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Abstract
Proton transport is one of the most important and interesting phenomena in living cells. The
present work proposes a multiscale/multiphysics model for the understanding of the molecular
mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum
mechanically via a density functional approach while implicitly model other solvent ions as a
dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in
the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular
structure and its charge polarization on the proton transport is considered explicitly at the atomic
level. We formulate a total free energy functional to put proton kinetic and potential energies as
well as electrostatic energy of all ions on an equal footing. The variational principle is employed
to derive nonlinear governing equations for the proton transport system. Generalized Poisson-
Boltzmann equation and Kohn-Sham equation are obtained from the variational framework.
Theoretical formulations for the proton density and proton conductance are constructed based on
fundamental principles. The molecular surface of the channel protein is utilized to split the
discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/
continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to
Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space
techniques are utilized to implement the proposed model in a computationally efficient manner.
The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton
transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic
characteristics of the GA channel is analyzed with a wide range of model parameters. The proton
conductances are studied over a number of applied voltages and reference concentrations. A
comparison with experimental data verifies the present model predictions and validates the
proposed model.
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1 Introduction
Proton transport is of central importance and plays a major role in many biochemical
processes, such as cellular respiration, ATP synthase, photosynthesis and denitrification
[28]. Energy transduction in a bioenergetic system requires the generation of large proton
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concentration gradients. For example, the chemical energy is stored as proton gradient that
drives the ATP generation in mitochondria. For plants, light energy is transduced into a
proton gradient to create ATP in chloroplasts [20]. Another important function of voltage-
gated proton channels occur in phagocytes, such as human neutrophils, during the
respiratory burst process. The proton efflux through the proton channels balances the
electron movement generated by the NADPH oxidase and assists the production of
extracellular reactive oxygen species that kill bacteria. However, main mechanism of proton
transport is not fully understood yet [42], with the belief that the proton has distinguished
properties from those of other cations and has significantly different conductivity. The
motion of regular ions in solvent is usually described as diffusion, while the proton is
interchangeable with protons that form water molecules, then it may translocate through a
succession of hops in the hydrogen-bond network as indicated by the Grotthuss theory [33].
The proton has the lightest mass among all ions and an effective radius that is at least 105

smaller than other ions because the H+ has no electron [20]. The light mass and tiny size
greatly facilitate proton transfer reaction and electrostatic interactions with surrounding
molecules [32]. Due to these unique physical properties, the mobility of protons in bulk
solution is about fivefold higher than that of other cations [2]. The proton permeation across
the membrane is also quite different. Regular ions are prohibited to permeate the membrane
because of the huge energy barrier formed by the bilayer. They can only transport through
the membrane with the assistance of ion channels, which form water pores and guide ions by
diffusion and electrostatic potentials.

Transport pathways of proton across the membrane can have various mechanisms. Protons
can achieve the translocation by means of hydrogen-bonded chain (HBC) [22], which may
consist not only water molecules, but also side groups of amino acids capable of forming
hydrogen bonds. In this sense, proton can transport through the membrane when the row of
water molecules is not continuous, since the HBC can be connected by the one from side
chains of amino acids of membrane proteins. Moreover, proton may permeate phospholipid
membrane even when membrane proteins are absent. For example, a chain of water
molecules could happen to line up across the membrane due to thermal fluctuations [23] and
provide the HBC to conduct protons. Naturally, protons can transport in water-filled channel
pores as well, such as the Gramicidin A (GA) and other “normal” cation-selective channels.
However, transport motion of protons in the narrow channel pore is quite different from that
in the bulk solvent. Since the length and angle of hydrogen bonds are critically important,
the geometry of the membrane channel pore plays an essential role. It has been pointed out
that the proton transport in a narrow water-filled pore might behave more like proton
conduction in ice than in liquid water because water molecules inside heavily confined
spaces are greatly restricted in the sense of diffusion and reorientation, i.e., the water inside
narrow channels is to some extent “frozen” [6, 38]. Meanwhile, some physical properties,
such as the polarizability of water and diffusivity of proton decrease with the diameter of the
confined space [4]. There is general consensus that any restriction of water mobility in the
channel pore will tend to reduce proton mobility. One more mechanism for proton transport
is voltage-gated proton channels, which are extremely H+ selective, large temperature
dependent channel proteins. Voltage-gated proton channels are usually not water-filled pores
so the HBC contains at least one amino acid side group.

There are several strategies in modeling a general ion transport process. Molecular dynamics
(MD) provides one of the most detailed descriptions in modeling biomolecular systems and
there are several user-friendly packages available, such as AMBER [34], CHARMM [30],
etc. However, a significant hurdle in the MD prediction of the channel conductance is the
necessarily small time step (10−15 second) versus the ion permeation time scale (10−6

second) [15]. Brownian dynamics (BD) [14] and the Poisson-Nernst-Planck (PNP) theory
[9,16,46] are utilized to study ion channels based on the mean-field approximation. In the
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former approach, ions are treated as explicit particles in the ion channel, interacting with
surrounding environments (channel proteins and lipid bilayers). In the PNP model, not only
the protein, lipid layer, bath solution, but also the ions of interest are all modeled as
continuums through electro-diffusion theory. Both the BD and PNP models have a number
of similarities in their initial setups and computational approaches [24, 31]. There is an
agreement that the BD theory and PNP model may be expected to work well for regular ions
but not for protons [15], which have lighter mass and whose transport involves the hydrogen
bonds making and breaking as mentioned above. The proton transport process is special and
needs to be studied quantum mechanically. Some investigators have explored proton
channels via Feynman path integral simulations and quantum energy levels of protons are
computed by the Schrödinger equation [35]. Several theoretical models are proposed in the
last decade [5, 40,42].

The objective of the present work is to propose a multiscale quantum dynamics in
continuum (QDC) model for the prediction and analysis of the proton translocation across
transmembrane channels. The structure of the membrane protein is taken into account during
the proton transport, with which the model has the potential ability to study more
complicated voltage-gated proton channel in the future. The proton transport mechanism
along the water chain, cooperated with the structure of the membrane protein is studied in
this work. To this end, a simple but typical ion channel, the Gramicidin A (GA) is utilized as
the membrane protein, in which the proton transport along the water molecules is studied.
We describe the dynamics of protons quantum mechanically while represent the density of
other ions by the Boltzmann distribution, which is in a quasi-equilibrium due to the change
of the electrostatic potential during the proton transmembrane permeating process [47].
Since van der Waals interactions involve less energy compared to electrostatic ones,
numerous solvent molecules are implicitly treated as a dielectric continuum to reduce the
number of degrees of freedom of the system. The impact of protein molecular structure and
its fixed charges to the proton transport is explicitly considered in our model. We propose a
total free energy framework to put the kinetic and potential energies of protons and the
electrostatic energy of the whole system, i.e., all ions, channels protein and lipid bilayer, on
an equal footing. By using the variational principle, we derive governing equations of the
Poisson-Boltzmann and Kohn-Sham types for the proton transport system. There are a few
reasons for us to employ the present quantum mechanical description. First, the proton
transport mechanism is different and the hydro-dynamic approximation is not valid any
more. Secondly, conceptually the ion concentration is no longer well defined in a small-size
channel. Instead, the probability density function is used for protons. Moreover, many
water-filled channels are very narrow with extremely small local diameters around 2Å [39],
which implies a strong confinement in the transverse direction.

The rest of the present paper is organized as follows. Section 2 is devoted to the theory and
model. We present a variational paradigm for analyzing proton transport. Our model
incorporates quantum mechanical treatment of protons, classical description of
electrostatics, and atomic detail of protein structure and charges. Formalisms for proton
density and transport are derived from fundamental principles. Section 3 discusses
numerical implementation and computational algorithms. The molecular surface [37] is
employed to separate the discrete/continuum domains and facilitate the quantum/classical
descriptions. To simplify the computation, we adopt a decomposition approximation to split
the proton transport direction from the transverse confined directions. Mathematical
ingredients of this quantum/discrete/continuum model include coupled nonlinear partial
differential equations (PDEs) and the elliptic PDEs with discontinuous coefficients and
singular sources. Therefore, the corresponding numerical algorithms, the matched interface
and boundary (MIB) method, the Dirichlet-to-Neumann mapping (DNM) and Krylov space
iteration schemes are equipped to implement the numerical simulations. In Section 4, we
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employ a commonly used channel protein, the Gramicidin A (GA), to demonstrate the
performance of the proposed theoretical model and validate the proposed computational
algorithms. Electrostatic properties are analyzed with a number of combinations of model
parameters to gain a basic understanding of the GA channel. The conductance of protons
under various external voltages and concentrations are simulated. Comparison is made with
experimental measurements in the literature. This paper ends with a brief conclusion.

2 Theory and model
In this section we provide the theoretical formulation of our model of quantum dynamics in
continuum.

2.1 General description of the model
we propose a multiscale, multiphysics and multidomain model for the proton transport
through membrane channels. The computational domain Ω is divided into two subdo-mains,
i.e., the solvent subdomain Ωs consisting of the extracellular/intracellular solvent regions
plus channel pore region, and the biomolecular subdomain Ωm including the membrane
protein(s) as well as lipid bilayers. Therefore, we have Ω = Ωs∪Ωm. A detailed graph of these
subdomains is given in Fig. 1. The interface Γ between solvent-membrane protein is defined
by the molecular surface generated by the MSMS software package [37]. It is interesting to
note. that the physics in each subdomain is very different and there are multiphysics
phenomena even in a single subdomain. For the biomolecular subdomain, the membrane
protein and lipid bilayer structural data are either generated by molecular dynamics
simulations, or downloaded from the Protein Data Bank (PDB) which contains data
collected from X-ray crystallography or nuclear magnetic resonance (NMR) experiments.
The force field parameters, such as atomic van der Waals radii and point charges, are
obtained from the CHARMM force field [30].

In the solvent subdomain, there are three types of materials: protons, all other ion species
and water molecules. To reduce the number of degrees of freedom, we treat solvent (water)
molecules as dielectric continuum background or bath. In the bath region, all ions are
essentially in a quasi-equilibrium state and their densities are well described by the
Boltzmann distribution except for at the solvent-membrane protein interface. Near the
solvent-membrane protein interface, the density distribution of ions might be better
described by the density functional theory of solution, or integral equations, in which the
dispersion interaction between solvent and solute can be better accounted. This effect is
modeled as generalized-correlation potential effect in the present work.

The physics in the channel pore region is of central interest and is sharply different from
those of other regions. There are many evidences which indicate the quantum mechanical
behavior of proton transfer in biomolecular systems and proton channels [3,17]. The first
reason is the small mass of a proton which enhances the quantum tunneling effect in the
proton transport. Additionally, a narrow water-filled channel morphology might lead to
severe quantum confinement, which consequently promotes quantum effects. Finally, the
hydrogen-bonded chain of water molecules assisted proton translocation is quantum
mechanical in origin [35]. For these reasons, we treat protons quantum mechanically via a
scattering formalism which describes how a quantum mechanical proton scatters through
electrostatic and generalized-correlation potential fields. The electrostatic potentials include
interactions between protons represented by a self-consistent mean field approximation, the
interactions between protons and fixed ions from membrane proteins and lipid bilayers, and
the interactions between protons and other ion species. The generalized-correlation potential
is due to the impacts of the continuum solvent, the van der Waals interaction between the
solvent and biomolecules, the effect of ion-water clusters, dispersion effect, and possible
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break-down of hydrogen-bonded chain in a narrow channel, etc. We utilize a total energy
functional framework [10,11,43] to incorporate quantum mechanical description and
continuum description. Coupled Kohn-Sham equation for the proton dynamics and Poisson-
Boltzmann equation for the electrostatic potential are derived from the variational principle.
Solutions to these coupled equations give rise to proton structural dynamics, and transport
process, which describes how a quantum mechanical proton scatters through electrostatic
and generalized-correlation potential fields.

2.2 Free energy components
This subsection describes various free energy components in our multiscale model of
quantum dynamics in continuum. In order to give a clear description, Fig. 1(a) is reduced to
a sketch in Fig. 1(b) in x − z cross section, where the z direction represents the proton
transport direction: the system is restricted to a rectangular cuboid with appropriate size and
partitioned into two different computational domains. The permittivity ∊(r) has different
values in two domains

(2.1)

With ∊s(r) = 0 if r ∈ Ωm and ∊m(r) = 0 if r ∈ Ωs. Since both the membrane and channel
protein are treated with same dielectric medium, the interface between them is erased and a
constant dielectric constant is assumed on Ωm. The solvent in the bath regions and in the
channel pore have different biological characteristics. Therefore the position dependent
dielectric constant is imposed on the solvent subdomain Ωs. In fact, ∊s(r) in the channel
region can differ much from that in the bulk region. The detailed discussion about the
dielectric constants is given in Section 3.5. There are three major categories of macroscopic
variables in the model which are defined in different subdomains and formulated in classical
and quantum mechanisms.

2.2.1 Electrostatic free energy in the biomolecular region—The biomolecular
region consists of membrane protein and lipid bilayer. Their structures essentially determine
the interactions between protons and protein, so it is necessary to account the structures in
atomic details. In the present treatment, we assume that structures of membrane protein and
lipid bilayer are given and do not change during the ion transport process. This is certainly
an approximation and will be easily removed in our future work by a combination of the
present formulation with MD simulations [43]. Without structural cooperation, the
biomolecules still significantly contribute to ion dynamics and transport by electrostatic
interactions. The fixed charges in the channel protein and nearby lipid bilayers determine the
fundamental characteristics of the channel and provide the primary environment for ions'
permeation. Since the total number of fixed charges is not too large (i.e., up to thousands),
with the assumption that the positions of them are essentially fixed, the explicit discrete
description is actually affordable. In this sense, they serve as a source term in the
electrostatic potential calculation

(2.2)

where Na is the total number of fixed charges, Qi and ri are the point charge and position of
the ith atom. Therefore, the electrostatic free energy in biomolecular domain is given by [43]
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(2.3)

where Φ(r) is the electrostatic potential and is defined on the whole domain Ωs∪Ωm.

2.2.2 Electrostatic free energy in the solvent region—Ions in the solvent region
also contribute to the electrostatic potential. Protons and other ion species are treated in
different manners. Let us denote the proton number density in the solvent region as n(r) and
the charge density as ρp = qn(r), q is the elementary charge or charge carried by a single
proton. The charge density serves as a source term in the electrostatic free energy.

In the solvent region, particularly, in the extracellular and intracellular solvent regions, apart
from ions of interest, there are many other ions. In the present model, all other ions are
treated in a different manner from the ions of interest. Specifically, no detailed description is
given to individual ions except for the ions of interest. However, other ions contribute
considerably to the electrostatic property of the whole system. To account for their
electrostatic effort, we describe other ions by using the Boltzmann distribution [47]. The
charge density of other ions is given by

(2.4)

where  is the total number of other ion species,  and qj are the bulk constant density and

charge of the jth ion species. Here  is the number density of jth ion
species. It can be noticed that the Boltzmann distribution of the other ion species with
respect to the potential has been modified with μj, the relative chemical potential of the jth
ion species [36,46].

The corresponding electrostatic free energy in the solvent region is given by

(2.5)

Note that the electrostatic free energy of other ions in Eq. (2.5) is similar in spirit to Sharp
and Honig [41], Gilson et al [27], Chen et al [11] and Wei [43].

2.2.3 Proton free energies and interactions—The solvent region might admit a
number of ion species, of which a full quantum model can be technically complicated and
computationally time consuming. We therefore only treat the ions of interest, i.e., protons,
quantum mechanically and assume a continuum description of other ion species. To simplify
the problem further, we consider a generalized density functional theory for protons.

Kinetic energy: The proton density operator nH is given by [10]

(2.6)
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where H is the Hamiltonian of the system and μp is the relative chemical potential of
protons. We define the proton density n(r) as

(2.7)

where ΨE and E are the wavefunction and corresponding energy associated with H. The
Boltzmann statistics is adopted in the present work. The number density gives rise to the
total number of protons in the system, i.e.,

(2.8)

However, in most experimental set-ups, one does not know Np. Instead, the bulk

concentration or the bulk number density, , is given. When the solvent domain is
sufficiently large compared to the channel pore region, one has two approximations

(2.9)

where the second approximation is a crude estimation.

The kinetic energy is given by  where p is the momentum and m is proton effective
mass. In the coordinate representation, the kinetic energy of protons can be given as

(2.10)

where the Boltzmann factor weights different energy contributions.

Electrostatic potential: Protons have a number of electrostatic interactions. First, protons
interact repulsively among themselves

(2.11)

These interactions lead to a term that is nonlinear in density n and the resulting equations are
to be solved iteratively.

Additionally, interactions between protons in the solvent and fixed charges in biomolecules
are described as

(2.12)

This contribution can be handled by the so called Dirichlet to Neumann mapping approach
[10].
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Finally, interactions between protons and other ion species are of the form

(2.13)

where the other ionic densities are determined from the continuum Boltzmann distribution in
the solvent region with a given profile of electrostatic potential as shown in Eq. (2.4).
Therefore, the electrostatic potential energy functional of protons is

Generalized-correlation potential: The electrostatic potential plays an important role in
the proton transport process. However, generalized-correlation (GC) effects are also crucial
to ion conductance efficiency. In certain situations, generalized-correlation effects can even
determine the channel selectivity. Generalized-correlation effects physically originate from
van der Waals interactions, dispersion interactions, ion-water dipolar interactions, ion-water
cluster formation or dissociation, temperature and entropy effects, etc. For example, one of
generalized-correlation effects for regular ion permeation through channels is an energy
barrier to the ion transport due to the change in the solvation environment from the bulk
water to a relatively dry channel pore. For the proton transport, the GC effect could be the
high energy barrier resulting from the deformation of the hydrogen bond or restrictions in
the rotation of water molecules. However, due to the lack of a comprehensive understanding
of the ion behavior in channel region, the modeling of generalized-correlations is less
quantitative, compared to the electrostatic modeling. In the Brownian dynamics model and
the PNP theory, these generalized-correlation effects are encapsulated in the relaxation time
and diffusion coefficients, respectively, which are obtained from experimental data and
tuned in a reasonable biological range to predict new results. In the present work, we
consider a reduced model for generalized-correlation potential energy. We assume that
generalized-correlation potential is also a functional of the local ion density n(r) and the
density gradient ∇n, i.e., UGC[n,∇n]. It includes two contributions: One is the interaction
among the target ions themselves, which represents those short range interactions and
possible collisions; the other is the interactions between the ions of interest and the
surrounding other ions, water and protein molecules, which may include many-body
collisions, confinement and dehydration effects. In an analogous structure of energy (2.11),
the former should be quadratic in the density n(r), while the latter, as in Eq. (2.12), has a
linear form in the density n(r). Based on these considerations, we assume that the
generalized-correlation potential energy functional has the following form

(2.14)

where the ∇n dependence has been omitted as a firstorder approximation. Here  is
linear in the ion density. Intuitively, if more ions exist in the system, the possibility of the
ion-ion generalized-correlation interaction is higher. The energy resulting from the ion-

surrounding interaction is simply modeled as , which can be considered as related
to the relaxation time of ions. The range of VGC[n] value is discussed in Section 3.5.

Chen and Wei Page 8

Commun Comput Phys. Author manuscript; available in PMC 2013 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



External potentials: Since the extracellular and intracellular surroundings can be infinitely
large, it is impossible to include them in a detailed description. In the present work, we make
appropriate truncation of the surrounding system. As such, the interaction of channel protons
with extracellular and intracellular surroundings are described by external potentials UExt. In
addition to the truncation effect, the external potentials also describe the experimental
conditions such as the effect of given extracellular and intracellular bulk concentrations. We
denote channel potential energy functional as

(2.15)

where VExtra and VIntra are potentials for extracellular and intracellular positions,
respectively. Because much of extracellular and intracellular surrounding is not explicitly
described, VExt must be non-hermitian. This aspect is discussed in Section 2.5.

Proton total energy functional: The total proton potential consists of electrostatic,
generalized-correlation and external potentials

(2.16)

Thus, the total free energy functional of protons includes kinetic and potential contributions

(2.17)

where each kinetic energy term is weighted by the Boltzmann distribution, which is similar
to the treatment in our recent work [10].

2.3 Total free energy functional of the system
To understand the behavior of protons and their interactions, we consider a total free energy
functional that includes all significant kinetic and potential energies. Similar energy
framework has been developed in our recent work for biomolecular systems and nano-
electronic devices [10,11,43]. The total free energy functional of the present system is given
by the combination of the electrostatic energy of the system and the quantum mechanical
energy of protons. However, it is important to avoid double counting when one constructs
the total energy functional [43]. For the present system, it is interesting to note that had the

charge sources  been independent of Φ, we would
have

(2.18)

in a homogeneous dielectric medium. Therefore, the charge source for the electrostatic
potential also serves the electrostatic potential energy for protons. With this consideration,
we propose the total free energy functional
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(2.19)

where VΩ=∫Ωdr and the last term in Eq. (2.19) is the Lagrange multiplier for the constraint
of proton density.

The energy functional (2.19) is a truly multiphysical and multiscale framework that contains
the continuum approximation for solvent and membrane while explicitly takes into account
the channel protein in a discrete fashion. More importantly, it mixes the classical theory and
quantum mechanical descriptions on an equal footing.

Note that Eq. (2.19) is a typical minimization-maximization problem, where the electrostatic
free energy is to be minimized while the kinetic energy of protons is to be maximized.
Fortunately, this situation does not create a problem as the optimization of the total free
energy functional is achieved with two governing equations as described in the next section.

2.4 Governing equations
The present system has two unknown functions: the electrostatic potential Φ and the
wavefunction ΨE. All other functions either are to be explicitly given or depend on Φ and
ΨE. The governing equations for Φ and ΨE are to be derived from the free energy functional
by variational principle via the Euler-Lagrange equation. This multiscale variational
framework approach was developed in our recently work [10, 43]. It offers successful
predictions of the solvation free energies of proteins and small compounds [11,12].

2.4.1 Generalized Poisson-Boltzmann equations—The total free energy functional
given above determines the density distribution and dynamics of protons. The governing
equation for electrostatic potential can be derived by the variation of the functional with
respect to the potential Φ

(2.20)

Equation (2.20) is a generalized Poisson-Boltzmann (GPB) equation describing the
electrostatic potential generated from three types of charge sources: the ions of interest,
otherions species in the solvent described by the continuum approximation and the fixed
point charges in biomolecules. This equation is not closed because n(r) needs to be
evaluated from another governing equation.

A special case of Eq. (2.20) is also very interesting. Let us assume that all ions in the system
are described either by fixed point charges from biomolecules, or by the continuum
treatment. Therefore, the system is closed and we arrive at the classical Poisson-Boltzmann
equation

(2.21)

where , and Nc is for all ions in the continuum solvent.
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2.4.2 Generalized Kohn-Sham equations—In the present multiscale model, the
density n of protons in Eq. (2.20) is governed by generalized Kohn-Sham equations. This set
of equations is obtained by the variation of the total free energy functional with respect to

wavefunction 

(2.22)

where the multiplier λ is chosen as the eigenvalue E and

is the effective potential, which includes electrostatic, generalized-correlation and external
interactions. The effective potential is discussed in Section 2.2.3.

Equation (2.22) appears to be the conventional Kohn-Sham equation. However, there are
some important differences. First, the exchange-correlation potential, which is crucial to
electrons, is not presented in Eq. (2.7). The origin of the exchange-correlation potential is
from the Fermi-Dirac distribution, spin and many other unknown effects. In the present
theory, we use the generalized-correlation to represent many unaccounted effects. We
assume the Boltzmann statistics for the ions of interest at ambient temperature. Additionally,
we define the density as in Eq. (2.7), instead of the conventional choice for electrons:
nelectron(r)=Σj|Ψj(r)|2. This definition is partially due to the Boltzmann statistics and
partially due to the spectrum of the present Kohn-Sham operator, which is bounded from
below. Technically, the Hamiltonian of the generalized Kohn-Sham equation (2.22) has not
only discrete spectra, but also absolutely continuous spectrum. As such, a Boltzmann factor
in the density definition is indispensable. Finally, unlike the conventional Kohn-Sham
equation, the present generalized Kohn-Sham equation is not a closed one. It is inherently
coupled to the generalized Poisson-Boltzmann equation (2.20). This coupled Kohn-Sham
and Poisson-Boltzmann system endows us the flexibility to deal with complex multiphysics
in a multiscale fashion — the quantum dynamics in continuum.

2.5 Proton density operator for the non-hermitian Hamiltonian
As mentioned earlier, the external potential has a non-hermitian component to describe the
interaction with truncated extracellular and intracellular surroundings. Let us explicitly
separate the anti-hermitian (or skew hermitian) components

(2.23)

where

(2.24)

The non-hermitian parts of the external potentials describe the relaxation effect or spectral
line shape broadening due to the interaction with the surroundings. Accordingly, we split the
Hamiltonian as
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(2.25)

We first note that the density of protons can be further given by

(2.26)

In this work, we define the spectral operator δ(E–H) as

(2.27)

We therefore approximate the proton density operator by

(2.28)

where G is the Green's function (operator)

(2.29)

We therefore arrive at a useful expression for the proton density

(2.30)

(2.31)

where μExtra and μIntra are the external electrical field energies at extracellular and
intracellular electrodes, respectively. Note that μp behaves like an operator such that its
value is chosen according to the nearest external interaction. Equation (2.31) provides an
appropriate expression for computing the total proton density.

2.6 Proton transport
Typically, external electrical field is applied as the difference of electrical potentials, (μExtra/
q–μIntra/q). The experimental measurements are given as the current and voltage curve, or
the so called I-V curve. Therefore, a major goal of our theoretical model is to provide
predictions of the current under different external voltages. The current in the standard
quantum mechanics is given by

(2.32)
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(2.33)

where Tr is the trace operation and (nHv†+vnH)/2 is the symmetrized current operator with v
being the velocity vector. Equation (2.33) requires the evaluation of the full scattering
wavefunction ΨE(r) and its spatial derivative.

An alternative current expression can be given by examining the transition rates due to the
anti-hermitian parts of the external interaction potential. Let us evaluate the transition rate

according to the interaction potential 

(2.34)

(2.35)

Now we need to make a decision for μp because each term involves two interaction
potentials. In this work, we systematically choose μp according to the nearest external
interaction

(2.36)

(2.37)

Similarly, we obtain a current expression by using the interaction potential 

(2.38)

Equations (2.37) and/or (2.38) can be used for current evaluations under different external
electrical field strengths and concentrations.

3 Computational algorithms
The implementation of the theoretical model described in Section 2.4 involves a number of
computational issues. The present section is devoted to the computational implementation of
our quantum dynamics in continuum model.

3.1 Proton density structure and transport
Proton density structure concerns the solution of the generalized Kohn-Sham equation
whereas the proton transport offers the current-voltage curves, which are to be compared
with experimental measurement. This subsection describes the solution strategy of the
generalized Kohn-Sham equation and theoretical prediction of experimental data.
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3.1.1 The solution of the generalized Kohn-Sham equation—Typically, solving
the full-scale Kohn-Sham equation can be a major obstacle in the simulation. Due to the fact
that biological characteristics for each subdomain of the ion channel system are quite
different and the Kohn-Sham operator will have distinct properties correspondingly. In this
subsection, we make use of various decomposition schemes to reduce the computational
complexity in solving Eq. (2.22).

Motions of quantum particles in the present system can be generally classified into three
categories: scattering along transport directions, confined motion and free motion. The
channel pore direction (i.e., the z direction) is designated as the transport direction, in which
protons cross the transmembrane protein or scatter back to the solvent. Along the z
direction, the Kohn-Sham operator has an absolutely continuous spectrum. In the x–y
directions, the Kohn-Sham equation possesses different behaviors. In the extracellular and
intracellular regions where the solvent domains are sufficiently large, proton motions are
essentially unconfined in the x–y directions. They undergo intensive electrostatic and
generalized-correlation interactions although the system can be regarded as near the
equilibrium. The associated Kohn-Sham operator for protons also has an absolutely
continuous spectrum. In contrast, in channel pore region, the protons are confined in x–y
plane by the channel wall. In the confined plane, the Kohn-Sham operator is essentially
compact and has a discrete spectrum. For two different regions, formulations and
corresponding treatments of the proton density are different.

The proton density structure in the channel pore is crucial to the proton transport. Whereas,
the behavior of protons in the bath is relatively less important. Therefore, as a good
approximation, we can truncate the computational domain in the bath regions.
Consequently, the Kohn-Sham operator becomes compact for all x–y directions and has
discrete eigenvalues. As a good approximation for many ion channels, we split the total
wavefunction ΨE(r) as

(3.1)

where ψj(x,y;z) is the j-th eigen-mode in the confined directions at a specific location z, and

 is the wavefunction along the transport direction, with transport wave number k.

Under this circumstance, it is convenient to relabel the total energy E as , where j and k
are related to the energies for confined and transport directions, respectively. If the mode-

mode interaction along the confined direction is neglected, it is easy to verify that ψj and 
satisfy the following decomposed Kohn-Sham equations,

(3.2)

ψj(x,y;z)=0 on ∂ΩD(z),

(3.3)

where V(x,y;z) is the restriction of the potential operator V(x,y,z) at position z, Uj(z) is the
jth eigenvalue of the 2D problem at position z, and ψj(x,y;z) is the corresponding

eigenfunction. Here  is the scattering wavefunction associated with the scattering
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potential Uj(z). Here ∂ΩD(z) is the boundary for the cross section at z. The transport
equation (3.3) can be solved as a scattering problem. Finally the proton density (2.7) can be
modified as

(3.4)

The 2D wavefunction |ψj(x,y;z)|2 in Eq. (3.4) can be evaluated from the Kohn-Sham
equation (3.2). The solution to this equation is quite standard — it is just the eigenvalue

problem of an equation of elliptic type. The function  is the scattering or transport
number density with respected to the j-th eigenvalue. While to solve the transport problem,
as indicated in the theory, one needs to find appropriate expressions of the non-hermitian

external operators. The corresponding computational aspects of  are presented in the
next subsection.

3.1.2 Boundary treatment of the transport calculation—Although the quantum
confinement Eq. (3.2) only happens in finite channel region, the transport problem Eq. (3.3)
is associated with infinitely large surroundings, in principle. Since the same procedure is
used to solve Eq. (3.3) for different j, let us drop the j label

(3.5)

where  is the scattering Hamiltonian and E is the scattering energy. In
practical computations, the extracellular and intracellular surroundings have to be truncated.
Suppose [zExtra, zIntra] is the finite transport interval of interest and the regions (−∞,zExtra)
and (zIntra,∞) are assumed as infinitely long extracellular and intracellular environments.
We assume that in regions (−∞,zExtra) and (zIntra,∞),the interaction potential U is
independent of position due to the spatial average of homogenization type over the large
scale. Consequently, Eq. (3.5) admits planewave solutions asymptotically. For instance, if
one considers the wavefunctions Ψk(z) in the extracellular environment, it has the following
form

(3.6)

where rm and tm are reflection and transmission coefficients, respectively. Given the specific
formulation of the wavefunction in the extracellular bath, Eq. (3.6) can be employed as
boundary conditions of Eq. (3.5) to obtain the proton density originated from the
extracellular part. Similar boundary conditions for the intracellular part can be derived in the
same fashion.

Suppose that the interval [zExtra,zIntra] is discretized as zExtra = z1,z2,…,zN = Intra, where N
is the total number of grid points and the grid size is denoted as Δz=(z2 – z1)/N. For

simplicity, let , then for interior points zi, (i=2,…,N–1), the discretization of Eq.
(3.5) is quite standard by the finite difference method
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(3.7)

where ψi represents the numerical solution of ψk(zi) and Ui is for U(zi). For the
discretization at boundary point z1, we first define a fictitious function value of ψ(z) on z0,
the point ahead of z1 as ψ0, then the discretization at z1 is

(3.8)

Now one needs to determine the fictitious value ψ0 in terms of ψi, (i = 1,2,…,N). From the
boundary condition (3.6), we have

(3.9)

In fact, we have k0 = k1 because of the free motion of the wave in the asymptotic regions.
We can denote k0 and k1 by k1 with (ħk1)2/(2mz)=E–U1. By this notation, we obtain

(3.10)

without the value of reflection coefficient rm (actually they are unknown), but only make use
of the structure of Eq. (3.6). Inserting Eq. (3.10) into Eq. (3.8), one yields

(3.11)

Applying the same strategy for ψN and fictitious function value ψN+1, we have

(3.12)

where (ħkN)2/(2mz)=E –UN and further

(3.13)

Follow the same boundary treatment for the intracellular environment, the whole system is
discretized in vector and matrix forms as the following

(3.14)

where ΨExtra=(ψ1,ψ2,…,ψN)T, I is the identity matrix of dimension N×N and

(3.15)

Here bExtra is the source term for the incoming waves from the extracellular surroundings
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(3.16)

The wavefunction ΨExtra can be written as

(3.17)

Let  be the complex conjugate of ΨExtra. We have

(3.18)

Similar derivation can be carried out for the wavefunction ΨIntra related to intracellular
surroundings,

(3.19)

Therefore, the total density matrix is

(3.20)

Use the relation

(3.21)

to change the above integral into that with respect to energy E, and use the simple limit
sin(kΔz)/(kΔz)→1 as Δz→0, the above integral can be easily revised as

(3.22)

where

(3.23)
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and

(3.24)

It is clear that VExtra and VIntra are the non-hermitian components in the external potential

Eq. (2.23) that are introduced to truncate the surroundings. Since  is solely nonzero for
one entry in the matrix and this fact is independent of the discretization, it is easy to verify

that , as required in Eq. (2.27).

Obviously, Eq. (3.22) is actually the discretization form of Eq. (2.31). Finally, the scattering
number density is calculated as

(3.25)

3.2 Dirichlet-to-Neumann mapping for the generalize PB equation
Considering Eq. (2.4) and expression (2.20), the generalized Poisson-Boltzmann equation is

(3.26)

Recall the fact that the electrostatic potential Φ(r) is defined throughout the domain Ω,
which is inhomogeneous with respect to the dielectric constant ∊(r). Therefore, we need to
physically impose the continuity matching conditions at the interface Γ of two adjunctive
subregions. The continuity matching conditions are given as

(3.27)

(3.28)

where superscripts “+” and “−” represent the limiting values of a certain function at two
sides of interface Γ, and n→ is the unit outward normal direction of Γ. Equations (3.27) and
(3.28) guarantee the continuities of the potential function and its flux.

Theoretically, Eq. (3.26) admits the boundary condition Φ(∞)= 0 at the infinity. However,
in practical computation, a finite domain is used and appropriate boundary conditions need
to be imposed at the domain boundary ∂Ω. In our studies, the channel protein and the
associated membrane are embedded in a rectangular cuboid of an appropriate size. It is very
nature to apply the Dirichlet boundary conditions along the electrode portions of the
rectangular cuboid boundary, while for the remainder of the boundary, we apply the
Neumann boundary condition (i.e., the zero normal electric field conditions).

Physically, the generalized Poisson-Boltzmann equation (3.26) has two types of charge
source terms, i.e., the fixed charges given by the delta functions, and the unsteady charges.
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Therefore, it is wise to treat these source terms separately such that when we keep updating
the unsteady source term, we just need to compute the effect of the fixed charge source term
once. Mathematically, the solution of Eq. (3.26) has a singular part due to the delta function
(i.e., fixed charges) which may cause computational problems. Thus, we should treat the
regular part and the singular part of the solution differently [26]

(3.29)

where Φ̄ and Φ̃ denote the singular part and regular part of Φ, respectively. More
specifically, Φ̄ should correspond to the singular delta function term and vanish outside the
protein and membrane domain Ωm, while Φ̃ is defined in the whole domain. By this
consideration, we split Φ̄(r) as

(3.30)

where

(3.31)

represents the Coulomb's potential from the protein fixed charges. Since Φ(r) is required to
vanish outside the Ωm as well as the boundary ∂Ωm, the Φ*r) should be corrected by Φ0(r),
which is a harmonic function on Ωm and

(3.32)

For the regular part Φ̃, we can take the advantage of the fact that  is zero in Ωm, and have
the following equation and interface jump conditions:

(3.33)

(3.34)

(3.35)

Through Eqs. (3.29) to (3.33), the electrostatic potential Φ is decomposed into a singular
part and a regular part. It should be noted that it is Φ̃ that is coupled to the Kohn-Sham
equation since Φ̄ is solely nonzero in the protein and membrane region. The effect of the
fixed charges is actually first mapped on the ∂Ωm in a Dirichlet sense (Eq. (3.32)) and
reflected into the solvent region in a Neumann manner, i.e., Eq. (3.35) at the solvent-protein
interface Γ. This Dirichlet-to-Neumann mapping (DNM) analytically takes care of the Dirac
delta functions and is successfully employed in various applications [10,26]. The trade-off
of this treatment is that one has to solve an elliptic equation (3.33) with non-homogeneous
interface jump conditions.
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Traditional finite difference or finite element methods fail to come up with high-order
accuracy and convergence in solving Eq. (3.33) due to geometric singularities in the
molecular surface [37] and the need to enforce the interface conditions (3.34) and (3.35).
The matched interface and boundary (MIB) method has been developed for elliptic
equations with complex interfaces, geometric singularity, and singular charges
[7,26,44,45,48– 50]. It offers second-order accuracy and convergence in solving the
Poisson-Boltzmann equation with biomolecular context [7,26,45,48]. Therefore, the
combination of DNM and MIB provides a robust and efficient solution to the generalized
PB equation with second-order accuracy and convergence, even for complex channel protein
geometries.

3.3 The self-consistent iteration
In this section we analyze the self-consistent iteration between the generalized PB equation
and the Kohn-Sham equation. To focus on the essential idea, Eq. (3.33) is symbolically
written as

(3.36)

where Φ̃ and ρp represent the electrostatic potential energy and proton charge density, L
represents the linear part of the GPB equation while the FΦ̃ is the nonlinear part. Simply
substituting the quantity ρp into Eq. (3.36) does not offer a clue about the iteration
convergence analysis and efficiency. The Gummel iteration [19] proposed in semiconductor
device applications was verified practically that it works well for a similar self-consistent
iteration problem. The idea of the Gummel iteration is described below.

The proton charge density ρp and the electrostatics potential Φ̃ are assumed to have the
following intrinsic connection

(3.37)

where F(Φ̃,μ̄p)=qn0e−(qΦ̃−μ̄p)/k
B

T is the Boltzmann function and n0 is the reference number
density of the protons.

The intermediate value of μ̄p(r) equals μp in bath regions and the quantity in the channel
pore can be easily found once ρp and Φ̃(r) are available. Based on this argument, Eq. (3.36)
is written as a new nonlinear equation

(3.38)

We need to linearize Eq. (3.38) appropriately. Note that

, with ′(Φ̃,μ̄p) being the Fréchet derivatives of 
with respect to Φ̃. Similarly, F′(Φ̃) can be evaluated.

Suppose Φ̃l,  and  are the values of Φ̃, μ̄p and ρp at lth step iteration, then the Newton's
method for solving Eq. (3.38) is naturally reduced to the Gummel iteration:
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(3.39)

where we update Φ̃l+1 as Φ̃l+1 =Φ̃l +λΔΦ̃l and 0<λ≤1 is chosen through a line search to
guarantee

(3.40)

Once Φ̃l+1 and  are obtained,  can be modified, and whole iteration can continue till
the convergence is achieved. It is worthwhile to point out that in order to improve numerical
efficiency, Eq. (3.39) can be solved by applying various inexact Newton's methods. There is
plenty of literature about the convergence order discussion so it is necessary for us to
generalize the Gummel iteration to the Newton's method.

Another technique to enhance the self-consistent convergence is the relaxation method [10].
Here we define the Ks, Us and Ns as the spaces which the potential μ̄p(r), electrostatics Φ̃ (r)
and proton charge density ρ(r) belong to, respectively. For the whole iteration of the
generalized Poisson-Boltzmann Kohn-Sham system, it can be interpreted as the application
of the fixed point map  on any of the above spaces, say  :Us →Us for the electrostatics

(3.41)

To characterize the details of the map , we denote the operator  : Us → Ns, which
indicates the process of using the Kohn-Sham equation to solve for proton charge density
based on the electrostatic potential. Such a process is followed by −1 : Ns → Ks, which
updates μ̄p(r) by ρp(r) and Φ̃(r). Finally  : Ks → Us represents solving the nonlinear GPB
equation. The combination of all the above operations yields the definition of the operator ,
which shows the outer iteration

(3.42)

and

(3.43)

The relaxation scheme converts Eq. (3.43) into the steady-state problem of an ordinary
differential equation (ODE)

(3.44)

Therefore many ODE related techniques such as the Runge-Kutta method can be used to
improve the convergence properties. One simple treatment is the discretization of Eq. (3.44)
as
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(3.45)

which leads to a self-consistent iteration with a relaxation factor β [10,11]

(3.46)

The traditionally used outer loop iteration actually is the special case of Eq. (3.46) with β =
1. By carefully choosing the relax factor β, one can reach the steady state (fixed point) by
self-consistent iterations.

3.4 The work flow of the self-consistent iteration
In previous sections algorithms and related mathematical treatments for solving the GPB
equation and the Kohn-Sham equation individually are introduced. Here we assemble all the
components together and give a main work flow for the numerical simulation of these
coupled equations.

• Step 0. Preparation. All the necessary preparations for the whole loop are
accomplished in this step, which include:

1. The channel protein of interest is downloaded from the Protein Data Bank.
The partial charges, positions, radii of all atoms as well as molecular
surfaces are determined by CHARMM force field [30] and related
software packages, such as PDB2PQR, see Section 4 for detail. The
prepared channel structure and surface are then embedded in a proper
computational domain.

2. Use Eqs. (3.31) and (3.32) to solve for Φ̄, then the quantity in Eq. (3.35) is
obtained. Implement the DNM and the MIB schemes to discretize the
Laplace operator as matrix L.

• Step 1. Solving the generalized PB equations (3.33) and (3.35). Given  (taken an
initial guess if m=0), use the inexact Newton's method, Eq. (3.39) and Eq. (3.40) to
obtain Φ̃m. Note that the index l in Eq. (3.39) is for the Newton's method or inner
iteration and the index m is for the outer or whole self-consistent iteration loop.

• Step 2. Solving the Kohn-Sham equation. The solution of the Kohn-Sham equation
consists of two parts, the eigenvalue problem and the scattering problem with the
evaluated electrostatic potential energy operator U=qΦ̃m.

1. Solving the eigenvalue problem Eq. (3.2).

2. Solving the transport problem Eq. (3.3).

3. Assembling the total charge density  by Eqs. (3.4) and (3.25).

Step 3. Convergence check. Go to Step 1 to obtain Φ̃m+1, if ‖Φ̃m+1−Φ̃m‖< ∊1 and

 , where ∊1 and ∊2 are predefined error tolerances, then go to Step 4;
otherwise go to Step 2.

• Step 4. Current calculation by Eq. (2.37).

Fig. 2 gives an explicit illustration of the above work flow.
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3.5 Model parameter selection
3.5.1 The selection of generalized correlation—Generalized-correlation effects are
important to ion conductance efficiency. Unfortunately, it is expensive to give a full
quantitative description for VGC[n]. In current existing models, such as PNP based ones, the
generalized correlation is integrated as an overall effect and represented implicitly by the
phenomenologically reduced diffusion coefficients in the channel pore region. While in BD
based models, the effect of generalized correlations is included in the ion friction factor,
which is also related to the diffusion coefficient by Einstein's relation [29]. All these
treatments indicate that VGC[n] should be related to the diffusion coefficient of ions, which
is a physical observable. Based on this discussion, we ignore all detailed components while
describe the generalized-correlation interactions as one effective, overall component in the
mean field manner. We therefore express the generalized correlation in terms of relaxation
time τ(r) by

(3.47)

where position dependence of the relaxation time is due to the fact that the nature of
interactions differs much inside the ion channel from that outside. As discussed earlier,

VGC[n] can be broken up into two terms,  and . Here  is

linear in density, while  can be regarded as being independent of the density.
According to the Einstein's relation D(r)=kBTτ(r)/m [29], with D(r) and m being the
diffusion coefficient and mass of the particle, we have

(3.48)

(3.49)

where α is a weighting parameter, reflecting the relative strength of two potential effects.
With an appropriate proton mass and the diffusion coefficient in the bath, one yields

. It is well known that the diffusion coefficient is much smaller inside the
ion channel, which leads to a larger generalized correlation barrier in the channel region.
However, it can be inconclusive due to the variation of the channel pore structure diameters
and solvation conditions. According to Table 1 of Ref. [18], with various lipid layers, proton
diffusion coefficients in a channel reduce to 1/2 to 1/7 of those under the bath condition. We

take the resulting reduction accordingly in the channel region. This argument gives 
in the range of 6 ∼ 20kBT.

3.5.2 Choices of the dielectric constants—The Poisson equation describes the
electrostatic potential function due to existence of free charges. The left hand side of the
Poisson equation can be written as

(3.50)

P(r) is the polarization field vector which describes the density of permanent or induced
electric dipole moments in a dielectric material. For an isotropic medium that has linear
response, the polarization field can be defined by
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(3.51)

where χ(r) = ∊(r) − 1 is the dielectric susceptibility of the medium. Then Eq. (3.50) can be
written as

(3.52)

Therefore, the permittivity ∊(r), which is also called dielectric constant, represents the
polarizability of the medium. In biomolecular calculations, ∊(r) is generally assumed as
piecewise constants in most applications. It is noted that in charge neutral molecules, electric
polarization corresponds to the rearrangement of electrons in molecules. In most popular
force field packages, some of the polarizations of a charge neutral macromolecule are often
treated as partial charges located at the centers of individual atoms. These partial charges
give rise to most of the fixed charge source term ρf in the generalized Poisson-Boltzmann
equation. Due to this treatment of the polarization effect, a relatively small ∊(r) value is
normally assigned to the biomolecular domain. For example, when calculating the solvation
energy of proteins, ∊(r) is set to 1 or 2 for the biomolecular domain while 80 for the solvent
domain. These values are commonly accepted and vary in only small ranges for different
purposes. However, in the application of ion channels, choices of dielectric constants in
different regions of interest are worthwhile to be carefully explored.

First, although the ion permeation is a dynamical process, dielectric constants are all
assumed time independent due to the fact that the electrolytic solution is a fast relaxing bath,
i.e., the relaxation time of the solvent water is extremely short. Secondly, the dielectric
constants are approximated as piecewise constants for computational simplicity. In the bulk
concentration, the dielectric constant is taken as 80, which is the experimental measurement
at room temperature for water and widely used in various models. The value of ∊ is usually
set to 1 or 2 in the protein domain, which partially accounts for the field-induced atomic
polarization of the protein. However, two features about protein structures are neglected in
the continuum approximation for ion channels and should be partially compensated by the
dielectric constant of the channel protein. One is the re-organization of the protein and water
in extremely confined channels and the other is the protein's response to ion's presence in the
channel, since the ion permeation takes places at the same time scale. Therefore, in order to
encapsulate these features in a continuum model with a single dielectric coefficient, the
value of ∊(r) for channel proteins is suggested to be greater than 2.

There are also some issues in assigning the dielectric coefficient for the aqueous region in
the ion channel. A general conclusion is that ∊(r) in the bulk aqueous region should be much
higher that that in the channel region. The main reason is the high confinement of the
channel geometry. In ion channel pores which are usually very narrow, water molecules are
highly ordered, and their motions are restricted, so are their response to external fields.
Therefore, the value of ∊(r) should be much smaller than 80, and can be as small as 3 for a
dry channel pore. However, these extreme value do not work well in practical computations.
In fact, the dielectric coefficient in the channel pore region is still taken as 80 in most
existing models despite the above arguments. In the present work, ∊(r) values are set to be
smaller than 80, but are not too small in order to model the biological environment.

3.5.3 Effective mass of the proton—The choice of effective mass m(r) of the proton in
the total Hamiltonian H as in Eq. (2.22) is an important issue to be discussed. The concept of
effective mass originates from the solid state physics, which describes the response of the
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charge carrier to the electric or magnetic fields when quantum mechanism is applied. It is
defined by analogy with Newton's second law but in the quantum mechanical framework

(3.53)

where E and k are the energy and the corresponding wavenumber of the particle,
respectively. Generally the effective mass is chosen in the range of 0.001 or 10 times the
real mass of the particle and depends on the material and the experimental condition.
However, little research has been done, to our knowledge, on the choice of the effective
mass of protons in proton channels or proton experiments. In the present model, we describe
protons by quantum mechanics while treat many other particles by classical mechanics and/
or continuum description. Therefore, an effective mass approximation is appropriate for our
model. We set effective mass m(r) as a model parameter and its value is chosen from 0.01 to
1.0 time of the real proton mass.

4 Numerical simulations
In this section, simulations of the proposed model and related performance analysis are
presented based on a specific channel protein, the Gramicidin A (GA, PDB code: 1MAG).
The GA channel protein is obtained from the soil bacterial species Bacillus brevis and is one
of the best studied molecular channels, both structurally and functionally. In a bilayer
membrane, the GA is a dimer that consists of two head-to-head β-helical parts. Each part of
the dimer has the sequence of FOR-VAL-GLY-ALA-DLE-ALA-DVA-VAL-DVA-TRP-
DLE-TRP-DLE-TRP-DLE-TRP-ETA, and forms a narrow pore of about 4Å in diameter and
25Å in length. It appears to select small monovalent cations, bind bivalent cations, while
reject anions. Because of its simplicity in structure and wide visibility in literature [13, 15,
25], we utilize it as the membrane channel to study the proton transport. In our approach, the
GA structure is downloaded from the PDB, and the pdb file is processed by the PDB2PQR
[21], in which the radii and partial charges are adopted from the CHARMM force field
values [30]. The molecular surface of the GA is generated via the MSMS package [37] with
water probe radius 1.3Å and density 10. Fig. 3 gives an illustration of the GA in a 3D
display of the structure, surface and electrostatics distribution. From Fig. 3(a), one can see
that a complete channel pore is formed after the generation of the molecular surface.
Although the GA is neutral in general, its surface electrostatics is negatively distributed near
the channel mouth as indicated by the red color. Furthermore, as shown in Fig. 3(b), the
inner part of the channel pore is also intensively negatively charged. This fact indicates the
selectivity of GA channel to monovalent cations in the following sense. The potential well
only permeates monovalent cations because it gives rise to an electrostatic barrier to block
any anion and is strong enough to bind multivalent cations. Having prepared the GA
structure and surface, the channel pore is aligned to z-direction. The simulation grid
resolution is taken as 0.5A. Under this discretization all the grid points are classified as
either in the solvent domain or in the molecular domain. Furthermore, the molecular surface
is projected on each layer along the transport direction to determine the beginning and the
end of the channel respectively, by the first layer and the last layer on which closed
projections can be found. An artificial membrane slab is added along the transport direction
between the beginning and end of the channel, see Fig. 1(b).

4.1 Electrostatic properties of the Gramicidin A channel
This subsection presents the electrostatic analysis of the GA channel over a wide range of
∊(r) values in the present model. We carefully test the effect of dielectric constants within an
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appropriate biological range in order to obtain a reasonable prediction. It is also worth
checking the dependence or changing trend of the electrostatics upon these parameters for
model training and validity verification. Before the transport problem is simulated, the
mathematical algorithms, choices of dielectric constants are carefully examined via the
generalized Poisson-Boltzmann equation.

The electrostatics of the channel system depends on the dielectric constants. In the present
work, we carefully test the effect of dielectric constants within an appropriate biological
range in order to obtain a reasonable prediction. It is also worth checking the dependence or
changing trend of the electrostatics upon these parameters for model training and validity
verification. Before the transport problem is simulated, the mathematical algorithms, choices
of dielectric constants are carefully examined via the generalized Poisson-Boltzmann
equation.

As discussed earlier, ∊m(r) is given as a constant in Ωm and its value is tested over a range.
However, ∊s (r) is strongly position dependent, having different values in the bulk solvent
and the channel pore. Although it is easy to define such a smooth function for ∊s (r) because
of the small and simple bath/channel interface, we just take ∊s (r) as piece-wise constants for
simplicity, i.e., impose a constant value denoted as ∊bath in the bulk solvent, whereas another
for the channel pore denoted as ∊ch. There is no controversy upon the choice of ∊bath = 80,
which is employed in all the following simulations. Figs. 4-6 display the electrostatic
potential profiles and (positive) ion density in GA protein with various combinations of ∊ch
and ∊m within the range discussed in the earlier section. The reference ion density is taken as
0.1 molar.

All quantities in Figs. 4-6 are averaged on each cross section along the channel axis. The
vertical dash lines in these figures indicate the entrance (left) and exit (right) of the channel.
The GA protein is overall neutral in charge, but possesses a negative environment in the
channel region and this fact leads to potential well. Near the entrance and the exit of the
channel, there are two local potential minima (the valley near the dash line) and a major
barrier in the middle of the channel. Accordingly, for the density profile, there are two peaks
at the positions where two energy minima present and the density is lower in the middle of
the channel. These electrostatic profiles agree with the biological properties of the GA
channel.

For each fixed ∊m, the magnitude of the electrostatic potentials responds directly to the
change of ∊ch value, as showed in Fig. 4(a). When the ∊ch decreases from 80, which is the
commonly used value for the solvent, to the lower values suggested by biological
observations, the contrast between the energy wells near the entrance/exit and the barrier in
the middle becomes sharper. This phenomenon verifies the impact of ∊ch value and leads us
to prefer the lower value in our model. For the ion density profile shown in Fig. 4(b), the
changes in the peaks with respect to the changes of ∊ch are very clear. As ∊ch doubles, the
magnitudes of the density at the peaks decrease half accordingly.

The impact of ∊m can be examined by fixing ∊ch, i.e., checking the same color curves
throughout Figs. 4-6. It can be found out that changes in ∊m do not affect the potential
structure but solely change the magnitudes. When ∊m increases, the absolute value of
electrostatic potential decreases, and consequently the proton density becomes smaller.

It is worthwhile to point out that the high ionic density calculated in the channel region is in
a local sense. When the electrostatics is intensively negative at a point, by the Boltzmann
distribution, the density will be very high at that position. This implies the ability of negative
potential in attracting the cation. In order to obtain the physically and biologically
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meaningful quantities, such as dielectric constants for each region, it is useful to compare
through Figs. 4–6 to seek for appropriate parameters. Actually, by comparing to
experimental data, some parameters that result in extreme values of quantities, for example,
the dielectric constant 20 in the channel region that corresponds very high local ionic
density, are avoided in our simulation.

Fig. 7 depicts the electrostatics profile change with respect to reference proton densities at a
certain combination of dielectric constants (∊m = 5 and ∊ch =40). It is easy to see that the
higher the proton reference concentration, the higher the sources in the Poisson equation and
the results in electrostatic potential profiles are.

4.2 Proton transport efficiency in the Gramicidin A channel
The selectivity of the GA channel to cations can be easily explained in view of the overall
potential landscape. Fig. 8 shows the total effective potential with both the electrostatic and
generalized-correlation contributions. Fig. 8(a) is for the monovalent cations while Fig. 8(b)
is for monovalent anions. According to the previous discussion, the generalized-correlation
potential serves as an energy barrier while the GA protein provides a negatively charged
environment for cations in the channel region. Two energy components with opposite signs
cancel each other and result in an overall potential landscape that permeates a monovalent
cation. However, the overall potential gives rise to a huge barrier for the anions since the
positive generalized-correlation potential adds up with the positive electrostatic potential, as
Fig. 8(b) shows.

Conductance reveals the efficiency of the proton transport through the GA. Due to the fast
development of experimental technologies in the past several decades, the single-channel
conductance can be measured and becomes one of the prevalent descriptor of the channel
function. The simulation of channel conductance mainly focuses on calculating the channel
current within the physiological ranges of membrane potentials (i.e., −0.2V < V < 0.2V) and
bath concentrations (up to molars). The proton transport current is measured at the scale of
pico-Ampere (pA). The corresponding characteristics of channel conductance is observed at
the scale of pico-Siemens (pS) and is recorded in the voltage-current (I-V) curves and
concentration-current (C-C) curves. Based on experimental observations, the I-V curves are
expected to be in linear or sub-linear form while the C-C curves are supposed to exhibit
saturation behavior, i.e., when the concentration increases, the conductance increases
linearly at beginning and then becomes saturated later on.

The efficiency of proton transport mainly depends on the proton scattering process. Thus we
first present the effective potential profile along the transport direction. Fig. 9 depicts the
first 15 effective potential eigenvalues (i.e., Uj(z) in Eq. (3.3)) used in the current calculation
under the voltage bias of 0.2V Similarly, the channel region is presented between two black
dash lines. The channel region is essentially confined by the protein surface and a tube-like
pore is formed. As displayed in Fig. 9, the potential energy profile in the channel pore region
has discrete eigenstates, due to the small area confinement at each cross section and the light
mass of the proton. For each specific location along the transport direction, the discrete
ascending energies correspond to the eigenvalues of the operator in Eq. (3.2). In theory, the
total number of the eigenvalues is infinite, but is finite in practical computations, and
depends on the discretization of the cross section. In principle, all the eigenvalues should be
accounted in computations. However, numerically, due to the Boltzmann distribution, higher
energy components contribute little in the total transport quantity. In practise, only a few
low lying eigenvalues need to be included in numerical simulations. In our case, the first 15
eigenstates are sufficient to obtain a good degree of convergence in calculating the proton
density and current.
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Fig. 10 illustrates the simulation results of the present multiscale model for proton transport,
compared with the experimental data from the literature [40] for the GA channel. The blue
dots in each figure represent the available experimental observations for certain voltage
biases while the red curves are our model predictions calculated with sufficiently many
voltage samples. The model parameters are chosen to match the experimental data but all
choices are taken within the range of physical measurements. The dielectric coefficients are
taken as ∊m = 5, ∊ch = 30 and ∊bath = 80, according to the discussion in previous sections. To
determine the generalized correlations, the diffusion coefficients of protons are taken as 3.6
× 10−9 m2/s in the channel, less than a half of the value in the bulk environment, and the
relative weighting parameter is set to α = 0.227. Taking into account above considerations,
we can conclude that experimental data and the present predictions agree quite well and this
agreement verifies the validity of our quantum dynamics in continuum model.

Apart from I-V curves, there are also experimental data available about the conductance-
concentration relation (C-C curve) of the proton transport under given voltages [25]. Fig. 11
displays such a relationship with a comparison between experimental data and model
predictions. At a given voltage bias, the conductance of the channel is calculated with
various proton concentrations as indicated by the horizontal axis. Using the same set of
parameters as those in Fig. 10, the computed conductance-concentration relation also agrees
fairly well with experimental data. At lower proton concentrations (i.e., pH value being
greater than 2), the agreement between our prediction and experimental data is quite good.
At relatively higher concentrations, although the numerical simulations slightly overestimate
the observed conductance, the conductance saturation against the concentration can still be
observed in simulations and it corresponds to the sub-linear characteristics or the flat tail of
the C-C curve.

The experimental data used in this work are reported by Eisenman et al [25] and are also
employed to verify another proton transport model by Schumaker et al. [40]. There are other
experimental data on proton conductance available [1,13,18] but under different
experimental conditions. First, the experimental data provided by Cukierman et al. [18] offer
proton conductions recorded with natural Gramicidin A and with its Dioxolane-Linked
dimer in different lipid bi-layers (phosphatidylethanolamine-phosphatidylcholine, or PEPC
and glycerymonooleate, or GMO). Their experimental studies were carried out for low (9.8
mM) and high (1578 mM) proton concentrations against the transmembrane voltages.
Additionally, in another piece of work [13], the attenuation of proton transfer in Gramicidin
water wires by phosphoethanolamine was investigated and a number of I-V curves were
provided. It is impossible to fit all the experimental data by a single group of parameters
because of the difference in experimental conditions and lipid membrane types.
Nevertheless, it can be observed that our simulation curves under the current set of
parameters have shown similar qualitative shapes. Therefore, the present model can fit to
these experimental data by slightly adjusting model parameters to reflect the different
experimental conditions. Finally, Akeson and Deamer [1] also reported I-V curves of proton
conductance for the F1F0ATPases studies. In their results, a severe saturating or sublinear
character is found for proton concentration of 10 mM and there was an obvious superlinear
pattern for 1.0 M hydrogen chloride (HCl). Our model can not capture these characteristics
by just tuning the parameter values. In fact, this set of experimental data was also found
difficult for another theoretical model of proton transport [40].

4.3 Model limitations
Based on the multi-scale approximation, the present model captures the most important
factors which have large impacts on the proton permeation through membrane proteins.
Meanwhile, the quantum treatment of protons provides a potential analysis tool to take into
account the quantum behavior in proton transport and proton translocation in biomolecules.
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The setup of the present model roots from essential biophysical principles with reasonable
approximations, and thus the numerical simulations give considerably good agreements with
experimental data under appropriate choices of model parameters. However, this model also
has a number of limitations, which are to be studied further in the future. First, in this model,
the channel protein is assumed to be rigid, i.e. it does not response to the permeation of ions.
This is not true in real situation and the configurational change of the channel protein has
been found to have fairly important impact on the ion permeation process. Although the
omitted ion-protein interaction has been somehow compensated implicitly by adjusting the
dielectric constants, this interaction can not be fully accounted unless more sophisticated
models, such as the multiscale molecular dynamics [43], are invoked. Additionally, the
plasma membrane where the channel protein is embedded is simplified. There are various
types of membranes, some of them have dipoles and others have charges. In our model, the
membrane is just approximated by the uniformly distributed dielectric medium and the
charges or dipole effects are neglected. However, there is no essential difficulty to improve
this aspect in our model. Point charges from membranes can be added in the present model.
Otherwise, a position dependent dielectric constants for the biomolecular region can also
represent the charge effects in the membrane. Moreover, a fix solvent-solute interface, the
molecular surface, is assumed in the present work. It is important to incorporate the
variational solvent-solute interface in multiscale models and handle solvent-solute
interactions [11, 43]. This aspect will be conisdered eslewhere [8]. Finally, the other
limitation of the present model is the simplified local density approximation of generalized
correlations, which reduces the number of the degrees of freedom, although. Compared to
the electrostatic potential, the generalized-correlation potential plays a less important role in
general. However, it may be of crucial importance for channel selectivity in certain
situations. Therefore, an emergent task of our future work is to come up with more
quantitative modeling of generalized-correlation interactions meanwhile without
significantly increasing the number of degrees of freedom. Local spin density
approximation, local density gradient approximation and general linear scaling approaches
are under our consideration.

5 Conclusion
Proton dynamics and transport across membrane proteins are of paramount importance to
the normal function of living cells. Although there are a variety of excellent theoretical
models and efficient computational methods for ion channels in general, most commonly
used models are much less successful when they are applied to the proton transport due to
the unique characteristics of protons. It is commonly believed that to a certain extent, proton
transport through narrow channel pore demonstrates quantum mechanical properties such as
the translocation as shown in the Grotthuss-type mechanism [33]. However, the exact role of
quantum mechanics in the atomic mechanism of proton transport is still unclear despite of a
number of elegant theories in the literature, partly due to the complexity of ion channel
systems. The present paper introduces a quantum dynamics in continuum (QDC) model for
the prediction and analysis of proton density distribution and conductance in proton
transport. Our essential ideas are as follows. First, protons behave quantum mechanically
due to their light masses and channel geometric confinement in protein channels. Therefore,
a quantum mechanical treatment of protons is necessary. Additionally, since the primary
interactions in proton transport through membrane proteins are of ion-ion electrostatic type
and the van der Waals type of interactions involve less energy, a dielectric continuum
treatment of solvent medium may provide a reasonable approximation to the effect of
numerous solvent molecules. Most importantly, this treatment dramatically reduces the
dimensionality of the problem. As such, our approach is called a QDC model. Moreover,
since the atomic detail of the protein structure serves as a physical boundary for proton
dynamics and transport, the present model returns molecular surface to separate the
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continuum solvent domain from the discrete charge domain of the protein. Finally, densities
of all other ions and counterions in the solvent are described by the Boltzmann distribution,
which is a quasi-equilibrium description as the electrostatic potential varies during the
process of protons permeating the membrane.

We propose a multiscale variational paradigm to accommodate the aforementioned aspects
in a unified framework. The total free energy functional encompasses the kinetic and
potential energies of protons, and the electrostatic energies of ions and fixed charges in the
channel system. The first variation is carried out via the Euler-Lagrange equation to derive
the governing equations for the system. A generalized Poisson-Boltzmann equation is
obtained for the electrostatic potential while a generalized Kohn-Sham equation is resulted
for the state of protons in the system. The solution to these two coupled nonlinear equations
leads to the desirable electrostatic distribution and proton density profile in the channel
system. Expressions for proton density and proton flux across the membrane are derived
from fundamental principles.

The computation of the proposed coupled equations involves a number of mathematical
issues, such as the linearization of coupled nonlinear partial differential equations (PDEs)
using the Gummel iterations and/or inexact Newton iterations, and the solution of elliptic
PDEs with discontinuous coefficients (i.e., piecewise dielectric constants), singular sources
(i.e., Dirac delta functions for protein charges), and nonsmooth interfaces (i.e., geometric
singularities). In the present work, we utilize the Dirichlet to Neumann mapping method to
take care of singular charges, and the matched interface and boundary (MIB) method to
accurately handle the discontinuous coefficients and geometric singularities.

The Gramicidin A (GA) channel protein, a popular protein structure, is employed in our
numerical studies to demonstrate the performance of the proposed QDC model. We give a
detailed discussion about the rational for model parameter selections. The electrostatic
property of the GA channel is analyzed with the proposed model against a large number of
model parameters. Proton transport properties, i.e., the current voltage (I-V) curves, are
investigated over a large number of combinations of applied voltages and reference bulk
concentrations. Our simulation predictions are compared with experimental data, which
validates the present QDC model. Finally, we provide detailed discussion of model
limitations and possible future improvements.
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Figure 1.
(a) Illustration of multiscale model of proton transport through a water-filled channel; (b)
Illustration of an x–z cross section of computational domains of the multiscale model with
Ωm being the channel molecule and membrane subdomain and Ωs being the solvent
subdomain. Here z-direction is regarded as the transport direction.
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Figure 2.
Work flow of the overall self-consistent iteration.

Chen and Wei Page 34

Commun Comput Phys. Author manuscript; available in PMC 2013 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
3D illustration of the Gramicidin A (GA) channel structure and surface electrostatic
potential, with unit of kBT/q. The negative surface electrostatics as indicated by the
intensive red color on the channel upper surface and inside the channel pore implies that the
GA selects positive ions. (a) Top view of the GA channel; (b) Side view of the GA channel.
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Figure 4.
Electrostatic potential and charge density of the GA channel along the z-axis obtained with

∊m = 2 and  molar (Red: ∊ch = 20; Green: ∊ch = 40; Blue: ∊ch = 80). (a) Electrostatic
potential profiles in channel; (b) Proton density profiles in the channel.
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Figure 5.
Electrostatic potential and charge density of the GA channel along the z-axis obtained with

∊m=5 and  molar (Red: ∊ch = 20; Green: ∊ch = 40; Blue: ∊ch = 80). (a) Electrostatic
potential profiles in the channel; (b) Proton density profiles in the channel.
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Figure 6.
Electrostatic potential and charge density of the GA channel along the z-axis obtained with

∊m = 10 and  molar (Red: ∊ch = 20; Green: ∊ch = 40; Blue: ∊ch = 80). (a) Electrostatic
potential profiles in the channel; (b) Proton density profiles in the channel.
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Figure 7.

Electrostatic potential profiles of the GA channel under different ion reference densities .

Red:  molar; Green:  molar; Blue:  molar; Black:  molar. ∊m = 5
and ∊ch = 40.
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Figure 8.
The total potential of the GA channel which includes electrostatic and generalized-
correlation contributions under various voltage biases. Dielectric constants are ∊m = 5 and
∊ch = 30. The pH value of the solution is 2.75. (a) Total potential of monovalent cations; (b)
Total potential of monovalent anions.
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Figure 9.
The first 15 eigenvalues (the Uj(z) in Eq. (3.3)) of the effective potentials along the transport
direction used in the transport calculations at the voltage bias of 0.2V.
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Figure 10.
Voltage-current relation of proton translocation of GA at different concentrations. Blue dots:
experimental data of Eisenman et al [25]; Red curve: model prediction.
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Figure 11.
Conductance-concentration relation of proton translocation at a fixed voltage. Voltage
bias=0.05V; Blue dots: experimental data of Eisenman et al [25]; Red curve: model
prediction.

Chen and Wei Page 43

Commun Comput Phys. Author manuscript; available in PMC 2013 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


