
The functional impact of cancer-associated 
mutations
Mutations give rise to cancerous cells by affecting genes. 
For example, ‘gain of function’ mutations in oncogenes 
such as EGFR and KRAS promote tumor progression, 
and ‘loss of function’ mutations in the tumor-suppressor 
gene TP53 promote cancer by dysregulating the cell cycle. 
Mutations that provide a selective growth advan tage to the 
cancer cell are called ‘driver’ mutations. ‘Passenger’ muta-
tions, by contrast, are present in cancer genomes but do 
not give such a growth advantage.

Identifying driver genes is important for clinical appli-
cations. If certain mutations are present in specific 
cancer-associated genes, then the cancer drugs that 
target these genes and their respective pathways might 
behave differently, thus affecting the treatment outcome. 
For example, the BRAF gene encodes a serine/threonine 
kinase and is known to contain activating somatic 
mutations in melanomas, colorectal cancer and other 
cancers [1]. In a metastatic colorectal cancer study, it was 
reported that none of the patients with BRAF mutations 
responded to treatment with the drugs panitumumab or 
cetuximab [2]. Thus, activating somatic mutations can 
affect drug sensitivities.

Identifying driver and passenger mutations
When sequencing a cancer genome, somatic single base 
substitutions can number in the tens of thousands [3]. 
Sifting through these somatic single nucleotide variants 
(SNVs) to pin down the few driver mutations implicated 
in cancer is a challenge. Most researchers concentrate on 
the somatic mutations that cause missense changes in 
gene products. This focus helps to reduce the number of 
mutations for further investigation.

To achieve the ultimate goal of distinguishing driver 
mutations from passenger mutations, one approach is to 
sequence many cancer samples and then identify the 
highly mutated genes and/or the recurrent mutations 
across all of the samples. The disadvantage of this 
approach is that many cancer samples need to be 
sequenced, and it is not straightforward to prioritize 
genes with a small number of somatic mutations. To 
supplement this approach, one could look at the severity 
of the mutations in the gene and assess whether they 
change the gene’s function. It may be possible to detect 
driver genes in addition to the frequently mutated genes 
by using this supplementary approach. In this way, some 
of the genes with a smaller number of mutations would 
gain stronger support as cancer-causing genes as opposed 
to background noise [4].

In the past, researchers have used tools such as 
PolyPhen and SIFT to assess the effect of mutations on 
protein function. Although these tools are generally 
useful, they are not trained specifically to identify driver 
mutations in cancer. Recently, prediction tools that 
evaluate which mutations specifically drive cancer have 
been developed. In Table 1, we list some of these publicly 
available cancer-specific tools. For example, CHASM [4] 
ranks somatic missense SNVs according to their putative 
tumorigenic impact. CHASM uses a machine-learning 
algorithm that has been trained on approximately 50 pre-
computed features to distinguish drivers from passenger 
mutations. CHASM uses a specific passenger mutation 
rate for each type of cancer. Another example is 
CanPredict [5], which was one of the first tools for 
predicting cancer-associated mutations and applies gene 
ontology knowledge.
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In this issue of Genome Medicine, Abel Gonzalez-
Perez, Jordi Deu-Pons and Nuria Lopez-Bigas [6] have 
developed a computational method called transFIC 
(TRANSformed Functional Impact for Cancer) to predict 
somatic mutations that are putative drivers of tumori-
genesis. The authors made the initial observation that 
cancer-associated genes are less likely to have deleterious 
germline variation than genes that are not involved in 
cancer. Based on this observation, transFIC first looks at 
the scores generated by a missense prediction tool such 

as SIFT, PolyPhen-2, MutationAssessor [7] or CHASM. It 
then normalizes the initial prediction scores by taking 
into account a gene’s tolerance to deleterious germline 
variation. The transformed scores are used to rank the 
somatic mutations that have functional effects, and 
muta tions with higher transFIC scores are considered 
candidate cancer drivers. This process improves the 
perfor mance of the original scores from pre-existing 
tools, by approximately a twofold to sevenfold increase in 
the Matthew’s correlation coefficient, on various datasets.

Table 1. Available cancer missense mutation prediction tools

Toola User interface URL User input Highlights Output

CHASM [4] Stand-alone 
software, 
website

http://wiki.chasmsoftware.
org/index.php/Main_Page
and
http://www.cravat.us/

Genomic coordinates in 
space
or
Tab-delimited format. RefSeq, 
CCDS or Ensembl identifiers, 
together with the respective 
amino acid change

Passenger mutation rate 
information is available for 
specific types of cancer

Gene annotation
CHASM score
COSMIC annotation

CanPredict [5] Website http://research-public.gene.
com/Research/genentech/
canpredict

Protein sequence and a list of 
amino acid changes
or
A list of RefSeq accession 
identifiers with amino acid 
changes

Users can simultaneously 
analyze various 
combinations of 
mutations in a single 
protein sequence
Batch submission is 
available only with protein 
RefSeq identifiers

Impact prediction
SIFT score and alignment
Pfam domain and GO 
analysis

transFIC [6] Web service, 
stand-alone, 
website 

http://bg.upf.edu/transfic Genomic coordinates
or
Protein coordinates

Users can upload up to 
300 mutations at a time 
and run up to 20 jobs (on 
the website)

Gene annotation
Transformed prediction 
scores from SIFT, PolyPhen-2, 
MutationAssessor and 
CHASM
COSMIC and/or dbSNP 
annotations

MutationAssessor 
[7]

Website, Web 
API

http://mutationassessor.org Genomic coordinates
or
Protein coordinates

Users can analyze a list 
of mutations (on the 
website)
Batch submission is 
available

Functional Impact score
Link to three-dimensional 
protein structure
UniProt and RefSeq 
identifiers
Cancer Gene Census and 
COSMIC annotations
Gene and protein domain 
annotations

MuSiC [8] Stand-alone http://gmt.genome.wustl.
edu/genome-music

Mapped reads from a set of 
tumor and normal sample 
pairs in BAM format
Predicted or validated SNVs 
and indels from the cohort in 
MAF format
Regions of interest to 
users (such as exon-intron 
boundaries) in BED format
Any available clinical 
information

Users can analyze whole 
genomes and/or exomes

Significantly mutated genes 
and/or pathways
Annotations for known 
databases
Links mutations to user-
provided clinical information

aThis list is not exhaustive. API, Application Programming Interface; BAM, binary SAM; BED, Browser Extensible Data; CCDS, Consensus CoDing Sequence Project; 
CHASM, Cancer-specific High-throughput Annotation of Somatic Mutations; COSMIC, Catalogue of Somatic Mutations in Cancer; dbSNP, Single Nucleotide 
Polymorphism database; GO, Gene Ontology; indel, insertion/deletion; MAF, Mutation Annotation Format; MuSiC, Mutational Significance in Cancer; PolyPhen, 
Polymorphism Phenotyping; RefSeq, Reference Sequence; SIFT, Sorting Intolerant From Tolerant; SNV, single nucleotide variant; transFIC, TRANSformed Functional 
Impact for Cancer; UniProt, Universal Protein Resource; URL, Uniform Resource Locator.
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In summary, the transFIC prediction tool reported by 
Gonzalez-Perez et al. has many user-friendly features to 
discriminate cancer driver mutations from mutations 
that are neutral. TransFIC could be of great use to the 
cancer research community because it improves the 
functional impact scores of four well-known tools and 
uses these transformed scores to prioritize mutations. 
This tool also has the potential to be useful in cancer 
resequencing projects to predict the functional impact of 
somatic cancer mutations.

Beyond driver mutations
The validation of driver mutations will be easier in the 
future because lower sequencing costs will allow the deep 
sequencing of tumor samples. Because driver mutations 
are expected to occur early in the development of cancer 
cells, these mutations will tend to be present at higher 
frequencies in a cancer sample than passenger mutations, 
which occur later. Deep sequencing provides better esti-
mates of mutation frequencies compared to sequencing 
at medium coverage and therefore deep sequencing helps 
distinguish driver and passenger mutations.

After distinguishing these two types of mutations, it is 
crucial to pinpoint the key cancer-causing genes and 
pathways. Software packages such as MuSiC [8] and 
MutSig [9] aid in this step by prioritizing genes that are 
significantly mutated. These packages identify frequently 
mutated genes, pathways and gene families across a 
group of patients for various cancer types, and they also 
highlight clinically relevant mutations. This entire 
process could allow better treatment. For example, the 
My Cancer Genome website [10] captures cancer varia-
tion and the reported drug responses for various cancers. 
This information can then make doctors aware of the 
outcome of a patient’s drug response based on the 
patient’s genotype. Discovery and distribution of this 
knowledge will lead to improved personalized cancer 
treatment.
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