
MicroRNAs (miRNAs), noncoding and approximately 
22 nt long ribonucleic acid molecules [1], control the func-
tions of several genes under normal and diseased states [2]. 
MicroRNAs do so primarily by hybridization with nearly 
complementary base sequences in the 3′ untranslated regions 
of messenger RNAs (mRNAs) and consequently disabling 
them from performing their protein translational function 
[3]. Thus, mature microRNAs (miRs) function as important 
agents of gene silencing [4]. Since complete Watson and 
Crick complementarity is not required for hybridization of 
small nucleic acid molecules, the effect of miRs on gene 
silencing and subsequent physiologic effects could be more 
diverse than ordinarily expected [2]. In addition to the direct 
inhibitory effect on protein translation, such hybridization 
can also lead to destabilization of the mRNA itself and its 
eventual degradation. Physiologically, the resulting inhibi-
tion of protein translation is expected to be partial and total, 
depending upon the number of available miR molecules, as 
well as the number of available mRNA targets. In addition to 
targeting mRNAs, miRs have also been reported to hybridize 
with complementary sequences in the chromatin structure. 

This can also cause gene silencing at the transcriptional level 
[5-7], limiting the transcription of mRNAs. Hybridization 
with mRNAs involved in the biogenesis of enzymes and 
cofactors involved in reactions causing methylation and 
acetylation [8-11] can also lead to generational and inter-
generational epigenetic effects. Overexpression of miRs is 
therefore generally a toxic event, except in situations where 
the overexpression can be used to suppress the translational 
activity of mRNAs producing toxic proteins or enzymes, as 
is the case in certain cancers [12-14].

In addition to cancer, miR expression becomes deregu-
lated in many other pathophysiological conditions, such as 
with the development of certain cardiac myopathies including 
cardiac hypertrophy and abnormalities in rhythmic amplitude 
and periodicity [15-17], neural malfunctions such as with 
Alzheimer disease and senile dementia [18,19], and diabetes 
[20,21]. Redox deregulation and consequent oxidative stress 
are cardinal features of most of these conditions, including 
diseases related to the loss of vision with aging and diabetes 
[22-27]. The high prevalence and severity of visual impair-
ment in the diabetic population are strongly correlated with 
the degree of hyperglycemia [23]. This is evident form the 
delay in the development of vision loss achieved by control-
ling blood glucose levels toward normal levels [28]. That 
the high sugar level may play a significant role in visual 
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complications is also apparent from the development of cata-
racts in animals maintained on diets containing high amounts 
of other sugars such as galactose [29], arabinose [30], and 
xylose [31,32], in addition to diabetes [33-36]. Galactose has 
also been reported to cause abnormalities in retinal vascula-
ture similar to that in diabetes [37,38]. However, information 
on the possible implications of aberrations in miR transcrip-
tion and gene silencing induced by sugar-induced oxidative 
stress by high sugars remains limited. Such a possibility is 
strongly indicated by a recent report showing elevation in the 
transcription of several apoptotic miRs in the lenses of mice 
fed a high-galactose diet. That this elevation could be caused 
by oxidative stress was strongly indicated by the corrective 
effect of pyruvate, known to inhibit oxidative stress and 
cataract formation [39-42]. The increase in apoptotic miRs in 
galactosemic lenses was substantially attenuated in animals 
fed a diet mixed with pyruvate. Pyruvate also reverses oxida-
tive stress–induced inhibition of glycolysis in the retina [43]. 
These studies on the possible enhancement of the transcrip-
tion of toxic miRs caused by sugar-induced oxidative stress 
and its possible prevention by antioxidants have now been 
further examined using caffeine, a nutraceutical-derived 
compound known to act as a potent antioxidant [44,45] as 
well as inhibit apoptosis and cataract formation induced by 
a high-galactose diet [46,47]. We have now observed that 
the overexpression of most miRs noted in the galactosemic 
lens is significantly inhibited by adding caffeine to the diet. 
These findings could also be useful in explaining the lower 
incidence of cataracts in groups of persons consuming rela-
tively higher levels of caffeine through coffee drinking (FAO 
drinks) [48,49].

METHODS

Materials: CD-1 mice were obtained from Harlan Lab Inc. 
(Indianapolis, IN). Reagents for RNA isolation, cDNA prepa-
ration, PCR amplification of the cDNAs, and the miRNA-
finder array were obtained from SA Biosciences Corporation 
(Frederick, MD). Routine chemicals were obtained from 
Sigma-Aldrich (St. Louis, MO).

Methods: Mice weighing about 20 g were fed owdered rodent 
chow (controls- Harlan Farm diet # 2018SX;  Indianapolis, 
IN) or chow mixed with galactose to the 25% level or mixed 
with 25% galactose plus 1% caffeine. The dietary regimen 
was maintained for 7 days. The animals were labeled as A, 
B and C and fed concurrently with the respective diet. They 
were also scarified, and lens  isolated at the same time to 
avoid any technical and diurnal variation.  The numbers  of 
animals in the individual groups were 2, 3 and 2 respectively, 
giving at least  4, 6 and 4 lenses in each group for analysis.

The blood galactose level was 4±0.5 mm in both groups of 
galactosemic animals. The dietary regimens were maintained 
for only 7 days to minimize the extent of cataractous changes 
in the lens and consequent leakage of material. Subsequently, 
the animals were anesthetized with a ketamine/xylazine 
mixture (6 mg/100 g ketamine and 0.75 mg/100 g xylazine) 
and quickly euthanized by CO2 inhalation. The eyes were 
then promptly enucleated and dissected to isolate intact 
lenses atraumatically. The isolated lenses were immediately 
frozen by immersion in liquid nitrogen and then immediately 
processed for miRNA-enriched RNA isolation using a Qiagen 
RNeasy reagent kit (cat no. 217,004; Valencia, CA), following 
the manufacturer’s protocol. Briefly, both lenses of each 
animal, each weighing about 8 mg individually, were homog-
enized in the lysis buffer containing phenol and guanidine 
thiocyanate. The lysate was then mixed with chloroform and 
centrifuged. The upper aqueous layer containing the RNAs 
was then aspirated, thoroughly mixed with 1.5 volumes of 
ethanol, and transferred quantitatively to an RNeasy mini-
column attached to a 2 ml collection tube. After allowing a 
few minutes for equilibration and RNA binding, the column 
was spun, filtering out the reagents but retaining the RNA 
bound on the column. Extraneous material from the column 
was further removed by washing buffer. The column was 
then attached to a new collection tube, and RNA was finally 
eluted by adding RNase-free (50 µl) water to the column and 
centrifugation. Quantification of the RNA in the elute was 
then accomplished by measuring absorption at 260/280 nm. 
The ratio was always more than 1.8. The quality of the RNA 
was further ascertained electrophoretically. The concentra-
tion of RNA in the elute was 350 ng/µl. First strand cDNA 
synthesis was performed by mixing 1.5 µg (4.3 µl) of the 
RNA prep with an RT2 First Strand cDNA Synthesis kit 
(SAbioscences, Frederick, MD;  MA-03/3311401) reagent 
containing the primer and the reverse transcriptase in a total 
volume of 10 µl and incubating for 2 h at 37 °C. The tube was 
then heated for 5 min at 90 °C to inactivate the reverse tran-
scriptase and chilled on ice; then the volume was increased 
to 100 µl. This was further diluted to 2,550 µl with 1,275 µl 
of 2X RT2 SYBR Green qPCR Master Mix  (SAbioscences) 
and 1,175 µl of water. Twenty-five µl of this mixture was then 
added to each well in the 96-well mi-Finder cassette (MAM 
001), containing one universal primer and one gene-specific 
primer. PCR amplification was performed in an ABI 7900HT 
Real-Time PCR (Applied Biosystems, Foster City, CA) 
machine using the three-step cycling program. The resulting 
threshold cycle (Ct) data for all wells was then transferred 
to an Excel spreadsheet and exported to Support@SABosci-
ences.com for further analysis.
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RESULTS

As reported previously, using an RT2-PCR protocol based 
on first strand cDNA synthesis by reverse transcriptase 
reaction followed by quantification of the cDNA by PCR, 
using the microRNA finder cassette containing the primers 
corresponding to cDNAs, the presence of all 84 miR species 
reported to be present in most samples analyzed can be 
detected (cat no. MAM-001; SA Bioscience). The objective of 
the present study was to ascertain if incorporating caffeine in 
a galactose diet has an effect on the miR transcription level. 
Table 1 summarizes the miR expression levels obtained in the 
lenses of mice fed a normal diet (Group A), a galactose diet 
(Group B), and a galactose+caffeine diet C, the expression 

levels expressed as (2^ (-∆Ct)), and the relative fold (regula-
tion) values. As is apparent by the fold values labeled B/A (the 
ratio of expression between galactosemic and normal lenses), 
galactose feeding leads to a substantial elevation in the tran-
scription of at least 19 miRs, the fold value at least more than 
2. A similar elevation in most of these miRs has been previ-
ously reported [39]. These miRs have been widely reported 
to be largely proapoptotic. However, the transcription of at 
least three miRs was intriguingly repressed, suggesting the 
possibility of a protective tissue response, moderating the 
extent of tissue damage.

The fold values summarized under the column C/A 
represent the effect of incorporating caffeine in the galactose 

Table 1. Both the lenses of the animals were pooled for RNA isolation and subse-
quent processing for detection of miRs by RT2-PCR.

 Name Group A 
Normal

Group B 
Galactose

Group 
CGal+Caffeine

Fold values 
(C/A)

Fold values 
(C/B)

Fold values 
(B/A)

mmu-miR-32 0.206379 0.028751 0.048312 −4.27 1.68 −7.18
mmu-miR-503 0.215076 0.501 0.932804 4.34 1.86 2.33

mmu-miR-199a-5p 0.005404 0.001846 0.003261 −1.66 1.77 −2.93
mmu-miR-138 0.021333 0.036355 1.70

mmu-miR-142–5p 0.0012 0.000807 0.000469 −2.56 −1.72 −1.49
mmu-miR-16 4.494815 35.633964 18.978262 4.22 −1.88 7.93

mmu-miR-124 2.653982 1.346003 −1.97 1.83
mmu-miR-126–3p 0.337068 2.86875 1.129979 3.35 −2.54 8.51

mmu-miR-9 0.132899 1.892583 0.666452 5.01 −2.84 14.24
mmu-miR-27a 8.5713 5.320316 −1.61 2.14
mmu-miR-155 0.002994 0.001531 −1.96 2.58
mmu-miR-872 0.51421 3.31476 2.061161 4.01 −1.61 6.45

mmu-miR-126–5p 0.155496 2.671638 1.323574 8.51 −2.02 17.18
mmu-miR-196b 0.00005 0.000807 0.000418 8.36 −1.93 16.14
mmu-miR-196a 0.0003 0.002178 0.001035 3.45 −2.10 7.26
mmu-miR-30c 7.572804 34.424944 22.789992 3.01 −1.51 4.55
mmu-miR-880 0.000425 0.001157 0.000675 1.59 −1.71 2.72
mmu-miR-182 0.046855 0.143981 0.074427 1.59 −1.93 3.07
mmu-miR-411 0.013525 0.074768 0.04618 3.41 −1.62 5.53

mmu-miR-125b-3p 0.002612 0.001555 −1.68 2.08
mmu-miR-295 0.000097 0.000807 0.000239 2.46 −3.38 8.32
mmu-miR-218 4.638208 33.580832 23.433166 5.05 −1.43 7.24

mmu-miR-335–5p 0.032472 1.255721 0.240619 7.41 −5.22 38.67
mmu-miR-101a 0.549524 0.444408 0.215054 −2.56 −2.07
mmu-miR-141 0.003004 0.001621 0.000889 −3.38 −1.82 −1.85
mmu-miR-374 0.845519 8.645346 5.530468 6.54 −1.56 10.22

The values in the table represent means of 4 lenses in groups A, 6 lenses in group B and 4 lenses in group C. The numbers represent the 
gene expression levels as (2^(-ΔCt)), normalized with respect to the reagent controls as well as the house keeping gene. The fold changes 
are ratios of the expression levels.
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diet. Adding caffeine to the galactose diet significantly 
annulled the miR elevation caused by galactose. The 
galactose+caffeine/normal ratios were significantly lower 
than the fold values for the galactose without caffeine/
normal. This conforms to our earlier observation showing 
that caffeine inhibits galactose-induced apoptosis, while 
inhibiting the formation of cataracts [46].

MiR expression in the galactose plus caffeine group 
was compared with that in the galactose alone group under 
C/B. The relative expression levels of the miRs in the 
galactose+caffeine group were strikingly lower compared to 
those in the galactose alone group; the ratios were negative. 
The results therefore strongly suggest that caffeine inhibits 
the transcription of toxic miRs, as indicated by the C/B ratios.

DISCUSSION

The intake of caffeine, derived either through a beverage or 
as a drug, is followed by several normal physiologic effects, 
such as stimulating the nervous, cardiovascular, and musculo-
skeletal systems, relaxing the bronchial and vascular smooth 
muscles, and promoting diuresis, intestinal motility, etc 
[50-56]. The stimulation of the nervous system is reflected 
by enhanced alertness, mental hyperactivity, arousal, wake-
fulness, enhanced cognitive ability, tolerance of pain, and 
ergonomic improvements. These neural effects are attributed 
largely to the competitive binding of caffeine to adenosine 
receptors on the presynaptic nerve terminals, as the structure 
of caffeine is similar to adenosine. Since the occupation of 
these receptors by adenosine limits the amount of calcium 
translocation to inside the cells through the voltage-gated 
and voltage-independent calcium channels, their blockade 
by caffeine minimizes such limitation, and thus increases 
cytosolic calcium levels [57,58]. The increase in cellular 
calcium in turn facilitates vesiculation of the neurotransmit-
ters and their release in the synaptic cleft. The release of these 
neurotransmitters including acetylcholine, norepinephrine, 
dopamine, and some others [59-61] is thus responsible for 
enhancing neural transduction and stimulating the cardiac 
pacemaker cells [62,63]. The cardiovascular stimulation 
reflected by enhanced contractibility of the cardiac muscle 
has also been shown to the effect of opening the calcium 
channels in the sarcoplasmic reticulum of the cardiac 
myocytes, releasing the sequestered Ca2+ into the cytosol. 
The increased cytosolic Ca2+ in turn stimulates muscle 
contraction via interaction with the actomyosin complex. The 
vasodilatory effect of Ca2+ is exerted through activation of 
nitric oxide synthase, resulting in increased nitric oxide and 
cyclic guanosine monophosphate levels. Therefore, most of 
the acute effects of caffeine are exerted through its action of 

increasing the intracellular levels of free calcium. In addition, 
caffeine inhibits cyclic adenosine monophosphate phospho-
diesterase, increasing the adenosine triphosphate levels [64]. 
Although this phenomenon is used by athletes to improve 
their physical performance, such elevation requires much 
higher amounts of caffeine than ordinarily possible. Hence, 
the action of caffeine through the latter effect is normally 
less significant.

However, in addition to these transient effects, which are 
largely obliterated in regular coffee drinkers, several recent 
reports have emphasized many long-term beneficial effects 
of caffeine consumption, such as caffeine’s effect against 
the development of age-related dementia and cognitive loss 
[65-67], as well as Alzheimer disease [68,69]. The latter 
effect is ascribed to inhibition of the formation and accumu-
lation of beta-amyloid plaques and fibrils in the brain due 
to enhanced cleavage of the parent transmembrane amyloid 
precursor protein [70-73]. Caffeine has also been found to be 
beneficial against Parkinson disease [74,75]. This is linked 
to caffeine’s preventive effect against oxidative damage to 
the cells in the pars compacta of the substantia nigra [76-78] 
and consequent imbalance in the production and release of 
dopamine and acetylcholine that causes dyskinesia. Caffeine 
consumption has also been shown to be related to attenua-
tion of liver cirrhosis [79,80] and the development of certain 
cancers [81,82].

Interestingly, caffeine has a highly significant effect of 
decreasing the risk of the development of type 2 diabetes 
[83-85], a highly prevalent aging disease whose incidence 
is projected to undergo a substantial increase in the coming 
years [86]. Additionally, age- and diabetes-associated 
mortality has also been found to be inversely correlated with 
coffee consumption; mortality is significantly lower in groups 
consuming higher amounts of coffee per day [87-89]. The 
mechanism of such protective effects of caffeine could be 
diversified. The possibility that caffeine could also be related 
to its continued diuretic effect and consequent excretion of 
the toxicants produced by oxidative stress, including those 
produced by oxidation of sugars, and of the sugars them-
selves, remains to be elucidated. Since caffeine is a potent 
antioxidant, we propose that in addition to acting as general 
antioxidant, caffeine also inhibits oxidative stress–induced 
aberrations in microRNA transcription. Therefore, caffeine 
can potentially protect tissue against miRNA-induced 
silencing of important antioxidant genes. This effect of 
inhibiting oxidation-induced gene silencing likely provides 
additional antioxidant advantage compared to most other 
antioxidants such as superoxide dismutase, catalase, and 
other peroxide decomposing enzymes that remain essentially 
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restricted in the extranuclear compartment of the cell. Most 
redox active soluble compounds present in cells are also 
unstable and rapidly catabolized [90]. Caffeine, however, is 
much more stable and well distributed following its intake. 
The present findings showing caffeine’s inhibitory effect 
against oxidative stress–induced elevation of toxic miRs is 
hence considered pathophysiologically useful. The findings 
also suggest that the inhibitory effect of caffeine against 
apoptosis that precedes sugar cataract formation as reported 
earlier [46] is due to inhibition of the biogenesis of proapop-
totic miRs. Although caffeine’s effect of preventing oxidative 
stress and biogenesis of toxic miRs has so far been shown 
in hyper-galactosemic conditions, we speculate caffeine has 
similar effects against the effects of high glucose that persist 
in diabetic conditions. The elevation of microRNAs, in addi-
tion to causing gene silencing at the level of mRNAs involved 
in the biogenesis of antioxidant enzymes, could also exert a 
detrimental effect by inhibiting certain upstream pathways 
such as the nuclear factor (erythroid-derived 2)-like 2/Kelch-
like ECH-associated protein 1 pathway [91,92] involved in 
the transcription of antioxidant genes. Further studies on the 
mode of caffeine effects are thus in progress.

According the U.S. Food and Drug Administration, 
caffeine, one of the most common nutraceuticals, is highly 
safe for human use. Caffeine’s median lethal dose (LD50) 
is estimated to be at least greater than 10 g, with lethality 
unknown. In experimental animals, the LD50 is high: 355 
mg/kg (Merck Index) in rats, equivalent to about 25 g/70 
kg in humans. The effective anticataract dose of caffeine 
in galactosemic rats is 15 mg/kg/day [46], which is only 
about 4% of the LD50. No toxicity, systemic or ocular, was 
observed. Additionally, several multivariate analyses identi-
fying the nutritional risk factors for cataracts have also found 
caffeine to be safe. Indeed, as summarized before, the global 
incidence of cataracts [48] also appears to be negatively 
correlated with caffeine intake, being markedly lower in 
countries with higher intake (≥200 mg per day) than in coun-
tries with lower intake such as China and India and in Central 
and South America [49]. Contrary to some early suggestions 
[93] that caffeine could have an adverse effect of increasing 
intraocular pressure, substantially large epidemiological and 
clinical studies [94-97] have disproved this. A transient rise 
of 1–2 mmHg sometimes noted following a coffee drink is 
in fact attributable to the hemodynamic effect due to water 
content associated with the drink [98-101], water intake being 
a standard test for glaucoma. Therefore, the possibility of any 
significant  toxic effect of caffeine to  eye is highly remote. 
The results showing its effectiveness against the transcrip-
tion of several pro apoptotic microRNAs, coupled with  its 
inhibitory effect against actual cataract formation in vivo 

strongly suggests its possible pharmacological use in cataract 
prevention. The inhibitory effect of this compound against 
toxic  miRNA transcription has been shown for the first time.
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