Genetic Loci and Linkage Associations in Neisseria gonorrhoeae and Neisseria meningitidis

SUSAN E. H. WEST AND VIRGINIA L. CLARK*

Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642

The purpose of this review is to present the currently available information on genetic loci that have been identified in *Neisseria gonorrhoeae* and *Neisseria meningitidis*. We will include genes that were identified by mutations that alter the phenotype of the organism, if the gene was transferred into another genetic background, and genes whose products were well characterized, even if the genes were not identified by mutation. We also will include genes that were cloned and identified either by complementation of *Escherichia coli* mutations or by identification of the gene product.

GENETIC NOMENCLATURE

We will attempt to establish genetic nomenclatures for these genes, following the guidelines of Demerec et al. (29), i.e., assigning a three-letter lowercase designation for the gene family, followed by a capital letter, as appropriate. Genes that have been identified by complementation of well-characterized E. coli mutants will be given the corresponding genetic symbol, if appropriate. This is not meant to imply that the neisserial gene encodes the same enzyme as the E. coli gene, but, rather, that it encodes an enzyme that performs the same function in converting the substrate into the product. For cloned neisserial genes that were identified by the gene products, which are not found in E. coli, we will use the previously published nomenclatures, except for genes whose names have been changed by agreement of researchers attending the Sixth International Pathogenic Neisseria Meeting, October 1988. Genes that were identified and named in N. gonorrhoeae should be given the same gene symbol if they are subsequently found to occur in N. meningitidis, and vice versa.

Since *N. gonorrhoeae* and *N. meningitidis* contain several copies of closely related genes, a special nomenclature has been agreed upon to identify these genes. This consists of giving the genetic symbol following by a subscript notation that identifies the strain containing the gene with a designation of the allele number. For example, the protein IIb gene from *N. gonorrhoeae* FA1090 would be $opa_{FA1090-2}$. Genetic designations for these multicopy genes, e.g., as opaA, are not to be given until the gonococcal chromosome has been genetically or physically mapped and the location of the gene on the map has been determined.

New genetic symbols or proposed revisions of old nomenclature are to be approved by Virginia L. Clark, Department of Microbiology and Immunology, Box 672, School of Medicine and Dentistry, University of Rochester, Rochester, New York. She will also assign allele numbers to designate mutations in specific genes upon written request. It is hoped that this coordination in genetic nomenclature for *N. gonorrhoeae* and *N. meningitidis* will prevent confusion that may arise if different laboratories assign their own genetic designations.

N. GONORRHOEAE LABORATORY STRAINS

Comparisons of results from different laboratories are sometimes difficult owing to the use of different strains that may vary in their genetic composition. Therefore, we would like to briefly review the laboratory strains that have been used in these studies. The most commonly used laboratory strains are listed in Table 1, along with available information regarding their history and genetic markers.

GENETIC MARKERS IN N. GONORRHOEAE

Gonococcal genetic markers identified by transformation, by characterization of the gene product, or by cloning are listed in Table 2, and the limited genetic map is shown in Fig. 1. It should be noted that the genetic map contains a number of ribosomal protein mutations (*str*, *fus*, *tet*, *cap*, and *spc*) and a subunit of ribonucleic acid polymerase (*rif*); ribosomal protein genes have been shown to be clustered in other organisms (6), so it is not surprising to find them clustered in *N. gonorrhoeae*. The other genes that have been shown to be linked in this region are probably involved in peptidoglycan biosynthesis (*ampD*, *ampC*, *ampB*, *ampA*, and *penB*) or outer membrane structures (*por*, *sac-1*, *sac-3*, *mom*, and *tem*). The genes linked to this region that encode enzymes involved in monomer synthesis (*ura*, *argE*, and *hyx*) are found flanking the region, rather than within it.

In addition to the limited genetic map, which represents approximately 3% of the gonococcal chromosome (19), physical maps linking various gonococcal genes have been generated. The largest portion of the gonococcal chromosome that has been physically mapped, using chromosome walking techniques, is 50 kilobase pairs and contains the two pilus expression sites, a pilus silent gene region, and a protein II gene (75, 113).

Little is known regarding genetic organization and control of gene expression in N. gonorrhoeae. No repressors or activators have been identified by either classical genetic or gene cloning techniques. However, repression of outer membrane protein synthesis by iron (123) and oxygen (25) suggests that regulatory proteins do exist in N. gonorrhoeae. Additionally, two genes, *pilA* and *pilB*, that act in *trans* to regulate the pilin promoter have recently been described (117). The *pilB* gene product represses pilin expression, whereas the *pilA* gene product activates the pilin promoter.

No evidence exists that gonococcal genes are organized into operons, with multiple genes under the control of a single promoter. The cloned *proA* and *proB* loci are contiguous but are under the control of separate promoters (110). It is possible that most gonococcal genes contain their own promoter, analogous to the genetic organization of *Pseudomonas aeruginosa* (54) rather than *E. coli* (6).

^{*} Corresponding author.

Strain	Genotype and/or relevant phenotypic characteristics ^a	Comments ^a	Reference(s) ^b
ATCC 19424	Met ⁻ Dam ⁻ , PIA-1,2	Type strain	119, 121
F62 ^c	proA sac-3 (Sac ^s), Lf ⁻ Dam ⁻ , PIB-7, antibiotic susceptible	More readily transformed than other gonococcal strains	38, 58, 78, 97, 110, 119, D
FA19 ^d	Prototrophic, sac-1 sac-3 (Sac ¹), Lf ⁺ , PIA-1, methylation of the DNA sequence GGCC, antibiotic susceptible	Used for much of the genetic mapping of the gonococcal chromosome	78, 93, 97, 105, C, E
FA1090 ^e	Pro ⁻ Str ^r but susceptible to other antibiotics, Sac ^r , PIB	Used for studies of protein II antigenic and phase variation; monoclonal antibodies specific for various protein II types have been made	9, B, C
MS11 _{ms} ^f	Prototrophic; <i>pilE1</i> ⁺ <i>pilE2</i> ⁺ , PIB-9, Str ^r ; methylation of DNA sequences PuGCGCPy, CCGCGG, and GCCGGC; restriction endonuclease activity against DNA sequence GCCGGC	Used for studies of pilin expression and antigenic variation	28, 75, A, C, E
P9	Dam ⁻ ; methylation of DNA sequences PuGCGCPy, GGCC, CCGCGG, GCCGGC, GGNNCC; restriction endonuclease activity against DNA sequences GGCC, CCGCGG	Used for studies of pilin antigenic variation; isogenic variants of P9 have been isolated that produce immunologically distinct pili	28, 65, 84, 114
1342 ^g	Arg ⁻ , PIB-1	Prototype strain for LPS serotype GC ₁	1-4, 38
1291 ⁸	Prototrophic, PIB-1	Prototype strain for LPS serotype GC_2	1-4, 38
4505 ⁸	Prototrophic, PIB-3	Prototype strain for LPS serotype GC_3	1-4, 38
8551 ^h	Pro ⁻ , PIB-4	Prototype strain for LPS serotype GC ₄	1-4, 38, 66
PID2	Prototrophic, PIB-3	Prototype strain for LPS serotype GC ₅	3, 4, 38
3893	Prototrophic, PIA-1	Prototype strain for LPS serotype GC ₆	3, 4, 38
JW31R	Prototrophic, pyocin resistant, serum sensitive	Pyocin-resistant mutant of strain JW31 which has lost the LPS variable and serotype antigens but has retained the common LPS determinants	81

TABLE 1. Characteristics of common laboratory strains of N. gonorrhoeae

^a Symbols: proA, requirement for proline; sac, resistance to the bactericidal activity of normal human serum; Lf, utilization of lactoferrin as a sole source of iron; Dam, methylation of adenine in GATC sequences; PI, protein I serovar (118); Str^r, streptomycin resistance; pilE, pilin expression locus; Arg⁻, Met⁻, and Pro⁻, requirement for arginine, methionine, or proline, respectively; LPS, lipopolysaccharide. ^b Numbers refer to Literature Cited. Letters refer to abstracts or personal communications from the listed individual(s): (A) R. H. Chien, D. C. Stein, H. S.

^b Numbers refer to Literature Cited. Letters refer to abstracts or personal communications from the listed individual(s): (A) R. H. Chien, D. C. Stein, H. S. Seifert, K. Floyd, and M. So, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, K41, p. 213; (B) J. G. Cannon; (C) N. Carbonetti; (D) P. F. Sparling; (E) D. C. Stein. ^c N. gonorrhoeae F62 was isolated from the urethra of a female at the Fulton County Health Department, Atlanta, Ga., in 1962. Human volunteers were infected with this strain to demonstrate that virulence was genetically linked to clonal variation (58).

^d N. gonorrhoeae FA19 is a urogenital isolate from the Far East (P. F. Sparling, personal communication). It is strain Ceylon 3 from the collection of A. Reyn and was obtained from her by P. F. Sparling in 1970. It was lyophilized by A. Reyn in 1962. The antibiotic susceptibilities of FA19 are typical of those from strains isolated in the preantibiotic era and are as follows (expressed in micrograms per milliliter): penicillin, 0.007; tetracycline, 0.25; chloramphenicol, 0.5; erythromycin, 0.25; rifampin, 0.12; fusidic acid, 0.12; Triton X-100, 0.5; acridine orange, 100; and crystal violet, 4.0 (93, 94, 105).

* N. gonorrhoeae FA1090 is a cervical isolate from a patient with disseminated gonococcal infection and was isolated in North Carolina in 1976 (J. G. Cannon, personal communication).

^f N. gonorrhoeae MS11 is from the collection of E. Gotschlich, The Rockefeller University, New York, N.Y., and was initially isolated at the Mount Sinai School of Medicine, New York, N.Y., in 1970. MS11_{ms} was obtained from the collection of E. Gotschlich by M. So and T. F. Meyer (77). N. gonorrhoeae MS11_{mk} differs from MS11_{ms} in that the *pilE2* locus is deleted. MS11_{mk} was obtained by J. M. Koomey and J. Swanson from stocks supplied by G. Schoolnik, who serially passaged them from the collection of E. Gotschlich (116).

⁸ Isolated in Buffalo, N.Y. (38).

^h Urogenital isolate from Norway (66).

CLONED N. GONORRHOEAE GENES AND CODON USAGE

The ability to clone genes that are readily expressed in *E.* coli has greatly enhanced the identification of genetic loci in *N. gonorrhoeae*. The genes that have been cloned from *N.* gonorrhoeae are listed in Table 3. A variety of vectors, including lambda bacteriophage derivatives, plasmids, cosmids, and phasmids, have been used to clone gonococcal genes. The plasmid pBR322 has been used effectively for cloning genes that are not lethal to *E. coli*, whereas lambda gt11 has proven effective for cloning portions of the protein I (*por*) gene and for cloning the protein III (*rmp*) gene. It appears to be necessary to use restriction-deficient *E. coli* strains (McrB⁻ HsdR⁻), in most cases, to obtain high cloning efficiencies (13, 92, 109, 114).

Several of the cloned gonococcal genes have been sequenced, and the N. gonorrhoeae codon usage for these genes is listed in Table 4. Codon usage tables are useful for identifying protein-coding regions in a nucleotide sequence (47, 108), locating deoxyribonucleic acid (DNA) sequencing errors (47, 108), and constructing oligonucleotide probes from amino acid sequences. In E. coli there is a different pattern of codon usage depending on the level of expression of a particular gene in a cell (46, 48). Even though the 11 gonococcal genes which were examined could all be considered highly expressed genes (i.e., present in more than 10 protein molecules per cell, as opposed to the small number of regulatory protein molecules per cell), the N. gonorrhoeae codon usage pattern most resembles that of E. coli non-highly-expressed genes, such as the lambda and lac repressors. This difference in codon usage cannot be explained by differences in guanine-plus-cytosine content, since the guanine-plus-cytosine content of N. gonorrhoeae is similar to that of E. coli. The pattern of codon usage in the pilin genes is most different from that in the other gonococcal genes examined, with a much more biased use of cytosine in codon position 3. Codons which are rarely used by N. gonorrhoeae are glycine (GGG), arginine (AGG, AGA, and CGA), and leucine (CTA).

		TABLE 2. G	enetic markers of N. gonorrhoeae	
Gene symbol	Mnemonic	Linkage association"	Alternative gene symbols; phenotypic trait affected	Reference(s) ^b
aniA	Anaerobically induced		Major anaerobically induced outer membrane protein (Pan 1)	25
ampA	Ampicillin	cap	Low-level resistance to ampicillin	55
amp B	Ampicillin	str, fus	Low-level resistance to ampicillin	55
ampC	Ampicillin	rif, str	Low-level resistance to ampicillin	55
ampD	Ampicillin	rif	Low-level resistance to ampicillin	55
argA	Arginine		NK5992 and W3421; acetylglutamate synthetase	23, 1
argB	Arginine		Complementation of <i>argB</i> mutation of <i>E. coli</i> 30SOMA4	I
argE	Arginine	penB, hyx	AB1157 and AT2538; ornithine acetyltransferase	5, 22, 23, 98, F, I
argF	Arginine		argl; complementation of argl mutation of E. coli N166 and argF argl mutation of E. coli N134; ornithine transcarbamylase	22, 98, F, I
argG	Arginine		Complementation of <i>argG</i> mutation of <i>E. coli</i> UQ27	23, 1
cap carA	Chloramphenicol	tet, spc car B	<i>cam</i> , <i>chl</i> ; low-level resistance to chloramphenicol <i>car-1</i> ; requirement for ornithine or arginine;	68, 93, 105 22, 99, I
			complementation of <i>carA</i> mutation of <i>E. coli</i> FP178; small subunit of carbamoyl-phosphate synthetase	
car B		car A	<i>car</i> -2; requirement for ornithine or arginine; complementation of <i>carB</i> mutation of <i>E. coli</i> JEF8; large subunit of carbamoyl-phosphate synthetase	22, 99, I
dcmA ^c	DNA cytosine methylase		DNA methylase M.NgoPl; recognition sequence 5'-PuGCGCPy-3'	28, 114
dcmB ^c	DNA cytosine methylase		DNA methylase M.NgoPII; recognition sequence 5'-GGCC-3'	28, 114, 115
dcmD ^c	DNA cytosine methylase	dcrD	DNA methylase M.NgoMI; recognition sequence 5'-GCCGGC-3'	28, D, E
dcmE ^c	DNA cytosine methylase	dcrE	DNA methylase M.NgoBIII; recognition sequence 5'-GGNNCC-3'	28, J
dcrD ^c		dcmD	Restriction endonuclease R.NgoMI; recognition sequence 5'-GCCGGC-3'	28, D, E
dcrE ^c		dcmE	Restriction endonuclease R.NgoBIII; recognition sequence 5'-GGNNCC-3'	28
dud	DNA uptake deficient		Failure to take up DNA into a deoxyribonuclease (DNase)-resistant state; abnormal colony morphology	10a, C
env-l	Envelope	env-3	envA; nonspecific increased sensitivity to antibiotics, dyes, and detergents; complete phenotypic suppression of mtr and penB; 40% decrease in cross-linking of peptidoglycan; fivefold reduction in quantity of 52,000 mol wt outer membrane protein	35, 50, 71, 94, 106
env-3	Envelope	env-l	envB; nonspecific increased susceptibility to antibiotics, dyes, and detergents; 20% decrease in cross-linking of pentidoglycan	35, 50, 71, 94, 106
env-10	Envelope		Increased susceptibility to drugs, dyes, and detergents	96
ery	Erythromycin	spc	Low-level resistance to erythromycin	68
јбр	Iron-binding protein		Structural gene for an iron-binding outer membrane protein (37,000 daltons)	80, A
frp	Iron-repressible protein		Family of outer membrane proteins expressed under conditions of iron starvation	85, 123
jhu B	Ferric hydroxamate uptak		Complementation of <i>fhuB</i> mutation of <i>E. coli</i> BN3307 and BU736	124
fud fur	Iron uptake deficient		Deficient in iron acquisition	*
jus hsp	rusidic acid Heat shock protoin	str, tet	Resistance to fusidic acid	104
nsp	meat shock protein		after a shift up in temperature	29
hyx	Hypoxanthine	argE	Requirement for hypoxanthine	5, 72
iga la-	Immunoglobulin A		Immunoglobulin A protease	61, 90
iaz	Lipid-modified azurin		Azurin-related outer membrane protein; recognized by monoclonal antibody H.8	42, 43

TABLE 2. Genetic markers of N. gonorrhoeae

Continued on following page

Gene symbol	Mnemonic	Linkage association ^a	Alternative gene symbols; phenotypic trait affected	Reference(s) ^b
ldhA	Lactate dehydrogenase		Membrane-bound lactate dehydrogenase	В
ldhB	Lactate dehydrogenase		Soluble lactate dehydrogenase	В
lip	Lipoprotein		Outer membrane protein recognized by monoclonal antibody H.8	12, 53, L
lps-1	Lipopolysaccharide synthesis		los; produces new lipopolysaccharide band in <i>E.</i> coli HB101 which is recognized by antigonococcal antiserum	86
lps-2	Lipopolysaccharide synthesis		los; biosynthesis of lipopolysaccharide; complementation of pyocin-resistant phenotype of N. gonorrhoeae FA5100	G
lps-3	Lipopolysaccharide synthesis		los; biosynthesis of lipopolysaccharide; complementation of pyocin-resistant phenotype of N. gonorrhoeae FA5100	G
mom	Modifier of <i>mtr</i>	pen B	Phenotypic suppression of <i>mtr</i> ; reduction of resistance to benzylpenicillin, oxacillin, erythromycin, and novobiocin mediated by <i>mtr</i>	100
mtr	Multiple transformable resistance		ery-2; low-level resistance to penicillin, tetracycline, erythromycin, chloramphenicol, rifampin, and fusidic acid and increased resistance to dyes and detergents; fivefold-increased amount of a 52,000- dalton outer membrane protein; 30% increase in cross-linking of peptidoglycan	40, 49, 50, 67–69, 103, 105, 106, 122
metB	Methionine		Complementation of <i>metB</i> mutation of E. coli χ 342	89
nsr ^d	Nonspecific resistance		<i>mtr</i> ; low-level resistance to antibiotics; does not alter the amounts of a 52,000-dalton membrane protein as does <i>mtr</i>	14, 19
ntr-2	Nontransformable		Inability to be transformed by plasmid or chromosomal DNA; normal DNase-resistant DNA uptake: normal colony morphology	10a, C
ntr-5	Nontransformable		Inability to be transformed by chromosomal DNA; normal DNase-resistant DNA uptake	10a, C
omc	Outer membrane complex		Structural gene for the outer membrane protein- macromolecular complex (76,000 daltons)	82, K
opa oxiA	Opacity Oxygen induced	pilEI ^e	Outer membrane protein II structural gene Oxygen-induced outer membrane protein (28,000 daltons)	26, 74, 95, 113 25, 36, 37
пет	Penicillin modifier		Modifier gene affecting resistance to penicillin	121
penA penA	Penicillin		Penicillin-binding protein PBP-2; penicillin- susceptible enzyme involved in peptidoglycan synthesis at cell division; four- to eightfold increased resistance to penicillin without affecting response to other antimicrobial agents	7, 31, 32, 40, 103, 105, 106, 107
penB	Penicillin	por, spc	Nonspecific low-level resistance to penicillin, tetracycline, and nalidixic acid	24, 27, 40, 100, 103, 105, 106
pilA	Pilin	pilE	Gene product activates the <i>pilE</i> promoter in <i>E. coli</i>	117
pilB	Pilin	pilE	Gene product negatively regulates <i>pilE</i> promoter; insertional inactivation of <i>pilB</i> results in hyperpiliated gonococci	117
pilE	Pilin	opa ^e	Expressed locus for pilin structural gene	74, 75, 77, 113
pilS	Pilin	opa ^e	Silent (nonexpressed) locus for pilin structural gene	51, 74, 75, 113
por	Porin	spc, penB	nmp; outer membrane protein I structural gene	17, 20, 21, 45
proA	Proline	proB	Complementation of <i>proA</i> mutation of <i>E</i> . coli χ 463	110
pro B	Proline	proA	Complementation of <i>proB</i> mutation of <i>E</i> . coli χ 340	110
proC	Proline		Complementation of <i>proC</i> mutation of <i>E</i> . coli $\chi 278$	H
pyr B	Pyrimidine		Aspartate transcarbamylase	99
pyrE	Pyrimidine		<i>pyr-2</i> ; orotate phosphoribosyltransferase	99
recA	Recombination		Homologous recombination and DNA repair	5 02
rıj rmp	Ritampin Reduction modifiable protein	ura, str	Outer membrane protein III structural gene	42, 44
sac-l	Serum-antibody- complement	penB	Resistance to the bactericidal activity of normal human serum	18
sac-3	Serum-antibody- complement	pen B	Resistance to the bactericidal activity of normal human serum; alteration in lipopolysaccharide structure	97, 112

TABLE 2-Continued

Continued on following page

Gene symbol	Mnemonic	Linkage association"	Alternative gene symbols; phenotypic trait affected	Reference(s) ^b
spc	Spectinomycin	cap, penB	High-level resistance to spectinomycin; alteration of 30S ribosomal subunit	70, 93
str	Streptomycin	rif, fus	High-level resistance to streptomycin; alteration of 30S ribosomal subunit	68, 70, 93
tem	Tetracycline modifier		Modifier gene affecting resistance to tetracycline and penicillin	122
tet	Tetracycline	fus, cap	Low-level resistance to tetracycline	68, 93, 105
trpE	Tryptophan		Complementation of <i>trpE</i> mutation of <i>E. coli</i> K-12 x478	J
tsg	Temperature-sensitive growth		Family of uncharacterized mutations with the common phenotype of no growth or poor growth at 37°C	111, 125
ura	Uracil	rif	Requirement for uracil	5, 72
vel		v	Hypersusceptibility to vancomycin and erythromycin	60
vnc	Vancomycin		Hypersusceptibility to vancomycin	60

TABLE 2—Continued

^a Linkage associations refer to the linkage relationships diagrammed in Fig. 1 or to genes shown to be physically linked.

^b Numbers refer to Literature Cited. The asterisk refers to a gene which has not yet been shown to exist in N. gonorrhoeae; however, researchers at the Sixth International Pathogenic Neisseria Meeting agreed that this nomenclature should be used. Letters refer to abstracts or personal communications from the listed individuals: (A) S. A. Berish, T. A. Mietzner, and S. A. Morse; (B) R. A. Jensen, R. K. Bhatnagar, and A. T. Hendry; (C) G. Biswas, S. Lacks, and P. F. Sparling; (D) R₁ Chien, A. Pierkarowicz, and D. Stein; (E) R. H. Chien, D. C. Stein, H. S. Seifert, K. Floyd, and M. So., Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, K41, p. 213; (F) P. R. Martin, D. A. Simpson, and M. H. Mulks; (G) E. F. Petricoin and D. C. Stein, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, D187, p. 102; (H) F. Picard and J. R. Dillon; (I) F. Picard and J. R. Dillon, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, D173, p. 100; (J) D. C. Stein; (K) W.-M. Tsai, and C. E. Wilde III; (L) J. P. Woods, S. M. Spinola, S. M. Strobel, and J. G. Cannon.

. We have assigned the mnemonic dcm to genes which encode a DNA cytosine methyltransferase and the mnemonic dcr to corresponding restriction endonuclease genes. The letters A, B, C, D, E, G, and H correspond to DNA sequences (methylase specificities) S.NgoI, S.NgoI, S.NgoII, S.NgoIV, S.NgoV, S.NgoVII, and S.NgoVIII, respectively, recognized by a particular cytosine methyltransferase or restriction endonuclease as described by Davies (28). ^d Cannon and Sparling (19) have designated this locus nsr to distinguish it from the phenotypically similar but genetically different locus mtr.

^e In *N. gonorrhoeae* MSI1_{ms}, three protein II loci, *opaE1*, *opaE2*, and *opaE3*, are adjacent to the unlinked pilin loci, *pilE1*, *pilS5*, and *pilS4*, respectively (74, 113). Schwalbe and Cannon (95) showed by genetic transformation that the six protein II loci in *N. gonorrhoeae* FA1090 are unlinked.

GENETIC MARKERS AND CLONED GENES OF N. MENINGITIDIS

Much less work has been done on identification of genetic markers in N. meningitidis. Genetic markers of N. meningitidis are listed in Table 5. As in N. gonorrhoeae, no standard laboratory strain has been used for the majority of these studies. N. meningitidis FAM18 (serogroup C, serotype 2A), isolated from the cerebrospinal fluid of a patient with meningococcal septicemia, was used to isolate the gene encoding the H.8 lipoprotein (lip) and to demonstrate amino acid and DNA homology between the class 5 outer membrane proteins of N. meningitidis and the proteins II of N. gonorrhoeae (56); it was also used to identify iron uptake mutants (33).

CONCLUSIONS AND PROSPECTS FOR THE FUTURE

A number of factors have been responsible for the inability to generate a comprehensive genetic map for N. gonorrhoeae or N. meningitidis. First and foremost is the small number of researchers involved in studies of these organisms as compared with those working with E. coli. Second, neither of these neisserial species contains the genetic manipulation systems, conjugation and transduction, that have enabled the interchange of large DNA fragments between strains. The only genetic system available, transformation (102), will demonstrate linkage only if genes are within about 30 to 40 kilobase pairs of each other (19).

A third factor limiting development of a useful genetic map is the difficulty in obtaining mutants. N. gonorrhoeae does not contain the error-prone repair systems, found in some other organisms (16), that allow the high-frequency generation of mutants in a mutagenized population. Mutagens such as ultraviolet light or methyl methanesulfonate kill N. gonorrhoeae without producing mutants in the surviving population. The effective mutagens, ethyl methanesulfonate and nitrosoguanidine, introduce lesions that result in mispairing and enhance the frequency of gonococcal mutants, but this enhancement occurs at a level significantly below that observed with other bacterial species. In addition to difficulties

	(sac-1)
	(sac-3)
	(mom)
(ampD)	(tem) (ampA)(ery) (por)
- ura rif ampC str amp	bB — fus — tet — cap — spc — penB — argE — hyx —

FIG. 1. Linkage relationships of chromosomal markers in N. gonorrhoeae. This map is based on mapping data obtained from several laboratories and with several strains of N. gonorrhoeae (5, 17-19, 55, 68, 69, 93, 97, 100, 103-105, 122, 126). Therefore, the distances shown do not correlate with actual genetic or physical distances on the gonococcal chromosome. Parentheses around a marker indicate an uncertainty about its position relative to adjacent markers. An explanation of the genetic symbols is given in Table 2.

TABLE	3.	Cloned	genes	from N.	gonorrhoeae
TIDLL	٠.	Cionea	Bene3		gonormocue

Gene symbol	Vector	E. coli host	N. gonorrhoeae parent	Selection or screening method	Refer- ence(s) ^a
argA	λEMBL4	NM539	CH811	Lytic complementation of <i>argA</i> mutation of <i>E. coli</i> NK5992 and W3421	G
areB	λEMBL4	NM539	CH811	Lytic complementation of <i>areB</i> mutation of <i>E</i> . <i>coli</i> 30SOMA4	G
areE	λEMBL4	NM539	CH811	Lytic complementation of <i>argE</i> mutation of <i>E</i> , <i>coli</i> AB1157	Ğ
araF	nUC12	AT2538	CDC50	Complementation of <i>argE</i> mutation of <i>E</i> . coli AT2538	D D
araE		NIM520	CH811	Lutic complementation of and mutation of E. coli N166	G
urgr F		NINI JJJ	CDC50	Complementation of <i>argi</i> mutation of <i>E. coli</i> N100	U D
argr	pUC12	N134	CDC50	Complementation of argF argI mutation of E. coli N134	D
argG	λEMBL4	NM539	CH811	Lytic complementation of $argG$ mutation of E. coli UQ2/	G
carA	λEMBL4	NM539	CH811	Lytic complementation of <i>carA</i> mutation of <i>E. coli</i> FP178	G
car B	λEMBL4	NM539	CH811	Lytic complementation of <i>carB</i> mutation of <i>E. coli</i> JEF8	G
dcmA	pBR322	RR1	P9	Resistance of recombinant plasmids to digestion with Haell	114
dcmB	pBR322	RR1	P9	Resistance of recombinant plasmids to digestion with HaeIII	114
dcmD	pHSS7	GC6	MS11	Resistance of recombinant plasmid to digestion with Nael	С
dcmE	pHC79	HB101	MUG116	Resistance of recombinant plasmids to digestion with BamHI, KpnI, and NarI	B, H
dcrD	pHSS7	GC6	MS11	Resistance of recombinant plasmids to digestion with Nael	С
dcrE	pHC79	HB101	MUG116	Resistance of recombinant plasmids to digestion with BamHI, KpnI, and Narl	В
fbp	pUC13 pUC19	JM105	F62	Hybridization with <i>fbp</i> -specific synthetic oligonucleotide probes	Α
fhu B	λSE4	RR1	FA19	Omplementation of <i>fhuB</i> mutation of <i>E. coli</i> BU736 and BN3307	124
iga	pREG152	HB101	F62	Cleavage of human immunoglobulin A as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis	61
iga	pBR322	GC1	MS11	Filter assay using radiolabeled human immunoglobulin A antibody bound to nitrocellulose via its secretory component	52
laz	λot11	Y1089	R10	Immunohlotting with anti-protein Lantiserum	42 43
lin	Agen6	1 5392	FA1090	Immunoblotting with monoclonal antibody H 8	12, 45
lps-1	pBR322	HB101	RUN4383	Colony immunoblotting with antigonococcal outer membrane	86
lps-2	pHC79	HB101	MUG116	Complementation of pyocin-resistant phenotype of N .	Ε
lps-3	pHC79	HB101	MUG116	Complementation of pyocin-resistant phenotype of N. gonorrhoege FA5100	Ε
metR	nLES2	v342	IW31	Complementation of <i>metB</i> mutation of <i>E</i> coli $x342$	89
nal	pHC79	HB101	MUG116	Transformation of cosmid library into N. gonorrhoeae EA5100 with selection for nalidivic acid resistance	Н, I
omc	λgt11 and λEMBL3	Y1090 and	2686	Immunoblotting with artigonococcal outer membrane protein- macromolecular complex antiserum	J
	KEMDES	Y1088			
ona	pBR322	GC1 ^b	MS11	Colony immunoblotting with anti-MS11 protein II antiserum	113
ора	pBR322	HB101	FA1090	Colony radioimmunoassay with monoclonal antibodies specific for FA1090 protein II variants	26
oxiA	pBR322	HB101	RUN4007	Colony immunoblotting with antigonococcal outer membrane antiserum	36, 37
penA	pBG5131	TG1	CDC77-124615	Transformation of <i>N. gonorrhoeae</i> FA19 to increased penicillin resistance (sixfold)	107
penA	pBG5131	TG1	LM306, FA19, CDC84-060418, and CDC84- 060384	Hybridization with <i>penA</i> gene from CDC77-124615	107
pilA	pBR322	GC1	MS11 _{ms}	Characterization of previously isolated clones containing <i>pilE</i> and <i>opaEl</i>	117
pil B	pBR322	GC1	MS11 _{ms}	Characterization of previously isolated clones containing <i>pilE</i> and <i>opaEl</i>	117
nilE1°	nBR322	GC1	MS11	Colony immunoblotting with anti-pilin antiserum	77
pilE ^c	pBR322	GC1	P9	Colony immunoblotting with anti-pilin monoclonal antibody	87
por	pGEM-2	HB101	FA19	Hybridization with protein IA-specific synthetic oligonucleotide probes	21
por	pGEM-3 and λgt11	HB101	MS11	Hybridization with protein I-specific synthetic oligonucleotide probes	20
por	λgt11	Y1089	R10	Immunoblotting with anti-R10 protein 1B monoclonal antibodies	45
proA	pLES2	JM83	KH45	Complementation of proAB mutation of E. coli JM83	110
proB	pLES2	JM83	KH45	Complementation of proAB mutation of E. coli JM83	110

Gene symbol	Vector	<i>E. coli</i> host	N. gonorrhoeae parent	Selection or screening method	Refer- ence(s) ^a
nroC	pGEM-3	v478	CH811	Complementation of proC mutation of E. coli $\chi 478$	F
rmn	λot11	¥1089	R10	Immunoblotting with polyclonal anti-protein I antiserum	42
sac-Ad	nHC79	HB101	IC1	Transformation of N. gonorrhoeae F62 to serum resistance	73
suc-	pHC//	HB101	MS11	Complementation of recA mutation of E. coli HB101	63
rif	pHC79	HB101	MUG116	Transformation of cosmid library into N. gonorrhoeae FA5100 with selection for rifampin resistance	Н
trpE	pLES2	JM83	JW31	Complementation of trpE mutation of E. coli K-12 x478	Н

TABLE 3-Continued

" Numbers refer to Literature Cited. Letters refer to abstracts or personal communications from the listed individuals: (A) S. A. Berish, T. A. Mietzner, and S. A. Morse; (B) R. Chien, A. Piekarowicz, and D. Stein; (C) R. H. Chien, D. C. Stein, H. S. Seifert, K. Floyd, and M. So, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, K41, p. 213; (D) P. R. Martin, D. A. Simpson, and M. H. Mulks; (E) E. F. Petricoin and D. C. Stein, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, D187, p. 102; (F) F. Picard and J. R. Dillon; (G) F. Picard and J. R. Dillon, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, D173, p. 100; (H) D. C. Stein; (I) D. C. Stein and T. Cook; (J) W.-M. Tsai and C. E. Wilde III.

E. coli GC1 is $(K-12,-_m+)$ (52, 77). Additional expressed and silent pilin genes have been cloned from strains MS11 (51, 75) and P9 (83).

^d We have designated the serum resistance allele of N. gonorrhoeae JC1 sac-4. This allele may be identical to the previously described sac-3 allele in N. gonorrhoeae F62 (97).

Т	A	BI	Æ	4.	Codon	usage	in	Ν.	gonorri	hoeae'
---	---	----	---	----	-------	-------	----	----	---------	--------

Amino acid	Codon ^b	No.º	No./ 1,000 ^d	Frac- tion ^e	Amino acid	Codon	No.	No./ 1,000	Frac- tion
Gly	GGG	31	6.34	0.07	Trp	TGG	52	10.63	1.00
Gly	GGA	55	11.24	0.13	End	TGA	10	2.04	0.50
Glv	GGT	103	21.05	0.25	Cys	TGT	8	1.63	0.20
Gly	GGC	228	46.6	0.55	Cys	TGC	32	6.54	0.80
Glu	GAG	40	8.17	0.18	End	TAG	1	0.2	0.05
Glu	GAA	187	38.22	0.82	End	TAA	9	1.84	0.45
Asp	GAT	121	24.73	0.44	Tyr	TAT	87	17.78	0.51
Asp	GAC	152	31.06	0.56	Tyr	TAC	82	16.76	0.49
Val	GTG	54	11.04	0.17	Leu	TTT	106	21.66	0.30
Val	GŢA	67	13.69	0.21	Leu	TTA	49	10.01	0.14
Val	GTT	104	21.25	0.33	Phe	TTT	76	15.53	0.45
Val	GTC	93	19.01	0.29	Phe	TTC	94	19.21	0.55
Ala	GCG	82	16.76	0.17	Ser	TCG	33	6.74	0.10
Ala	GCA	131	26.77	0.27	Ser	TCA	54	11.04	0.16
Ala	GCT	64	13.08	0.13	Ser	TCT	85	17.37	0.25
Ala	GCC	205	41.90	0.43	Ser	TCC	76	15.53	0.22
Arg	AGG	23	4.70	0.07	Arg	CGG	49	10.01	0.16
Arg	AGA	28	5.72	0,09	Arg	CGA	29	5.93	0.09
Ser	AGT	21	4.29	0.06	Arg	CGT	67	13.69	0.22
Ser	AGC	73	14.92	0.21	Arg	CGC	112	22.89	0.36
Lys	AAG	58	11.85	0.15	Gln	CAG	78	15.94	0.35
Lys	AAA	331	67.65	0.85	Gln	CAA	146	29.84	0.65
Asn	AAT	106	21.66	0.37	His	CAT	51	10.42	0.45
Asn	AAC	177	36.17	0.63	His	CAC	63	12.88	0.55
Met	ATG	60	12.26	1.00	Leu	CTG	78	15.94	0.22
Ile	ATA	27	5.52	0.15	Leu	CTA	25	5.11	0.07
Ile	ATT	67	13.69	0.36	Leu	CTT	62	12.67	0.17
Ile	ATC	90	18.39	0.49	Leu	CTC	38	7,77	0.11
Thr	ACG	53	10.83	0.20	Pro	CCG	74	15.12	0.37
Thr	ACA	48	9.81	0.18	Pro	CCA	35	7.15	0.17
Thr	ACT	45	9.20	0.17	Pro	CCT	44	8.99	0.22
Thr	ACC	117	23.91	0.44	Pro	CCC	47	9.61	0.23

" The program CodonFrequency from the University of Wisconsin Genetics Computer Group (30) was used to generate codon usage tables from each of the N. gonorrhoeae genes in the GenBank (release 56, 7/88) and EMBL (release 15, 4/88) data bases (10, 15). A reference codon usage table was generated from the individual codon usage tables for the following genes: pilE1 and pilS1 from MS11_{ms} (51, 75); three protein II genes from FA1090 (26); in obtaining mutants, N. gonorrhoeae does not contain a variety of genes that could be mutated that are not critical to the growth of the organism, such as the variety of genes involved in catabolism of alternative fuel sources that are found in E. coli. Thus, there are fewer mutations available to serve as genetic markers in mapping studies in N. gonorrhoeae.

The advent of recombinant DNA techniques has been invaluable to the studies of genes in both N. gonorrhoeae and N. meningitidis; these techniques have proved to be a useful alternative to classical genetic techniques. We expect that the isolation of neisserial genes will continue and will greatly expand the number of identified genes available for linkage studies. New technologies are continuing to become available, and the one that may prove the most useful in studies of the genetic organization of N. gonorrhoeae and N. meningitidis is pulsed-field electrophoresis. The discovery of restriction enzymes that recognize 8-base-pair sequences and the ability to separate very large DNA fragments by altering the orientation of the electric field during agarose gel electrophoresis has enabled researchers to physically map the E. coli chromosome (101). It should also be possible to generate physical maps of the gonococcal and meningococcal chromosomes by this technique, especially since the neisserial chromosomes are only about 50% of the size of the E. coli chromosome (19). Once such maps are developed, the position of a cloned gene on the map could be easily determined by DNA-DNA hybridization.

If physical maps are developed for N. gonorrhoeae, we strongly suggest that they be done with one or more of the gonococcal strains that are the most frequently studied (e.g., see Table 1). We also urge investigators to use one of these strains as the source of DNA for their cloning experiments, whenever possible. This would allow mapping of the location of the cloned gene to one or more of the fragments whose position is known on the physical map. Both N.

the protein I gene from FA19 (21); penA from CDC77-124615 (107); the gene for an azurin-related protein from MS11 (43); the gene for protein III from R10 (44); the immunoglobulin A protease gene from $MS11_{ms}$ (90); and the *N.Ngo*PII DNA methyltransferase gene from P9 (115). ^{*b*} Total number of codons, 4,893.

^c The number of times a codon occurred in the examined sequences.

^d The number of times a specific codon would occur per 1,000 codons.

The ratio of the number of occurrences of a specific codon to the number of occurrences of all codons in the same synonymous codon group.

Gene symbol	Mnemonic	Phenotypic trait affected or cloned gene	Cloning or mutagenesis strategy	Refer- ence(s)"
cps-1	Capsule	Biosynthesis and assembly of group B	pCOS2EMBL library of N. meningitidis B1940 in	76
cps-2	Capsule	polysaccharide capsule 5'-Monophospho-N-acetyl neuraminic acid synthetase	<i>E. coli</i> GC6 screened with monoclonal antibody pACYC184 library of <i>N. meningitidis</i> group B was screened by complementation of the	D
cps-3	Capsule	N-Acetylneuraminic acid synthetase	corresponding mutation in <i>E. coli</i> EVS pACYC184 library of <i>N. meningitidis</i> group B was screened by complementation of the corresponding mutation in <i>E. coli</i> EVS	D
fbp	Iron-binding protein	Iron-binding outer membrane protein (37,000 daltons); detected by immunoblotting with gonococcal anti-	corresponding initiation in <i>E. con</i> Evs	80
frp	Iron-repressible protein	fbp antisera Family of outer membrane proteins expressed under conditions of iron starvation		11, 33, 34
fud-2	Iron uptake deficient	Deficient in iron acquisition from transferrin	Ethyl methanesulfonate mutagenesis of FAM20 (a Nal ^r derivative of FAM18) followed by strentonigrin enrichment	33, 120
fud-3	Iron uptake deficient	Deficient in iron acquisition from transferrin and hemoglobin	Ethyl methanesulfonate mutagenesis of FAM20 followed by strentonigrin enrichment	33
fud-4	Iron uptake deficient	Deficient in iron acquisition from ferric dicitrate, transferrin, lactoferrin, hemin, and hemoglobin	Streptonigrin enrichment of log-phase culture of FAM20	33
fud-5	Iron uptake deficient	Deficient in iron acquisition from ferric dicitrate, transferrin, lactoferrin, and hemin	Streptonigrin enrichment of log-phase culture of FAM20	33
hga	Hemoglobin growth alteration	Altered ability to grow with hemoglobin as sole iron source	Streptonigrin enrichment of log-phase culture of FAM20	33, 120
iga	Immunoglobulin A	Immunoglobulin A protease	pBR325 library of <i>N. meningitidis</i> 15894 in <i>E. coli</i> HB101 screened by hybridization with	62
laz	Lipid-modified azurin	Azurin-related outer membrane protein	pBR322 library of <i>N. meningitidis</i> FAM18 in <i>E. coli</i> HB101 screened by colony immunoblotting with monoclonal antibody H.8	57
отс	Outer membrane complex	Structural gene for N. gonorrhoeae omc hybridizes to N. meningitidis DNA		Е
ора	Opacity-associated protein	Class 5 outer membrane protein; shares homology with <i>N. gonorrhoeae opa</i> including pentameric repeat	pBR325 library of <i>N. meningitidis</i> FAM18 in <i>E. coli</i> HB101 screened by colony blot radioimmunoassay with monoclonal antibodies H 21 and H 22	41, 56
oxiA	Oxygen induced	Structural gene for N. gonorrhoeae oxiA hybridizes to N. meningitidis DNA and anti-OxiA antiserum reacts with a meningococcal protein of the same size		37
pilE	Pilin	Expressed class I pilin locus	pBR322 library of <i>N. meningitidis</i> C311 in <i>E. coli</i> GC1 screened by hybridization with oligonucleotide to the coding sequence of the SM1 enitone of gonococcal pilin	91
pilS	Pilin	Silent (nonexpressed) class II pilin locus	pBR322 library of <i>N. meningitidis</i> C114 in <i>E. coli</i> GC1 screened by hybridization with <i>pilE</i> gene of <i>N. genercharge</i> P9.2	88
porA	Porin	Class 1 outer membrane protein structural gene	λgt11 library of <i>N. meningitidis</i> MC50 in <i>E. coli</i> Y1090 screened by immunoblotting with	8, 41, A
por B	Porin	Class 2 and 3 outer membrane proteins; shares DNA homology with N. gonorrhoeae por; antibody to gonococcal protein IB cross-reacts with class 2 proteins	λgt11 library of group B N. meningitidis screened with a monoclonal antibody against N. gonorrhoeae protein IB and by hybridization with a synthetic oligonucleotide	41, C
rmp	Reduction-modifiable protein	Class 4 outer membrane protein; shares DNA homology with N. gonorrhoeae rmp; antibody to gonococcal protein III cross-reacts with class 4 proteins	λ gt11 library of <i>N. meningitidis</i> BNCV was screened by immunoblotting with a monoclonal antibody to gonococcal protein III	41, B

^a Numbers refer to Literature Cited. Letters refer to personal communications from the following individuals: (A) A. K. Barlow, J. E. Heckels, and I. N. Clarke; (B) K. P. Klugman and E. C. Gotschlich; (C) K. Murakami and E. C. Gotschlich; (D) C. Reid, S. Ganjuli, T. Wallis, I. Roberts, and G. Boulnois; (E) C. E. Wilde III.

S100 WEST AND CLARK

gonorrhoeae and N. meningitidis have been shown by restriction length polymorphism studies to have a high degree of sequence variability (39, 64). Thus, it is anticipated that the physical map determined by using pulsed-field electrophoresis of large fragments will be different for every strain. The use of only a few strains in developing these maps and in cloning experiments will allow researchers from different laboratories to compare their data much more readily and thus enable a more rapid analysis of neisserial gene organization. We further suggest that the above-mentioned strains be deposited into the American Type Culture Collection and the National Collection of Type Cultures to make them more readily available to the general research community.

ACKNOWLEDGMENTS

We thank the researchers, too numerous to list, who provided us with unpublished information that was vital to the compilation of genetic markers and cloned genes in N. gonorrhoeae and N. meningitidis. We specifically thank P. F. Sparling for his helpful suggestions during the preparation of this review.

LITERATURE CITED

- 1. Apicella, M. A. 1974. Antigenically distinct populations of *Neisseria gonorrhoeae*: isolation and characterization of the responsible determinants. J. Infect. Dis. **130**:619-625.
- Apicella, M. A. 1976. Serogrouping of Neisseria gonorrhoeae: identification of four immunologically distinct acidic polysaccharides. J. Infect. Dis. 134:377–383.
- Apicella, M. A., K. M. Bennett, C. A. Hermerath, and D. E. Roberts. 1981. Monoclonal antibody analysis of lipopolysaccharide from *Neisseria gonorrhoeae* and *Neisseria meningitidis*. Infect. Immun. 34:751–756.
- Apicella, M. A., and N. C. Gagliardi. 1979. Antigenic heterogeneity of the non-serogroup antigen structure of *Neisseria* gonorrhoeae lipopolysaccharides. Infect. Immun. 26:870– 874.
- Atkinson, B. A., and M. H. Mulks. 1988. Linkage of genetic markers in AHU strains of *Neisseria gonorrhoeae*, p. 223–230. *In* J. T. Poolman, H. C. Zanen, T. F. Meyer, J. E. Heckels, P. R. H. Makela, H. Smith, and E. C. Beuvery (ed.), Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Bachmann, B. J. 1987. Linkage map of Escherichia coli K-12, edition 7, p. 807–876. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Barbour, A. G. 1981. Properties of penicillin binding proteins in *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 19:316–322.
- Barlow, A. K., J. E. Heckels, and I. N. Clarke. 1987. Molecular cloning and expression of *Neisseria meningitidis* class I outer membrane protein in *Escherichia coli* K-12. Infect. Immun. 55:2734-2740.
- Barritt, D. S., R. S. Schwalbe, D. G. Klapper, and J. G. Cannon. 1987. Antigenic and structural differences among six proteins II expressed by a single strain of *Neisseria gonorrhoeae*. Infect. Immun. 55:2026–2031.
- 10. Bilofsky, H. S., and C. Burks. 1988. The GenBank genetic sequence data bank. Nucleic Acids Res. 16:1861–1863.
- 10a.Biswas, G. D., S. A. Lacks, and P. F. Sparling. 1989. Transformation-deficient mutants of piliated Neisseria gonorrhoeae. J. Bacteriol. 171:657–664.
- Black, J. R., D. W. Dyer, M. K. Thompson, and P. F. Sparling. 1986. Human immune response to iron-repressible outer membrane proteins of *Neisseria meningitidis*. Infect. Immun. 54: 710–713.

- 12. Black, W. J., and J. G. Cannon. 1985. Cloning of the gene for the common pathogenic Neisseria H.8 antigen from Neisseria gonorrhoeae. Infect. Immun. 47:322-325.
- 13. Blumenthal, R. M., S. A. Gregory, and J. S. Cooperider. 1985. Cloning of a restriction-modification system from *Proteus vulgaris* and its use in analyzing a methylase-sensitive phenotype in *Escherichia coli*. J. Bacteriol. 164:501-509.
- Bygdeman, S., M. Backman, D. Danielsson, and M. Norgren. 1982. Genetic linkage between serogroup specificity and antibiotic resistance in *Neisseria gonorrhoeae*. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 90:243–250.
- 15. Cameron, G. N. 1988. The EMBL data library. Nucleic Acids Res. 16:1865–1867.
- Campbell, L. A., and R. E. Yasbin. 1984. Mutagenesis of Neisseria gonorrhoeae: absence of error-prone repair. J. Bacteriol. 160:288-293.
- Cannon, J. G., D. G. Klapper, E. Y. Blackman, and P. F. Sparling. 1980. Genetic locus (*nmp-1*) affecting the principal outer membrane protein of *Neisseria gonorrhoeae*. J. Bacteriol. 143:847-851.
- Cannon, J. G., T. J. Lee, L. F. Guymon, and P. F. Sparling. 1981. Genetics of serum resistance in *Neisseria gonorrhoeae*: the sac-1 genetic locus. Infect. Immun. 32:547-552.
- 19. Cannon, J. G., and P. F. Sparling. 1984. The genetics of the gonococcus. Annu. Rev. Microbiol. 38:111-133.
- Carbonetti, N. H., V. I. Simnad, H. S. Seifert, M. So, and P. F. Sparling. 1988. Genetics of protein I of *Neisseria gonorrhoeae*: construction of hybrid porins. Proc. Natl. Acad. Sci. USA 85:6841-6845.
- Carbonetti, N. H., and P. F. Sparling. 1987. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of *Neisseria gonorrhoeae*. Proc. Natl. Acad. Sci. USA 84:9084–9088.
- Catlin, B. W., and E. H. Nash. 1978. Arginine biosynthesis in gonococci isolated from patients, p. 1-7. *In* G. F. Brooks, E. G. Gotschlich, K. K. Holmes, W. D. Sawyer, and F. E. Young (ed.), Immunobiology of *Neisseria gonorrhoeae*. American Society for Microbiology, Washington, D.C.
- Catlin, B. W., and A. Reyn. 1982. Neisseria gonorrhoeae isolated from disseminated and localized infections in the pre-penicillin era: auxotypes and antibacterial drug resistances. Br. J. Vener. Dis. 58:158-165.
- Catlin, B. W., and E. N. Shinners. 1985. Gonococcal protein I: genetic dissection and linkage associations of *nmp-1*, p. 123– 129. *In* G. K. Schoolnik, G. F. Brooks, S. Falkow, C. E. Frasch, J. S. Knapp, J. A. McCutchan, and S. A. Morse (ed.), The pathogenic neisseriae. American Society for Microbiology, Washington, D.C.
- Clark, V. L., L. A. Campbell, D. A. Palermo, T. M. Evans, and K. W. Klimpel. 1987. Induction and repression of outer membrane proteins by anaerobic growth of *Neisseria gonorrhoeae*. Infect. Immun. 55:1359–1364.
- 26. Connell, T. D., W. J. Black, T. H. Kawula, D. S. Barritt, J. A. Dempsey, K. Kverneland, Jr., A. Stephenson, B. S. Schepart, G. L. Murphy, and J. G. Cannon. 1988. Recombination among protein II genes of *Neisseria gonorrhoeae* generates new coding sequences and increases structural variability in the protein II family. Mol. Microbiol. 2:227-236.
- Danielsson, D., H. Faruki, D. Dyer, and P. F. Sparling. 1986. Recombination near the antibiotic resistance locus *penB* results in antigenic variation of gonococcal outer membrane protein I. Infect. Immun. 52:529–533.
- Davies, J. K. 1988. DNA restriction and modification systems in *Neisseria gonorrhoeae*. Clin. Microbiol. Rev. 2(Suppl.): S79–S83.
- Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-76.
- Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
- 31. Dougherty, T. J. 1986. Genetic analysis and penicillin-binding protein alterations in *Neisseria gonorrhoeae* with chromoso-

mally mediated resistance. Antimicrob. Agents Chemother. 30:649-652.

- Dougherty, T. J., A. E. Koller, and A. Tomasz. 1980. Penicillinbinding proteins of penicillin-susceptible and intrinsically resistant *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 18:730-737.
- 33. Dyer, D. W., W. McKenna, J. P. Woods, and P. F. Sparling. 1987. Isolation by streptonigrin enrichment and characterization of a transferrin-specific iron uptake mutant of *Neisseria meningitidis*. Mol. Pathogen. 3:351-363.
- 34. Dyer, D. W., E. P. West, W. McKenna, S. A. Thompson, and P. F. Sparling. 1988. A pleiotropic iron-uptake mutant of *Neisseria meningitidis* lacks a 70-kilodalton iron-regulated protein. Infect. Immun. 56:977-983.
- 35. Eisenstein, B. I., and P. F. Sparling. 1978. Mutations to increased antibiotic sensitivity in naturally-occurring gono-cocci. Nature (London) 271:242-244.
- 36. Evans, T. M., and V. L. Clark. 1985. Molecular cloning and identification of an acidic gonococcal outer membrane protein, p. 144–149. In G. K. Schoolnik, G. F. Brooks, S. Falkow, C. E. Frasch, J. S. Knapp, J. A. McCutchan, and S. A. Morse (ed.), The pathogenic neisseriae. American Society for Microbiology, Washington, D.C.
- 37. Evans, T. M., and V. L. Clark. 1988. Molecular cloning and characterization of a gonococcal surface antigen common to pathogenic *Neisseria* spp., p. 257-262. *In* J. T. Poolman, H. C. Zanen, T. F. Meyer, J. E. Heckels, P. R. H. Makela, H. Smith, and E. C. Beuvery (ed.), Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Evins, G. M., and J. S. Knapp. 1988. Characterization of Neisseria gonorrhoeae reference strains used in development of serologic classification systems. J. Clin. Microbiol. 26: 358-363.
- 39. Falk, E. S., B. Bjorvatn, D. Danielsson, B.-E. Kristiansen, K. Melby, and B. Sorensen. 1984. Restriction endonuclease fingerprinting of chromosomal DNA of *Neisseria gonorrhoeae*. Acta Pathol. Microbiol. Immunol. Scand. Sect. B. 92:271–278.
- Faruki, H., and P. F. Sparling. 1986. Genetics of resistance in a non-β-lactamase-producing gonococcus with relatively highlevel penicillin resistance. Antimicrob. Agents Chemother. 30:856-860.
- 41. Frasch, C. E., W. D. Zollinger, and J. T. Poolman. 1985. Serotype antigens of *Neisseria meningitidis* and a proposed scheme for designation of serotypes. Rev. Infect. Dis. 7: 504-510.
- 42. Gotschlich, E. C., M. S. Blake, J. M. Koomey, M. Seiff, and A. Derman. 1986. Cloning of the structural genes of three H8 antigens and of protein III of *Neisseria gonorrhoeae*. J. Exp. Med. 164:868–881.
- Gotschlich, E. C., and M. E. Seiff. 1987. Identification and gene structure of an azurin-like protein with a lipoprotein signal peptide in *Neisseria gonorrhoeae*. FEMS Microbiol. Lett. 43:253-255.
- 44. Gotschlich, E. C., M. Seiff, and M. S. Blake. 1987. The DNA sequence of the structural gene of gonococcal protein III and the flanking region containing a repetitive sequence. Homology of protein III with enterobacterial *ompA* proteins. J. Exp. Med. 165:471-482.
- Gotschlich, E. C., M. E. Seiff, M. S. Blake, and M. Koomey. 1987. Porin protein of *Neisseria gonorrhoeae*: cloning and gene structure. Proc. Natl. Acad. Sci. USA 84:8135-8139.
- Gouy, M., and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055-7074.
- 47. Gribskov, M., J. Devereux, and R. R. Burgess. 1984. The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 12: 539–549.
- 48. Grosjean, H., and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209.
- 49. Guymon, L., D. L. Walstad, and P. F. Sparling. 1978. Cell

envelope alterations in antibiotic-sensitive and -resistant strains of *Neisseria gonorrhoeae*. J. Bacteriol. **136**:391-401.

- Guymon, L. F., and P. F. Sparling. 1975. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of *Neisseria gonorrhoeae*. J. Bacteriol. 124:757-763.
- Haas, R., and T. F. Meyer. 1986. The repertoire of silent pilus genes in *Neisseria gonorrhoeae*: evidence for gene conversion. Cell 44:107-115.
- Halter, R., J. Pohlner, and T. F. Meyer. 1984. IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO J. 3:1595-1601.
- Hitchcock, P. J., S. F. Hayes, L. W. Mayer, W. M. Shafer, and S. L. Tessier. 1985. Analyses of gonococcal H8 antigen. Surface location, inter- and intrastrain electrophoretic heterogeneity, and unusual two-dimensional electrophoretic characteristics. J. Exp. Med. 162:2017–2034.
- Holloway, B. W. 1986. Chromosome mobilization and genomic organization in *Pseudomonas*, p. 217–250. *In J. R. Sokatch* (ed.), The bacteria, vol. X. The biology of *Pseudomonas*. Academic Press, Inc., Orlando, Fla.
- 55. Jones, F., E. J. Cunningham, T. E. Shockley, and J. H. Jackson. 1985. Genetic analysis of spontaneous resistance to ampicillin in *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 28:21–27.
- 56. Kawula, T. H., E. L. Aho, D. S. Barritt, D. G. Klapper, and J. G. Cannon. 1988. Reversible phase variation of expression of *Neisseria meningitidis* class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect. Immun. 56:380-386.
- 57. Kawula, T. H., S. M. Spinola, D. G. Klapper, and J. G. Cannon. 1987. Localization of a conserved epitope and an azurin-like domain in the H.8 protein of pathogenic *Neisseria*. Mol. Microbiol. 1:179–185.
- Kellogg, D. S., Jr., W. L. Peacock, Jr., W. E. Deacon, L. Brown, and C. I. Pirkle. 1963. Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J. Bacteriol. 85:1274-1279.
- 59. Klimpel, K. W., and V. L. Clark. 1988. High resolution two-dimensional analysis of the proteins of *Neisseria gonorrhoeae* colony type 1 and 4, heat shocked and non heat shocked, p. 393–399. *In* J. T. Poolman, H. C. Zanen, T. F. Meyer, J. E. Heckels, P. R. H. Makela, H. Smith, and E. C. Beuvery (ed.), Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Koelbl, J. A., and B. W. Catlin. 1986. Vancomycin hypersusceptibility in *Neisseria gonorrhoeae* isolated from patients involves diverse mutations. Antimicrob. Agents Chemother. 29:687-695.
- Koomey, J. M., R. E. Gill, and S. Falkow. 1982. Genetic and biochemical analysis of gonococcal IgA1 protease: cloning in *Escherichia coli* and construction of mutants of gonococci that fail to produce the activity. Proc. Natl. Acad. Sci. USA 79:7881-7885.
- Koomey, J. M., and S. Falkow. 1984. Nucleotide sequence homology between the immunoglobulin A1 protease genes of Neisseria gonorrhoeae, Neisseria meningitidis, and Haemophilus influenzae. Infect. Immun. 43:101-107.
- 63. Koomey, J. M., and S. Falkow. 1987. Cloning of the *recA* gene of *Neisseria gonorrhoeae* and construction of gonococcal *recA* mutants. J. Bacteriol. 169:790–795.
- 64. Kristiansen, B.-E., B. Sorensen, T. Simonsen, O. Spanne, V. Lund, and B. Bjorvatn. 1984. Isolates of *Neisseria meningitidis* from different sites in the same patient: phenotypic and genomic studies, with special reference to adherence, piliation and DNA restriction endonuclease pattern. J. Infect. Dis. 150:389-396.
- 65. Lambden, P. R., J. E. Heckels, H. McBride, and P. J. Watt. 1981. The identification of novel pilus types produced by variants of *Neisseria gonorrhoeae* P9 following selection *in vivo*. FEMS Microbiol Lett. 10:339-341.
- 66. Maeland, J. A., T. Kristoffersen, and T. Hofstad. 1971. Immunochemical investigations on Neisseria gonorrhoeae endo-

toxin. II. Serological multispecificity and other properties of phenol-water preparations. Acta Pathol. Microbiol. Scand. Sect. B **79**:233–238.

- Maier, T. W., P. Warner, L. Zubrzycki, and M. Chila. 1977. Identification of drug resistance loci in various clinical isolates of *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 12:444–446.
- 68. Maier, T. W., L. Zubrzycki, and M. B. Coyle. 1975. Genetic analysis of drug resistance in *Neisseria gonorrhoeae*: identification and linkage relationships of loci controlling drug resistance. Antimicrob. Agents Chemother. 7:676-681.
- Maier, T. W., L. Zubrzycki, M. B. Coyle, M. Chila, and P. Warner. 1975. Genetic analysis of drug resistance in *Neisseria* gonorrhoeae: production of increased resistance by the combination of two antibiotic resistance loci. J. Bacteriol. 124: 834-842.
- Maness, M. J., G. C. Foster, and P. F. Sparling. 1974. Ribosomal resistance to streptomycin and spectinomycin in *Neis*seria gonorrhoeae. J. Bacteriol. 120:1293–1299.
- Maness, M. J., and P. F. Sparling. 1973. Multiple antibiotic resistance due to a single mutation in *Neisseria gonorrhoeae*. J. Infect. Dis. 128:321-330.
- Mayer, L. W., G. K. Schoolnik, and S. Falkow. 1977. Genetic studies on *Neisseria gonorrhoeae* from disseminated gonococcal infections. Infect. Immun. 18:165–172.
- McShan, W. M., R. P. Williams, and R. A. Hull. 1987. A recombinant molecule from a disseminating strain of *Neisseria* gonorrhoeae that confers serum bactericidal resistance. Infect. Immun. 55:3017-3022.
- 74. Meyer, T. F. 1987. Molecular basis of surface antigen variation in *Neisseria*. Trends Genet. 3:319-324.
- Meyer, T. F., E. Billyard, R. Haas, S. Storzbach, and M. So. 1984. Pilus genes of *Neisseria gonorrhoeae*: chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81:6110-6114.
- Meyer, T. F., M. Frosch, C. P. Gibbs, R. Haas, R. Halter, J. Pohlner, and J. P. M. van Putten. 1988. Virulence functions and antigen variation in pathogenic neisseriae. Antonie van Leeuwenhoek 54:421-430.
- Meyer, T. F., N. Mlawer, and M. So. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30:45-52.
- Mickelsen, P. A., E. Blackman, and P. F. Sparling. 1982. Ability of *Neisseria gonorrhoeae*, *Neisseria meningitidis*, and commensal *Neisseria* species to obtain iron from lactoferrin. Infect. Immun. 35:915-920.
- Mietzner, T. A., R. C. Barnes, Y. A. JeanLouis, W. A. Shafer, and S. A. Morse. 1986. Distribution of an antigenically related iron-regulated protein among the *Neisseria* spp. Infect. Immun. 27:475-482.
- Mietzner, T. A., G. H. Luginhbuhl, E. Sandstrom, and S. A. Morse. 1984. Identification of an iron-regulated 37,000-dalton protein in the cell envelope of *Neisseria gonorrhoeae*. Infect. Immun. 45:410-416.
- Morse, S. A., and M. A. Apicella. 1982. Isolation of a lipopolysaccharide mutant of *Neisseria gonorrhoeae*: an analysis of the antigenic and biologic differences. J. Infect. Dis. 145:206– 216.
- Newhall, W. J., C. E. Wilde III, W. D. Sawyer, and R. A. Haak. 1980. High-molecular-weight antigenic protein complex in the outer membrane of *Neisseria gonorrhoeae*. Infect. Immun. 27:475-482.
- Nicolson, I. J., A. C. F. Perry, J. E. Heckels, and J. R. Saunders. 1987. Genetic analysis of variant pilin genes from *Neisseria gonorrhoeae* P9 cloned in *Escherichia coli*: physical and immunological properties of encoded pilins. J. Gen. Microbiol. 133:553-561.
- Nicolson, I. J., A. C. F. Perry, M. Virji, J. E. Heckels, and J. R. Saunders. 1987. Localization of antibody-binding sites by sequence analysis of cloned pilin genes from *Neisseria gonorrhoeae*. J. Gen. Microbiol. 133:825–833.
- 85. Norqvist, A., J. Davies, L. Norlander, and S. Normark. 1988. The effect of iron starvation on the outer membrane composi-

CLIN. MICROBIOL. REV.

tion of Neisseria gonorrhoeae. FEMS Microbiol. Lett. 4: 71–75.

- Palermo, D. A., T. M. Evans, and V. L. Clark. 1987. Expression of a cloned lipopolysaccharide antigen from *Neisseria gonorrhoeae* on the surface of *Escherichia coli* K-12. Infect. Immun. 55:2844–2849.
- Perry, A. C. F., I. J. Nicolson, and J. R. Saunders. 1987. Structural analysis of the *pilE* region of *Neisseria gonorrhoeae* P9. Gene 60:85–92.
- Perry, A. C. F., I. J. Nicolson, and J. R. Saunders. 1988. Neisseria meningitidis C114 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences. J. Bacteriol. 170:1691–1697.
- 89. Petricoin, E. F., III, T. L. Mapes, and D. C. Stein. 1988. Cloning of a gene for methionine biosynthesis from *Neisseria* gonorrhoeae. Identification by interspecific complementation of Escherichia coli mutants, p. 311–315. In J. T. Poolman, H. C. Zanen, T. F. Meyer, J. E. Heckels, P. R. H. Makela, H. Smith, and E. C. Beuvery (ed.), Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Pohlner, J., R. Halter, K. Beyereuther, and T. F. Meyer. 1987. Gene structure and extracellular secretion of *Neisseria gonor-rhoeae* IgA protease. Nature (London) 325:458–462.
- Potts, W. J., and J. R. Saunders. 1988. Nucleotide sequence of the structural gene for class I pilin from Neisseria meningitidis: homologies with the pilE locus of Neisseria gonorrhoeae. Mol. Microbiol. 2:647-653.
- 92. Raleigh, E. A., N. E. Murray, H. Revel, R. M. Blumenthal, D. Westway, A. D. Reith, P. W. J. Rigby, J. Elhai, and D. Hanahan. 1988. McrA and McrB restriction phenotypes of some *E. coli* strains and implications for gene cloning. Nucleic Acids Res. 16:1563–1575.
- Sarubbi, F. A., Jr., E. Blackman, and P. F. Sparling. 1974. Genetic mapping of linked antibiotic resistance loci in *Neisseria gonorrhoeae*. J. Bacteriol. 120:1284–1292.
- Sarubbi, F. A., Jr., P. F. Sparling, E. Blackman, and E. Lewis. 1975. Loss of low-level antibiotic resistance in *Neisseria* gonorrhoeae due to env mutations. J. Bacteriol. 124:750-756.
- Schwalbe, R. S., and J. G. Cannon. 1986. Genetic transformation of genes for protein II in N. gonorrhoeae. J. Bacteriol. 167:186-190.
- 96. Shafer, W. M., L. F. Guymon, I. Lind, and P. F. Sparling. 1984. Identification of an envelope mutation (*env-10*) resulting in increased antibiotic susceptibility and pyocin resistance in a clinical isolate of *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 25:767–769.
- 97. Shafer, W. M., L. F. Guymon, and P. F. Sparling. 1982. Identification of a new genetic site (sac-3⁺) in Neisseria gonorrhoeae that affects sensitivity to normal human serum. Infect. Immun. 35:764-769.
- Shinners, E. N., and B. W. Catlin. 1978. Arginine biosynthesis in *Neisseria gonorrhoeae*: enzymes catalyzing the formation of ornithine and citrulline. J. Bacteriol. 136:131-135.
- Shinners, E. N., and B. W. Catlin. 1982. Arginine and pyrimidine biosynthetic defects in *Neisseria gonorrhoeae* strains isolated from patients. J. Bacteriol. 151:295–302.
- 100. Shinners, E. N., and B. W. Catlin. 1988. Mutation in a locus linked to *penB-nmp* causes suppression of the Mtr phenotype of *Neisseria gonorrhoeae*. Antimicrob. Agents Chemother. 32:971-977.
- 101. Smith, C. L., J. G. Econome, A. Schutt, S. Klco, and C. R. Cantor. 1987. A physical map of the *Escherichia coli* K-12 genome. Science 236:1448–1453.
- 102. Sparling, P. F. 1966. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92:1364– 1371.
- 103. Sparling, P. F. 1977. Antibiotic resistance in the gonococcus, p. 112-135. In R. B. Roberts (ed.), The gonococcus. John Wiley & Sons, Inc., New York.
- 104. Sparling, P. F., G. D. Biswas, and T. E. Sox. 1977. Transformation of the gonococcus, p. 255–272. *In* R. B. Roberts (ed.), The gonococcus. John Wiley & Sons, Inc., New York.
- 105. Sparling, P. F., F. A. Sarubbi, and E. Blackman. 1975. Inher-

itance of low-level resistance to penicillin, tetracycline, and chloramphenicol in *Neisseria gonorrhoeae*. J. Bacteriol. 124: 740–749.

- 106. Sparling, P. F., T. E. Sox, W. Mohammed, and L. F. Guymon. 1978. Antibiotic resistance in the gonococcus: diverse mechanisms of coping with a hostile environment, p. 44–52. In G. F. Brooks, E. C. Gotschlich, K. K. Holmes, W. D. Sawyer, and F. E. Young (ed.), Immunobiology of Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
- Spratt, B. G. 1988. Hybrid penicillin-binding proteins in penicillin-resistant strains of *Neisseria gonorrhoeae*. Nature (London) 332:173-176.
- Stadten, R., and A. D. McLachan. 1982. Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Res. 10:141–156.
- 109. Stein, D. C., S. Gregoire, and A. Piekarowicz. 1988. Restriction of plasmid DNA during transformation but not conjugation in *Neisseria gonorrhoeae*. Infect. Immun. 56:112–116.
- 110. Stein, D. C., L. E. Silver, V. L. Clark, and F. E. Young. 1984. Cloning genes for proline biosynthesis from *Neisseria gonor-rhoeae*: identification by interspecific complementation of *Escherichia coli* mutants. J. Bacteriol. 158:696–700.
- 111. Steinberg, V. I., A. C. Fenton, E. H. Baker, and I. D. Goldberg. 1979. Cotransformation of temperature sensitivity and nutritional markers in *Neisseria gonorrhoeae*. J. Bacteriol. 140: 206-212.
- 112. Stephens, D. S., and W. M. Shafer. 1987. Evidence that the serum resistance genetic locus *sac-3* of *Neisseria gonorrhoeae* is involved in lipopolysaccharide structure. J. Gen. Microbiol. 133:2671–2678.
- 113. Stern, A., P. Nickel, T. F. Meyer, and M. So. 1984. Opacity determinants of *Neisseria gonorrhoeae*: gene expression and chromosomal linkage to the gonococcal pilus gene. Cell 37: 447-456.
- 114. Sullivan, K. M., and J. R. Saunders. 1988. Determination of the endonuclease and methylase content of *Neisseria gonorrhoeae* strain P9 and the cloning therefrom of two functional methylase genes, p. 329–334. *In* J. T. Poolman, H. C. Zanen, T. F. Meyer, J. E. Heckels, P. R. H. Makela, H. Smith, and E. C. Beuvery (ed.), Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- 115. Sullivan, K. M., and J. R. Saunders. 1988. Sequence analysis of the NgoPII methyl transferase gene from Neisseria gonorrhoeae P9; homologies with other enzymes recognizing the

sequence 5'-GGCC-3'. Nucleic Acids Res. 16:4369-4387.

- 116. Swanson, J., S. Bergstrom, O. Barrera, K. Robbins, and D. Corwin. 1985. Pilus⁻ gonococcal variants. Evidence for multiple forms of piliation control. J. Exp. Med. 162:729–744.
- 117. Taha, M. K., M. So, H. S. Seifert, E. Billyard, and C. Marchal. 1988. Pilin expression in *Neisseria gonorrhoeae* is under both positive and negative transcriptional control. EMBO J. 7: 4367-4378.
- 118. Tam, M. R., T. M. Buchanan, E. G. Sandstrom, K. K. Holmes, J. S. Knapp, A. W. Siadek, and R. C. Nowinski. 1982. Serological classification of *Neisseria gonorrhoeae* with monoclonal antibodies. Infect. Immun. 36:1042–1053.
- Tenover, F. C., V. L. Clark, and F. E. Young. 1980. Presence of methyl adenine in the DNA of some strains of *Neisseria* gonorrhoeae. Biochem. Biophys. Res. Commun. 95:1796– 1800.
- 120. Tsai, J., D. W. Dyer, and P. F. Sparling. 1988. Loss of transferrin receptor activity in *Neisseria meningitidis* correlates with inability to use transferrin as an iron source. Infect. Immun. 56:3132-3138.
- 121. Vedros, N. A. 1984. Genus I. Neisseria Trevisan, p. 290–296. In N. R. Kreig and J. G. Holt (ed.), Bergey's manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore.
- 122. Warner, P. F., L. J. Zubrzycki, and M. Chila. 1980. Polygenes and modifier genes for tetracycline and penicillin resistance in *Neisseria gonorrhoeae*. J. Gen. Microbiol. 117:103-110.
- 123. West, S. E. H., and P. F. Sparling. 1985. Response of Neisseria gonorrhoeae to iron limitation: alteration in expression of membrane proteins without apparent siderophore production. Infect. Immun. 47:388–394.
- 124. West, S. E. H., and P. F. Sparling. 1987. Aerobactin utilization by *Neisseria gonorrhoeae* and cloning of a genomic DNA fragment that complements *Escherichia coli fhuB* mutations. J. Bacteriol. 169:3414–3421.
- 125. Wharton, R. D., and L. Zubrzycki. 1976. Temperature-sensitive mutants of *Neisseria gonorrhoeae*. J. Bacteriol. 127: 1579–1581.
- 126. Young, F. E., V. Ploscowe, and H. Short. 1977. The application of DNA-mediated transformation to elucidation of the pathobiology of *Neisseria gonorrhoeae*, p. 307–320. *In A.* Portoles, R. Lopez, and M. Espinosa (ed.), Modern trends in bacterial transformation and transfection. Elsevier/North-Holland Biomedical Press, Amsterdam.