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Abstract
A novel variational method for construction of free energy profiles from molecular simulation data
is presented. The variational free energy profile (VFEP) method uses the maximum likelihood
principle applied to the global free energy profile based on the entire set of simulation data (e.g
from multiple biased simulations) that spans the free energy surface. The new method addresses
common obstacles in two major problems usually observed in traditional methods for estimating
free energy surfaces: the need for overlap in the re-weighting procedure and the problem of data
representation. Test cases demonstrate that VFEP outperforms other methods in terms of the
amount and sparsity of the data needed to construct the overall free energy profiles. For typical
chemical reactions, only ~5 windows and ~20-35 independent data points per window are
sufficient to obtain an overall qualitatively correct free energy profile with sampling errors an
order of magnitude smaller than the free energy barrier. The proposed approach thus provides a
feasible mechanism to quickly construct the global free energy profile and identify free energy
barriers and basins in free energy simulations via a robust, variational procedure that determines
an analytic representation of the free energy profile without the requirement of numerically
unstable histograms or binning procedures. It can serve as a new framework for biased simulations
and is suitable to be used together with other methods to tackle with the free energy estimation
problem.

Introduction
Free energy simulations provide a wealth of insights into complex biomolecular problems.
However, the robust calculation of free energies, and in particular free energy surfaces,
remains a challenging problem for which much work has been, and continues to be,
devoted.1 One of the primary challenges involves the need to properly sample the necessary
degrees of freedom from which a free energy profile can be derived. Strategies to solve this
problem are manyfold, and some of the most widespread include multistage/stratified
sampling,2 statically3-5 and adaptively6-8 biased sampling, self-guided dynamics,9

constrained dynamics,10,11 as well as multicanonical12,13 and replica exchange14 algorithms.
In addition, a number of simulation protocols based on nonequilibrium sampling15-18 have
also been recently proposed as well as hybrid algorithms.19,20

One of the most widely used methods for determining free energy surfaces for chemical
reactions, where often there are geometric coordinates that are known to be aligned with the
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overall reaction coordinate, is the “umbrella sampling”4 technique, which combines
stratification with equilibrium, statically biased sampling. Umbrella sampling is particularly
amenable to parallel execution, especially in high performance distributed
environments,21,22 as well as extension or combination with replica exchange23,24 and
alchemical simulation techniques.25 There are two key difficulties in umbrella sampling
methods that remain serious challenges: the problem of “data re-weighting” and of “data
representation.” Data re-weighting refers to the fact that differently biased simulations can
only yield accurate information about unbiased simulations after application of a corrective
statistical weight. Data representation describes the problem of giving a functional form
(either parametric or non-parametric, numerical or analytical) to the target expectation or
statistics.

The need of overlap in data re-weighting
The data re-weighting problem has long been known in the field of molecular simulation
and is, in principle, exactly solved by the free energy perturbation (FEP)/Zwanzig relation
and the related expression for arbitrary mechanical observables.4,26,27 However, naive
implementation of the FEP estimator is not optimal when considering more than one sample
set (see Ref 28 for a recent survey). Contemporary methods include the Bennett acceptance
ratio,29 weighted histogram analysis method (WHAM),30 and multistate Bennett acceptance
ratio (MBAR).31,32 All of these methods are essentially equivalent in their statistical
underpinning and rely on the overlap between states (windows) to perform the re-weighting,
but can vary in practical applications where sampling is incomplete and, as a result,
improved methods continue to be developed.33-37 The Umbrella Integration (UI) approach
of Kästner and Thiel38-40 assumes a Gaussian model for the un-weighted probability density
in each umbrella window, from which the analytic derivatives are integrated in order to
recover the global probability density and hence no explicit re-weighting is necessary. In
fact, UI evades the need of overlap in data re-weighting by assuming continuous first
derivatives of the free energy profile between windows, even though the usage of a Gaussian
model for the un-weighted probability density is not ideal in many cases.

Data representation
The data representation problem is particularly important when one is interested in studying
mechanisms whereby chemical transformations occur along a minimum free energy
pathway. Perhaps the simplest method of data representation is to use a histogram estimate
of the probability density.25,30,36 However, this approach is not numerically stable when
data is sparse or sampling does not overlap. Alternatively, one could assume a parametric fit
to the biased density in each simulation41 or apply a more robust kernel density estimator.42

Other methods that address the data representation problem have also been proposed.
Maragakis, et al. suggested a maximum likelihood approach utilizing a Gaussian-mixture
umbrella sampling (GAMUS) model for the global probability density based on the re-
weighted data43,44 in order to provide an adaptive bias in umbrella sampling simulations.
Basner and Jarzynski proposed a binless estimator based upon the optimal correction to an
arbitrary reference distribution.45 Again, UI38-40 uses Gaussian models for the un-weighted
probability densities and has also recently been extended to higher order densities (i.e.
skewed Gaussians).46 The result of these assumptions is a significant reduction in the
number of data points in each simulation needed to obtain a converged result. This is
because parametric estimators converge much more quickly than non-parametric estimators,
such as histograms, but often at the expense of increased bias. For example, the
approximations/assumptions in UI require near-quadratic (or near quartic) behavior of the
local free energy surface. Such behavior can be artificially imposed by using strong
harmonic biasing potentials, but this often leads to low overlap between windows and the
same kind of failures associated with sparsely populated histogram estimators.47
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In the present work, we introduce a new variational method for robust determination of free
energy profiles (VFEP) from molecular simulation data. The method uses a maximum
likelihood principle applied to the global free energy profile, and addresses common
obstacles: the need for overlap in the data re-weighting and the representation problem. In
the following sections, the formalism is derived, as well as formulas for estimation of
statistical errors. The method is then applied to a number of numerical simulations, using
two general, parametric frameworks based on Akima cubic splines and Floater-Hormann
rational function interpolation. The results are compared with those derived from WHAM
and MBAR (different re-weighting protocols with a histogram density estimate) as well as
the UI method. For the test cases examined here, the VFEP method provides extremely
robust performance relative to the other methods, particularly in the case of limited or poorly
overlapping sampling and hence appears to be a promising method for robust and rapid
estimation of analytic free energy profiles from molecular simulation data.

Theory
Here we briefly describe the maximum likelihood method utilized in the present work,
beginning with a clarification of what is the difference between the terms “probability” and
“likelihood” used in this context. In statistical modeling, probability refers to the possible
outcome of data, and is usually modeled by a fixed functional form and a variable set of
parameters. On the other hand, likelihood refers to how likely a given model can describe a
set of observed outcome data.48 Hence,

• Probability: p({xn}|{θm}) is the probability model, defined by a fixed functional
form and variable set of parameters {θm}, that returns the probability of observing
the data set {xn}; i.e., for a given set of model parameters {θm}, p({xn}|{θm})
predicts the outcome for the set of data {xn}: {θm} → {xn}.

• Likelihood:  is the likelihood that the observed data set {xn} was
generated by the probability distribution model defined by the set of parameters
{θm}; i.e., , for a given set of observed data {xn}, provides an
assessment of the goodness of the model parameters: {xn} → {θm}.

The maximum likelihood method, or maximum likelihood estimation (MLE),49, 50 is the
procedure of finding the optimal set of parameters that maximize the likelihood of the model
probability distribution function to represent a given set of observed data.

MLE begins with the definition of the likelihood function of the sample data. The likelihood
function of a set of data is the probability of obtaining that particular set of data, given the
probability distribution model function defined by a chosen functional form along with a set
of trial model parameters. Here we consider the probability, p(x), of observing a molecular
system at a particular value of a single generalized coordinate x (the extension to multiple
dimensions is straight forward). This probability is given by

(1)

where F(x) ≡ F(x)/(kBT) is the unitless scaled free energy profile, F(x) is the free energy
profile, kB is the Boltzmann constant and T is the absolute temperature. Consider now a
parametric model for the scaled free energy profile F(x|{θm}) where {θm} is the set of
parameters. The probability distribution model, p(x|{θm}), also contains the set of
parameters, due to its relation to F(x|{θm}). Now considering the probability, p({xn}|{θm})
of a sampled data set {xn}, if the sampling data points are independent to each other, then:
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(2)

The likelihood  of the trial free energy profile F{θm} with the given observed data set
{xn} is:

(3)

In the present work, instead of dealing with individual windows, we attempt to find the
optimal solution of the above equation by defining a global function F(x) with a set of
defined parameters {θm}. It is practical to use the logarithm of the likelihood function,
called the log-likelihood :

(4)

Since the likelihood is always positive and monotonic, there is no loss of generality in
formulating a variational principle based on the log-likelihood, which offers some
advantages in terms of numerical stability and is conventional in the literature. Hereafter, we
use the term “likelihood” generically to refer to both the likelihood or the log-likelihood, and
will reference specific equations when the mathematical distinction is necessary. The MLE
method estimates {θm} by finding the values of {θm} that maximize :

(5)

where Θ defines the space that {θm} can span. If a biasing potential Wα(x) is applied in the
αth window in a set of umbrella sampling simulations, the probability of finding the system
with a certain coordinate value x is:

(6)

Suppose that for the simulation of the αth window, there are Nα points observed with
coordinate values { }. Since they are observed points, the probability of each point is equal
with value 1/Nα. The likelihood of the whole system with an overall free energy profile F(x)
can be expressed as the combination of the likelihood of individual windows obtained from
Eq. (4) and Eq. (6) as:

(7)

where {cα} are the combination weights defining the relative contribution of likelihood
from different windows when combining the local likelihood into a global likelihood. When
assuming all windows contribute equally, the cα can simply be set to be equal, i.e., cα = 1. It
can also be shown that, in the exact sampling limit, the global optimal F is also the optimal F
for each individual window, i.e., the choice of {cα} does not affect the resulting optimal
F(x) (see Supporting Information). In practice, for finite sampling, we observe that the
overall result is largely insensitive to the choice of cα, and for the present work, we choose
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cα = 1 for all windows (also see Supporting Information). In the above equation for the
global likelihood function, we have used F as the argument to emphasize that optimization
of the likelihood function is with respect to the free energy profile F (by varying the {θm}
parameters).

There remains the task of finding the F that maximizes . Note that in the above equation

the term  is constant and does not need to be evaluated if the goal is to maximize the
likelihood. Also, the term −lnZα is equivalent to the relative free energies (or free energy
shifts) between windows in other re-weighting schemes. In the present VFEP approach, the
“re-weighting” procedure is implicitly accomplished through the normalization against the
global trial function F.

An alternate strategy is to model F(x) locally in the region of each window, Fα(x), and
construct the global F(x) using the Fα(x) with the observed data density as weighting. The
only variable parameters in this approach are the relative free energy shifts between every
window { fα} (the reference free energy being arbitrary) that establish the relative weights
for each window. Thus, the global F(x) is defined by the parameter set { fα} and a set of
fixed local free energy profiles Fα(x). Applying the MLE procedure to F(x) with respect to
the parameter { fα} leads to the WHAM and the MBAR equations.31-33, 51 Note that within
such a context, MBAR is also a parametric procedure where the relative free energy shifts of
windows are the MLE parameters and local free energy profiles are pre-defined in data
fitting procedures, whereas the proposed VFEP uses MLE parameters to construct the
detailed overall free energy profiles. In summary, the WHAM and MBAR formula are
equivalent to the MLE results when the global free energy profile is constructed from the
local free energy profiles and the relative free energies are used as the parameters to
optimize the likelihood.

In the present work, instead of dealing with individual windows, we attempt to find the
optimal solution of Eq. (7) by defining a global function F(x) with a set of defined
parameters {θm} (i.e. F(x) ≡ F(x|{θm})). The procedure is as follows:

1. Choose a trial function F(x) with a initial parameter set {θm}.

2. Evaluate the likelihood  of the trial function F(x) according to Eq. (7).

3. Vary the parameter set {θm} until the maximum of  is reached.

4. The trial F(x) with the maximal  is the desired overall free energy profile.

Two types of analytic functions were selected to model the overall free energy profile: a
cubic spline function52 and a rational interpolation function.53 Both were originally
designed for interpolation usage. Nevertheless, one could treat the interpolation input data as
the variable parameters; for example, a cubic spline function needs to have the {xi, yi} data
nodes defined in order to build the desired cubic spline interpolation, where xi is the
independent variable and yi is the corresponding observed function value. In this work, we
select fixed xi and treat yi as the MLE parameters to be optimized, e.g. a cubic spline
function defined by {xi, yi} will be the trial free energy function in Eq. (7) and the optimal
free energy profile is reached through changing {yi}. This is equivalent to assuming that the
free energy profile varies slower than a cubic polynomial between windows or that the first
and second derivatives of free energy profile are continuous between windows.
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Results
A C++ program was built to test the proposed method. Two interpolation subroutines in the
AlgLib (v3.5, http://www.alglib.net) package were used: The Akima spline algorithm52 was
employed for cubic spline interpolation and the Floater-Hormann53 algorithm for rational
interpolation. Both the number of spline function nodes and the number of the rational
interpolation poles are set to 2 times the numbers of windows minus one. There is one node
located at the average data position of each window and one node located at the average
position of two nodes of two adjacent windows. The results of WHAM were calculated by
the program from Grossfield54 (v2.0.4, http://membrane.urmc.rochester.edu/content/wham).
The results of MBAR were calculated using the pymbar library of Shirts and Chodera32

(v2.0b, http://simtk.org/home/pymbar). The UI algorithm38-40 was implemented as part of
the VFEP program.

In order to cover a wide range of common free energy profile problems, tests were
performed with a benchmark molecular dynamics simulation of a Na+:Cl− pair in a water
box, two combined quantum mechanical/molecular mechanical (QM/MM) simulations of
chemical reactions, and the C-C-C-C torsion rotation of butane. These test cases represent
non-bonding interactions, chemical reactions, and conformational transitions. The results for
these systems are listed/described in the subsequent sections.

Na+:Cl− pair
A Na+:Cl− pair was put in a TIP3P water box55 (20 Å × 20 Å × 20 Å) with the
CHARMM27 force field.56 The distance between Na+ and Cl−, defined as the relevant
coordinate, was scanned from 2.4 to 7.4 Å with 21 windows separated by 0.25 Å. A biasing
potential of either 5 or 100 kcal/mol/Å2 was applied to each window. The NAMD package
(v 2.7)57 was used and simulations were performed under periodic boundary conditions in
the NpT ensemble at 300 K and 1 atm (NAMD uses a modified Nosé-Hoover method58, 59

in which Langevin dynamics is used to control fluctuations in the barostat). Each window
was simulated for 1 ns of equilibration and 1 ns of data collection (10,000 data points per
window).

Weak biasing potential—In the first set of simulations, a biasing potential of 5 kcal/mol/
Å2 was applied to every umbrella sampling window, which is relatively weak, affording
considerable overlap between windows. This allows fewer windows to be required to
construct the overall profile than if a larger umbrella potential were used. However, in the
case of weak umbrella biasing, one would expect that a quadratic approximation of the local
(biased) free energy profile within any given window not to be ideal.

The results with the weak biasing potential of 5 kcal/mol/Å2 are shown in Figure 2. The
upper left panel shows the results from all methods with 21 windows. Other panels show the
results from different methods with different numbers of windows (11 and 6). While all
other methods converge with 21 windows (with statistic errors less than 0.05 kcal/mol, see
Table 2) and give similar results with 11 or even 6 windows, UI, using a quadratic
approximation, delivers a quantitatively incorrect free energy profile.

Strong biasing potential—In the second set of simulations, a relatively strong biasing
potential with a strength of 100 kcal/mol/Å2 was applied to every window. Contrary to the
weak potential set of simulations, one would expect that a quadratic approximation of the
local free energy profile would perform well, but the requirement of the numbers of
windows will increase since the overlap between windows will be diminished.
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The results with the strong biasing potential of 100 kcal/mol/Å2 are shown in Figure 3. The
upper left panel again shows the results from all methods with 21 windows and other panels
show the results from individual methods with different numbers of windows (11 and 6). All
methods, including UI, converge with 21 windows and give similar results. With 11
windows, however, WHAM and MBAR fail to produce correct results, while with 6
windows, WHAM, UI, and MBAR all fail to converge due to the lack of sufficient overlap
between windows. On the other hand, the VFEP approach, both with spline function (MLE-
S) and rational interpolation function (MLE-R) gives very good results for 11 windows
compared to the 21 window results, and gives qualitatively correct results with only 6
windows.

Reduced data set—In the case of a weak biasing potential, WHAM gives good results
with only 6 windows. One would expect, however, that many data points would be
necessary to model individual windows well. Figure 4 shows the results with 6 windows
from WHAM and the proposed VFEP methods using the weak biasing potential of 5 kcal/
mol/Å2, same as the above results (Figure 2) but the data points are stripped out when
performing analysis. The upper panel and middle panel show the VFEP results with spline
function (MLE-S) and rational interpolation function (MLE-R), respectively, while the
WHAM results are shown in the bottom panel. WHAM fails to converge with 100 data
points or less per window and MBAR gives similar results, both due to insufficient data
points in the histograms and hence only WHAM results are shown. VFEP still delivers
qualitatively correct results with only 20 data points per window where the statistical error
(by bootstrapping) is less than 1 kcal/mol (see Table 3).

QM/MM phosphoryl transfer reactions
The phosphate 2′-O-transesterification reaction for two model compounds were simulated
by QM/MM umbrella sampling using the AMBER12 simulation package60 (Figure 1). The
first model, 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP), contains an enhanced
leaving group and is therefore expected to have a free energy profile with significantly
different shape. The second is an abasic RNA dinucleotide which has been studied
previously in our group. Both sets of simulations used the AM1/d-PhoT QM/MM
Hamiltonian,61 which has been verified and demonstrated able to reproduce high-level DFT
results within chemical accuracy in describing phosphate chemistry by our group62-65 and
others,66, 67 under periodic boundary conditions using QM/MM Ewald summations as
implemented in AMBER12.68 The QM region was defined as the entire solute. The reaction
coordinate is defined as the difference between the nucleophile to phosphorus distance (r1)
and the phosphorus to leaving group distance (r2). For umbrella sampling simulations a
harmonic biasing potential was applied to this reaction coordinate, r1-r2.

HpPNP
HpPNP was solvated in a box of TIP4P-Ew water69 at 300 K using the NVT ensemble with
an Andersen thermostat.70 Twenty-five short (100 ps) umbrella sampling simulations were
performed with biasing potential strength of 60 kcal/mol/Å2. The QM/MM free energy
profile results for HpPNP are shown in Figure 5. Similar to Figure 2, The upper left panel
shows the results from all methods with 25 windows. Other panels show the results from
individual methods with different numbers of windows (15 and 5). While all methods
converge with 25 windows, only the VFEP method, both with spline function (MLE-S) and
rational interpolation function (MLE-R) still gives good results for 5 windows.

Reduced data set—The QM/MM free energy profile results for HpPNP with reduced
numbers of data points are shown in Figure 6. Similar to Figure 4. VFEP, both with spline
function (MLE-S) and rational interpolation function (MLE-R), still delivers qualitatively
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correct results with only 20 data points per window (with 5 windows) where the
bootstrapping errors are around 3 kcal/mol.

Abasic dinucleotide
Mimicking the experimental conditions of Harris et al.71 for a UpG dinucleotide, the system
was solvated in a rhombic dodecahedron of TIP3P water55 with sodium chloride72 at
physiological conditions (310 K) in the NVT ensemble with an Andersen thermostat.70 Data
from twenty-four long (1.75 ns each) umbrella sampling simulations were used.

The QM/MM free energy profile results for the abasic dinucleotide are shown in Figure 7.
Similar to Figure 5, the upper left panel shows the results from all methods with 24
windows. Other panels show the results from individual methods with different numbers of
windows (24, 7, and 4 windows). While all methods converge with 24 windows, both
WHAM and MBAR fails with 4 windows. UI and VFEP method, both with spline function
(MLE-S) and rational interpolation function (MLE-R) still gives good results for 4 windows.
When they succeed, all of the methods produce a free energy barrier comparable to the
experimental value of 19.9 kcal/mol, as inferred from the rate constant extrapolated to
“infinite” pH71 and transition state theory.

Reduced data set—The QM/MM free energy profile results for the abasic dinucleotide
with reduced numbers of data points are shown in Figure 8. VFEP, both with spline (MLE-
S) and rational interpolation (MLE-R) functions, still delivers qualitatively correct results
with only 35 data points in each of 4 windows. However, the quantitative inaccuracy is
readily apparent in the bootstrapping errors around 3 kcal/mol.

Torsion rotation of Butane
A butane molecule was modeled using the AMBER F99 force field in a generalized Born
solvent at 300 K using Langevin dynamics as implemented in the AMBER12 simulation
package.60 The umbrella sampling simulations were performed by applying harmonic
restraints on the C-C-C-C torsion with a force constant of 32.83 kcal/mol/rad2 (0.02 kcal/
mol/degree2). The equilibrium position of the torsion angle ran from −180 to 180 degrees in
increments of 15 resulting in 25 windows. Each window was simulated for 0.5 ns of
equilibration and 1 ns of data collection (10,000 data points per window).

The free energy profile results for the C-C-C-C torsion of butane are shown in Figure 9.
Similar to Figure 2, The upper left panel shows the results from all methods with 25
windows. Other panels show the results from individual methods with different numbers of
windows (13 and 7). While all methods converge with 25 windows, only the VFEP method,
both with spline (MLE-S) and rational interpolation (MLE-R) functions still gives good
results for 7 windows.

Reduced data set—The free energy profile results for butane with reduced numbers of
data points are shown in Figure 10. Similar to Figure 4. VFEP, both with spline (MLE-S)
and rational interpolation (MLE-R) functions, still delivers qualitatively correct results with
only 20 data points in each of 13 windows. Statistical errors from bootstrapping are around 1
kcal/mol.

Error Analysis
Likelihood error—The likelihood of a set of trial probability {p(xi)} with given observed
probability set {pobs(xi)} can be written as
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Assuming that the trial probability is a Boltzmann distribution due to the trial effective
potential Feff and the observed data points are unbiased, then the corresponding observed
likelihood function is

where the normalization factor Z is defined as . For the αth umbrella
sampling simulation window, the trial effective potential is the combination of the trial free
energy profile F(x) and the added biasing potential Wα(x). Hence

Note that the above equation is exactly the same as Eq. (7).  can be expressed as a
functional of either Feff or F since they only differ by a known function Wα. The subscript
“s” denotes that the likelihood is calculated based on the sampling data and 〈…〉sample
indicates that the average is calculated using the observed sample probability distribution.

 is the functional to be optimized in the present work as described in the Theory
section. If the trial free energy profile is the true system free energy profile and the sampling
is exact and infinite, then the “ideal” likelihood is now

The subscript “m” denotes that the likelihood is calculated based on the modeled free energy
profile function and 〈…〉model indicates that the average is calculated using the modeled

probability distribution. In the present work, since  is the functional to be optimized

and  is the “ideal” target likelihood, the difference between them, denoted as

, can be viewed as the limit that the optimization process can reach, or
equivalently, the lower bound error of the proposed method. That is,

(8)

Apparently  is just the difference in the expectation values computed with the
effective potentials from the sampling data and from the optimized free energy profile.

Error due to Gaussian distribution approximation—The same concept can be
applied to Gaussian distributions, as many approaches use Gaussian distributions to model
the probability distribution for individual windows. The likelihood of a perfect Gaussian
probability distribution is:
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where x̄α is the average of the sample data { } and σ2 is the unbiased variance defined as

. The likelihood can be expressed analytically as

The difference , defined as

(9)

can be viewed as the likelihood of the sampling data set of the αth window being Gaussian
distributed.

Sampling error—As already mentioned in the Results section, Simple bootstrapping
methods73 were utilized to estimate the statistical sampling errors in the present work. The
error of a target observable is estimated by calculating the standard deviation between
randomly chosen data sets with the same data size.

Optimum of the trial free energy—For the entire set of umbrella sampling simulations,
the likelihood is (Eq. (7)

The variaton of , , due to a variation of F, ΔF, can be expressed as

(10)

where  is the functional derivative of  with respect to F(x). Explicitly
taking the functional derivative on Eq. (7), we get

(11)
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where  is the Dirac delta function. Assuming cα = 1 for all α’s and plugging the
above equations into Eq. (10), the likelihood variation becomes (Note that F can be chosen
relative to an arbitrary constant, hence ΔF can simply be replaced by F):

(12)

At the optimal F,  is zero at all x, thus

 (or ). Hence  can be a
simple criterion of judging optimal F. The above derivation is not limited to the VFEP
mehod. Any free energy profile should hold this criterion if the optimization is based on the

entire system likelihood. In all simulations reported in this paper, the magnitude of  is
3.0 × 10−5 or less, which indicates the optimal (in terms of likelihood) F is reached in our all
simulations.

Free energy shifts—While in our VFEP method there is no explicit re-weighting
procedure involved, the term −lnZα, is the relative free energy shifts, Δ fα, defined in
MBAR or WHAM. In VFEP they are obtained implicitly through global optimization of the
free energy profile, while in that MBAR and WHAM approaches they are calculated as the
results of the re-weighting procedure. Calculated Δ fα’s from VFEP, MBAR, and WHAM
are listed in Table 1, for the Na:Cl system with 21 windows and with a biasing potential of 5

kcal/mol/Å2 (Figure 2). The relative free energy sift  from VFEP is similar to 
from MBAR (RMS = 0.00199), which suggests that VFEP is able to implicitly re-weight

windows just as MBAR. The larger differences between  and  (RMS = 0.18273)
may suggest that the number data points is still not sufficient from the WHAM approach,
especially for x > 6.7. For VFEP, cubic spline functions are used for the above error
analysis. Using rational interpolation functions gives virtually identical results.

Calculated errors—The likelihood error estimator functions mentioned above represent
the lower-bound of the errors due to the usage of model functions, while the statistical
sampling errors can be obtained from the bootstrapping analysis.

Table 2 lists these error estimators,  and , the bootstrapping errors of the
free energy shifts based on 50 and 100 random data sets, as well as the errors reported from

MBAR. The likelihood error estimator  for this system is 0.0356 kBT (RMS value)
which suggests that the model functions employed here are adequate. The Gaussian

likelihood error estimator  is quite small for most of the windows. The exceptions
are windows #3 to #7, which suggest that Gaussian approximation may be not ideal between
x =2.5 to x =4.2. The corresponding accumulated error from this region is around 1.6 kBT,
or 1.0 kcal/mol, which qualitatively agrees with the fact that the converged UI result is off
by about 1.0 kcal/mol when compared to other methods (Figure 2). The bootstrapping errors
of the free energy shits are 0.013 kBT (RMS value) for VFEP. The combined errors for
VFEP (likelihood errors plus sampling errors) are roughly the same as the reported MBAR
errors.

Reduce data set—Table 3 lists the bootstrapping errors for different sizes of data sets the
Na:Cl system with 6 windows and with a biasing potential of 5 kcal/mol/Å2 (Figure 4). The
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calculated average values of free energy shifts of different windows are consistent using
different numbers of data points, which indicates the reliability of the calculations. The
standard deviations, seen as the sampling errors, are around 0.03 kcal/mol for 10000 pt/w,
0.1 kcal/mol for 1000 pt/w, 0.2 kcal/mol for 100 pt/w, and 0.7 kcal/mol for 20 pt/w.

Discussions
Traditional methods for estimating free energy differences or free energy profiles from
umbrella sampling simulations usually consist of two steps. The first step is to model the
free energy profile of each window and the second step is to merge/combine the free energy
profiles from individual windows into a global free energy profile. As already mentioned
earlier in the Introduction section, two major types of problems are inevitably associated
with these traditional methods: the reweighting (combination) problem and the data fitting
problem. On the other hand, instead of dealing with individual windows, the proposed VFEP
approach finds the global free energy profile that gives an optimal likelihood based on the
entire set of simulation data that spans the free energy surface. In other words, VFEP looks
for a global free energy profile that every data point can fit into, while traditional methods
look for a global free energy profile that is the best combination of local free energy profiles
of individual windows. In this section, we discuss the results presented in the last section in
a broader context with regard to the re-weighting and data fitting problems and their relation
with other methods.

The need of overlap in the re-weighting procedure
In traditional methods, it is necessary to have overlap information between sampling
windows otherwise it is impossible to reasonably combine the free energy profiles of
individual windows. Consequently, when the number of windows is not adequate and/or
individual window sampling regions are too small to overlap with neighboring windows, the
re-weighting problem becomes intractable. In Figure 3 a strong biasing potential leads to a
small window region and UI/MBAR/WHAM all fail to converge with 6 windows. The same
situation happens in the two QM/MM cases as well (shown in Figure 5 and Figure 7).
Although UI evades the need of overlap in data re-weighting by assuming continuous first
derivatives of free energy profile between windows, UI would fail due to numerical
instability in some cases. On the other hand, the proposed VFEP approach searches for the
optimal global function based on all available data, and, through the usage of cubic
functions, implicitly assumes continuous first and second derivatives of free energy profile
between windows; hence the lack of overlap between windows is much less severe of a
problem. In all test cases, the VFEP approach gives plausible results even with very few
windows, although one clearly should not expect quantitatively correct results with such
sparse data. Nevertheless, the VFEP delivers a reasonable, rough estimate in these more
extreme limits compared to the other methods that have been tested here.

The data fitting problem
In the traditional methods mentioned, it is desirable for the local free energy profiles of
individual windows to be modeled with a stable analytic function. The quadratic
approximation used in UI is often a good choice, particularly when strong biasing potentials
are used, as shown in Figure 3, Figure 5, and Figure 7. However, this approach also leads to
the need for a large numbers of windows, each of which is strongly localized by a harmonic
biasing potential. Conversely, when weak biasing potentials are used, the quadratic
approximation will begin to break down as shown in Figure 2 (the UI case). Using
histograms, as in the cases of WHAM and (most commonly) MBAR will avoid this
problem, but will suffer from the requirement of dense sampling in each bin in order to be
numerically stable. As shown in Figure 4, WHAM will fail when the number of data points
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for a given window is not enough to provide sufficient sampling density. The VFEP method
utilizes higher order functions to model the local free energy profiles (third order in the case
of cubic spline functions) and performs very well in all test cases. Using analytic functions,
VFEP also requires many fewer independent data points as shown in Figure 4, Figure 6, and
Figure 8. Note that these reduced data sets are obtained by subsampling the original data and
hence represent sparse independent data points. The results could be very different from
those obtained using shorter simulation data sets possibly with higher correlations.

Based on the test results presented here, the proposed VFEP approach outperforms all listed
methods in dealing with the above two major types of problems in estimating free energy
when the overlap or the data points are not sufficient. As a result, the following potential
advantages of VFEP could significantly advance the current free energy estimation
techniques:

Fast estimate of rough biasing potentials
In recent years, much effort has been devoted in the field of adaptive approaches for free
energy simulations.6, 74-77 In order to obtain optimal sampling, instead of fixed biasing
potentials, the biasing potentials are modified adaptively according to knowledge obtained
from the available simulation results. Nevertheless, adaptive approaches require at least
some knowledge of the target free energy profile before any sensible modification of the
biasing potentials can be made. Due to the two major problems of free energy estimation
discussed above, the very first round of estimating the target free energy profile already
requires significant computational resources. Test results here suggest that the VFEP is
capable of delivering a qualitatively correct free energy profile with only ~ 5 windows and ~
20 to 35 independent data points per windows for typical chemical reactions. With help from
the VFEP approach, one may be able to establish a very quick coarse-grained picture of the
free energy profile and apply an adaptive biasing potential approach to build the best biasing
potentials for the next iteration of free energy estimation.

Free energy profiles in multiple dimensions
Theoretically it is possible to calculate the free energy profiles in multiple dimensions by
slight modification of the WHAM, UI, and MBAR approaches.40,43,78-80 However, in
practice, it is not always feasible to do so since numerous data points are needed in order to
construct a multi-dimensional free energy profile. The GAMUS approach43,44 uses a global
Gaussian fit to reduce the data points needed and can be practically used in multi-
dimensional free energy profiles. However, the authors pointed out that the GAMUS
approach was designed to explore free energy basins and is not necessarily appropriate to
describe the location and magnitude of barriers along a minimum free energy pathway,
possibly due to the limitation of the Gaussian approximation in providing sufficient
resolution of the local free energy profiles. Nevertheless, the VFEP approach can easily be
extended to multi-dimensional cases as Eq. (7) is not limited to the one-dimensional case.
VFEP provides a way of constructing free energy profiles in multiple dimensions since it
only needs a very small number of data points when only a qualitatively correct free energy
profile is needed. As a result one could be able to identify free energy basins quickly and
focus only on important regions instead of performing simulations in all regions.
Furthermore, the VFEP approach can be used iteratively with more data points to generate
the quantitatively detailed free energy profile when more data is available.

Analytic forms of biasing potentials
Another potentially significant advantage of VFEP over other methods is that the resulting
free energy profiles are in analytic forms. Hence it would be straightforward to calculate the
free energy derivatives with respect to the relevant coordinates. The availability of free
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energy derivatives will be particularly useful in the multi-dimensional case, in which the
minimal free energy paths between two basins could be easily calculated. Such an approach
has already been advocated in conjunction with the UI method.81 Further, these derivatives
would provide biasing forces from a global biasing potential in order to smooth out the free
energy landscape for improved sampling such as in metadynamics and adaptive biasing
potential methods.5-8,74-77,82-86

Conclusion
In the present work, we demonstrate that the two major problems in estimating free energy
profiles from umbrella sampling data can be addressed through modeling the overall free
energy profile based on the whole set of simulation data. The VFEP method presented here
is a variational approach based on the maximum likelihood principle and is demonstrated to
generally outperform other methods for a variety of test cases in terms of number of required
windows and data points needed to construct the overall free energy profile. Whereas
several other existing methods all converge to the correct free energy profile in the limit that
there is sufficiently rich, well-distributed data, the VFEP method is shown to offer clear
advantages in delivering stable, analytic free energy profiles under circumstances in which
the data is more sparse, as are often encountered in practice. Test cases demonstrate that, for
typical chemical reactions, only ~5 windows and ~20 to 35 data points per window are
sufficient to obtain a qualitatively correct course-grained free energy profile that can be used
to focus sampling in the most relevant regions of the surface, for example, in adaptive
asynchronous Hamiltonian replica exchange simulations. The VFEP-modeled free energy
profile behaves significant better than the quadratic function-based approaches, or methods
that require significant overlap between windows. Hence, VFEP provides a potentially
powerful tool in the arsenal of methods used attack the problem of free energy estimation
from computer simulations of chemical reactions and processes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Reaction schemes for QM/MM phosphoryl transfer reactions of an abasic RNA dinucleotide
and 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP), a model compound with an
enhanced leaving group
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Figure 2.
The free energy profiles calculated with different methods for the Na+:Cl− pair from a 21-
window umbrella sampling simulation with a weak biasing potential of 5 kcal/mol-Å2. The
upper left panel shows the results from all methods with 21 windows. Other panels show the
results from individual methods with different numbers of windows: 6 (red), 11 (blue), and
21 (black) windows. While all methods converge with 21 windows and give similar results
with 11 or even 6 windows, UI yields an incorrect free energy profile as expected.
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Figure 3.
The free energy profiles calculated with different methods for the Na+:Cl− pair from a 21-
window umbrella sampling simulation with a strong biasing potential of 100 kcal/mol-Å2.
The upper left panel shows the results from all methods with 21 windows. Other panels
show the results from individual methods with different numbers of windows: 6 (red), 11
(blue), and 21 (black) windows. All methods, including UI, converge with 21 windows and
give similar results. With 11 windows, however, MBAR fails to produce correct results,
while with 6 windows, WHAM, UI, and MBAR all fail to converge due to the lack of
sufficient overlap between windows. On the other hand, the VFEP approach, both with
spline (MLE-S) and rational interpolation (MLE-R) functions gives very good results for 11
windows compared to the 21 window results, and gives qualitatively correct results with
only 6 windows.
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Figure 4.
The free energy profiles calculated with WHAM and VFEP for the Na+:Cl− pair from a 6-
window umbrella sampling simulation with a weak biasing potential of 5 kcal/mol-Å2. The
data points are reduced at different levels: 10000 pt/w (black), 1000 pt/w (red), and 100 pt/w
(blue), and 20 pt/w. The error bars are bootstrap errors calculated from 100 random data sets
with the same size. The upper panel and middle panel show the VFEP results with spline
(MLE-S) and rational interpolation (MLE-R) functions, respectively, while the WHAM
results are shown in the bottom panel. WHAM fails to converge with 100 or fewer data
points per window, while VFEP still delivers qualitatively correct results with only 10 data
points per window.
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Figure 5.
The QM/MM free energy profile results for HpPNP. Similar to Figure 2, the upper left panel
shows the results from all methods with 25 windows. Other panels show the results from
individual methods with different numbers of windows: 5 (red), 15 (blue), and 25 (black)
windows. For the case of 15 and 5 windows, MBAR fails due to lack of overlap between
windows when 75 bins are used (no data in certain bins). While all methods converge with
25 windows, only the VFEP method, with spline (MLE-S) and rational interpolation (MLE-
R) functions still gives good results for 5 windows.
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Figure 6.
The QM/MM free energy profile results for HpPNP with reduced numbers of data points
(2000 pt/w (black), 400 pt/w (red), 200 pt/w (blue), and 20 pt/w). The error bars are
bootstrap errors calculated from 100 random data sets with the same size. VFEP, both with
spline (MLE-S) and rational interpolation (MLE-R) functions, still delivers qualitatively
correct results with only 20 data points in each of 5 windows. Note that all other methods
fail with only 5 windows and hence cannot be compared here.
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Figure 7.
The QM/MM free energy profile results for an abasic RNA dinucleotide (Figure 1). Similar
to Figure 5, the upper left panel shows the results from all methods with 24 windows. Other
panels show the results from individual methods with different numbers of windows: 4
(red), 7 (blue), and 24 (black) windows. While all methods converge with 24 windows, both
WHAM and MBAR fail to converge with 4 windows. UI and VFEP, both with spline
(MLE-S) and rational interpolation (MLE-R) functions still gives good results for 4
windows.
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Figure 8.
The QM/MM free energy profile results for an abasic RNA dinucleotide with reduced
numbers of data points: 3500 pt/w (black), 350 pt/w (red), 70 pt/w (blue), and 35 pt/w. The
error bars are bootstrap errors calculated from 100 random data sets with the same size.
VFEP, both with spline (MLE-S) and rational interpolation (MLE-R) functions, still delivers
qualitatively correct results with only 7 data points in each of 4 windows.
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Figure 9.
The free energy profile of C-C rotation of butane. Similar to Figure 5, the upper left panel
shows the results from all methods with 25 windows (15-degree spacing). Other panels
show the results from individual methods with different numbers of windows: 7 (red), 13
(blue), and 25 (black) windows. While all methods converge with 25 windows (MBAR and
UI have some deviation due to lack of periodic constraint), both WHAM and MBAR fail to
converge with 7 windows. UI and VFEP, both with spline (MLE-S) and rational
interpolation (MLE-R) functions still give good results for 7 windows.
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Figure 10.
The free energy profile of C-C rotation of butane with reduced numbers of data points:
10000 pt/w (black), 1000 pt/w (red), 100 pt/w (blue), and 20 pt/w. The error bars are
bootstrap errors calculated from 100 random data sets with the same size. VFEP, both with
spline (MLE-S) and rational interpolation (MLE-R) functions, still delivers qualitatively
correct results with only 20 data points in each of 13 windows.
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