Significant differences
are indicated by an asterisk. C. Proportion of letters pairs that showed significant decoding
performance when using individual time windows based on the frequency domain
representation. Proportion is again computed relative to the number of significant letter pairs
obtained when using all features. Statistically significant differences are indicated by
asterisks.
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Figure4.

Spatial contributions to successful decoding for models based on frequency domain
components. Only significant letter pairs were used (binomial test, p= 0.05, corrected). A.
Coverage shows the total number of electrodes assigned to a particular region. B. The
average shows the normalized contributions where we took the mean absolute value of the
regression coefficients for all electrodes from each brain region. C. The maximum shows the
normalized contributions where we took the maximum over the regression coefficients
belonging to a particular brain region. For each brain region, maxima and averages were
computed by considering all regression coefficients belonging to a certain letter pair, fold,
subject, time window, frequency and electrode, as long as the corresponding electrode
belonged to that brain region.
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Figureb5.

Spatial contributions to successful decoding for models based on frequency-domain
components. Error bars indicate standard error of the mean. A. Proportion of letters pairs
that could be significantly decoded from various electrodes individually. B. Contributions of
electrodes to decoding of letter pairs. Electrodes were sorted according to decreasing
contribution in terms of the magnitude of their regression coefficients. Subsequently, the
proportion of letter pairs that could be significantly decoded was computed for one to ten
electrodes and reported relative to the performance of the full model that used all electrodes.
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A & B. Spatial, spectral and temporal contributions to the decoding for unique letter pairs in
two representative subjects. Contributions by individual channels were given by the single-
electrode decoding performance in terms of the number of significant letter pairs. C & D.
Spectro-temporal contributions of the estimated regression coefficients, averaged over folds.
Results are given for that electrode which contributed most to the decoding in each subject.
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