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ABSTRACT

Next-generation sequencing (NGS) technologies have generated enormous amounts of
shotgun read data, and assembly of the reads can be challenging, especially for organisms
without template sequences. We study the power of genome comparison based on shotgun
read data without assembly using three alignment-free sequence comparison statistics,
D2, D�2, and DS

2, both theoretically and by simulations. Theoretical formulas for the power of
detecting the relationship between two sequences related through a common motif model are
derived. It is shown that both D�2 and DS

2 outperform D2 for detecting the relationship
between two sequences based on NGS data. We then study the effects of length of the tuple,
read length, coverage, and sequencing error on the power of D�2 and DS

2. Finally, variations
of these statistics, d2, d�2 and dS

2 , respectively, are used to first cluster five mammalian species
with known phylogenetic relationships, and then cluster 13 tree species whose complete
genome sequences are not available using NGS shotgun reads. The clustering results using
dS

2 are consistent with biological knowledge for the 5 mammalian and 13 tree species, re-
spectively. Thus, the statistic dS

2 provides a powerful alignment-free comparison tool to study
the relationships among different organisms based on NGS read data without assembly.

Key words: HMM, NGS, normal approximation, statistical power, word count statistics.

1. INTRODUCTION

Next-generation sequencing (NGS) technologies are producing unprecedented volumes of sequence

data and are being applied to study many biological and biomedical problems, such as de novo se-

quencing, RNA expression and alternative splicing, transcription-factor binding site (TFBS) identification,

etc. The initial step of most currently available methods for the analysis of NGS data is to map the reads onto

the known genomes or RNA sequences. However, for genomes without template sequences, it is generally

challenging to assemble the shotgun reads because the reads are usually short and there may be a large

number of repeats within the genomes. Thus, genome comparison based on NGS shotgun reads can be
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difficult and no methods have been developed to compare genomes based on shotgun read data directly

without assembly.

Alignment-free methods for the comparison of two long sequences have recently received increasing

attention because they are computationally efficient and can potentially offer better performance than

alignment-based methods for gene regulatory sequence comparison (Blaisdell et al., 1986; Domazet et al.,

2011; Ivan et al., 2008; Jun et al., 2010; Leung et al., 2009; Lippert et al., 2002; Liu et al., 2011; Reinert

et al., 2009; Sims et al., 2009; Vinga et al., 2003; Wan et al., 2010). For the comparison of long sequences,

one widely used alignment-free statistic is D2 (Blaisdell et al., 1986), an uncentered correlation between the

number of occurrences of k-words for two sequences of interest. However, it was shown that D2 was

dominated by the noise caused by the randomness of the sequences and has low statistical power to detect

the potential relationship between two sequences (Lippert et al., 2002; Reinert et al., 2009; Wan et al.,

2010). Two new variants, D�2 and DS
2, were developed by standardizing the k-tuple counts with their means

and standard deviations (Reinert et al., 2009; Wan et al., 2010). These two statistics are more powerful than

the D2 statistic for the detection of relationships between sequences related through a common motif model

that the two sequences share instances of one or multiple motifs (Reinert et al., 2009; Wan et al., 2010). The

calculations of D�2 and DS
2 depend only on the numbers of occurrences of k-tuples in the two sequences of

interest, and the exact long molecular sequences are not needed. Thus, we expect that they can equally be

adapted for genome comparison based on NGS shotgun read data.

However, no such studies are yet available, and new statistics based on NGS shotgun read data need to be

developed. In this study, we address the following questions: 1) How do we modify the D2, D�2, and DS
2

statistics so that they can be applicable for genome comparison based on NGS shotgun read data? 2) What

are their approximate distributions under the null model that the two sequences are independent and both

are generated by independent identically distributed (iid) models? 3) What is the power of these statistics

for detecting the relationships between sequences when they are related? In particular, we will study the

power of these statistics using both simulation and theoretical studies when the sequences of interest are

related through a common motif model as in Reinert et al. (2009) and Wan et al. (2010). 4) What are the

effects of the length of the tuple, read lengths, coverage, sequencing errors, and the distribution of reads

along the genome on the power of these statistics? 5) How do these statistics perform on whole genome

shotgun read data from multiple genomes?

The current study differs from our previous studies (Liu et al., 2011; Reinert et al., 2009; Wan et al.,

2010) in the following aspects. First, two random processes need to be considered to study the distribution

of the number of occurrences of word patterns from shotgun read data. One is that the long genome

sequences are random and they can be modeled by a hidden Markov model as in Wan et al. (2010) and Zhai

et al. (2010). The other randomness comes from the stochastic sampling of the reads from the long genome

sequences. A mathematical model, similar to that in Zhang et al. (2008), for the random sampling of the

reads is developed. Second, NGS shotgun reads can come from either the forward or the reverse strand of

the genomes, and it is not known which strand the reads come from. Thus, the reads together with their

complements need to be considered simultaneously when counting the numbers of occurrences of word

patterns for NGS reads. The inclusion of both strands further complicates our mathematical analysis for the

distribution of these statistics. Third, we study the distributions of the statistics D2, D�2, and DS
2 under the

null and the alternative models based on the stochastic models for the long sequences and the sampling of

the reads. The key challenges include the calculation of covariance for the numbers of occurrences of

different word patterns from the shotgun reads within one long sequence and between the genome se-

quences. The major difficulty comes from the random sampling of the reads from the genomes and the

consideration of double strands of the genome.

The organization of the article is as follows. In the Materials and Methods section, we first modify the

statistics D2, D�2, and DS
2 so that they can be applicable to the NGS shotgun read data. Second, for

completeness, we briefly describe the hidden Markov model (HMM) for the underlying long sequence, as

in Zhai et al. (2010). We also describe the model for the random sampling of shotgun reads from the long

sequence using NGS similar to that in Zhang et al. (2008). Third, formulas for calculating the mean and

covariance of the numbers of occurrences of word patterns sampled from the sequences are presented.

Fourth, the limit distributions of D2, D�2, and DS
2 under our models are given. Fifth, new dissimilarity

measures based on these statistics are defined. In the Results section, we present our simulation studies on

the effects of the length of the word pattern, read coverage, read length, and sequencing errors on the power

of these statistics. We also compare the simulated power and the theoretical power given by the
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approximate distributions. Then the clustering results of the 5 mammalian and the 13 tree species based on

the dissimilarity measures are given. The article concludes with some discussion on the limitations of our

study and directions for further research.

2. MATERIALS AND METHODS

2.1. Extending the D2, D�2, and DS
2 statistics to the NGS read data

The D2, D�2, and DS
2 statistics were originally developed for the comparison of two long sequences

(Reinert et al., 2009). Here, we extend them so that they can be applicable to NGS shotgun read data.

Consider two genome sequences taking L letters (0‚ 1‚ � � � ‚ L - 1) at each position. Suppose that M reads

of length b are sampled from a genome of length n. Since the reads can come from either the forward strand

or the reverse strand of the genome in NGS, we supplement the observed reads by their complements and

refer to the joint set of the reads and the complements as the read set. Let Xw and Yw be the numbers of

occurrences of word pattern w in the M pairs of reads from the first genome and the second genome,

respectively. For the null model, we assume that the two genomes are independent and both are generated

by iid models with pl being the probability of taking state l‚ l = 0‚ 1‚ � � � ‚ L - 1. It can be easily shown that

EXw = EYw = M(b - k + 1)(pw + p�w);

where w = w1w2 � � �wk‚ pw = pw1
pw2
� � � pwk

, and �w is the complement of word w.

Similar to the definitions of D2, D�2, and DS
2 for the comparison of long sequences in Reinert et al. (2009)

and Wan et al. (2010), we define them for the shotgun read data as follows,

D2 =
X

w2Ak

XwYw‚ D�2 =
X

w2Ak

~Xw
~Yw

M(b - k + 1)(pw + p�w)
‚ DS

2 =
X

w2Ak

~Xw
~Ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~X
2

w + ~Y
2

w

q ;

where ~Xw = Xw - M(b - k + 1)(pw + p�w) and ~Yw is defined analogously. We test the alternative hypothesis,

H1, that the two genome sequences are related against the null hypothesis, H0, that they are independent.

The more specific hypotheses are given in Subsection 2.2. For a type I error a, we find thresholds za, z�a, and

zS
a such that

P(D2qza) = P(D�2qz�a) = P(DS
2qzS

a) = a‚

where P indicates the probability distribution under the null model that the two sequences are independent.

The null hypothesis is rejected if the statistics are larger than the corresponding thresholds.

2.2. Modeling the long underlying sequences and the sampling of reads using NGS

We model the long genome sequences related through a common motif model as in Reinert et al. (2009)

and Wan et al. (2010). Each long genome sequence is modeled by three components: 1) the background

model for describing the generation of the long sequence, 2) the foreground model for the motif using

a position weight matrix (PWM), and 3) the distribution of motif instances along the sequence of interest.

First, the background sequence is modeled by iid random variables taking L different states

(0‚ 1‚ � � � ‚ L - 1), with pl being the probability of taking state l, for example, L = 4 for nucleotide sequences

with states (A, G, C, T), and L = 20 for amino acid sequences. Second, for a motif of length K, let

p
(k)
l ‚ k = 1‚ 2‚ � � � ‚ K be the probability that the k-th position of the motif takes value l. We also assume that

the motif positions are independent. Third, for a position along the background, the next K positions are

replaced with a motif instance with probability 1 - q, and we refer to 1 - q as motif intensity throughout

the article. Under this model, the null hypothesis corresponds to H0 : q = 1, and the alternative hypothesis

corresponds to H1 : q < 1.

Next, we model the sampling of reads using NGS. Recent studies have shown that the distribution of

reads from NGS along the genomic region of interest is not homogeneous. Instead, the read distribution is

biased by the base composition of the sequences for most of the current NGS technologies (Hansen et al.,

2010; Li et al., 2010; Zhang et al., 2008). To model the read distribution heterogeneity along the genome,

we assume that a read generated by NGS starts from position i with probability ki, where
Pn - b + 1

i = 1 ki = 1 and

n is the length of the sequence. If a read is generated from the sequence, we also consider its complement.

Assume that a total of M pairs of reads of length b are generated from NGS.
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2.3. The mean and covariance of the numbers of occurrences of word patterns in a read set

For a fixed word pattern w of length k (note that k does not have to equal K, the length of the motif), let

Xw be the number of occurrences of w within the M pairs of reads as described in Subsection 2.2. It can be

seen that the expectation of Xw is given by

EXw = M(b - k + 1)(Pq(w) + Pq(�w))‚

where Pq indicates the probability distribution for the forward strand and can be calculated based on the

hidden Markov model in Wan et al. (2010) and Zhai et al. (2010).

To calculate EXuXv where u and v are two words of length k, we note that Xu =
PM

i = 1 Cu(i), where Cu(i)

is the number of occurrences of word u in the i-th read and its complement. Thus,

EXuXv = E
XM

i = 1

Cu(i)
XM
i = 1

Cv(i)

 !
= MECu(1)Cv(1) + M(M - 1)ECu(1)Cv(2):

For the first term, we have ECu(1)Cv(1) = E(Xu[1, b]Xv[1, b]) = Eb,0(u, v), assuming that both sequences

start from the stationary distribution, where Xu[c, c0] is the number of occurrences of word u in the sequence

from c to c0 at the forward strand and its complement, and Eb,g(u, v) = E(Xu[1, b]Xv[1 + g, b + g]).

For the second term, we have

ECu(1)Cv(2)

= E
Xn - b + 1

i = 1

kiXu[i‚ i + b - 1]
Xn - b + 1

j = 1

kjXv[j‚ j + b - 1]

 !

= Eb‚ 0(u‚ v)
Xn - b + 1

i = 1

k2
i +

Xn - b + 1

i = 1

ki

Xn - i - b + 1

g = 1

ki + g

�
Eb‚ g(u‚ v) + Eb‚ g(v‚ u)

�
:

Therefore

EXuXv = M + M(M - 1)
Xn - b + 1

i = 1

k2
i

 !
Eb‚ 0(u‚ v)

+ M(M - 1)
Xn - b + 1

i = 1

ki

Xn - i - b + 1

g = 1

ki + g

�
Eb‚ g(u‚ v) + Eb‚ g(v‚ u)

�
:

The method for calculating Eb,g(u, v) is given in the Supplementary Materials (available online at www

.liebertonline.com/cmb). The following proposition gives the approximate covariance between Xu and Xv.

Proposition 2.1 Consider the models for the long genome sequences and the sampling of reads

described in Subsection 2.2. Assume limn!1 (n - b - g + 1)
Pn - b - g + 1

i = 1 kiki + g = rg and M depends on n such

that limn/NM/n = h where h is a constant. Then

rq(u‚ v) = lim
n!1

Cov(Xu‚ Xv)

M

= (1 + hr0)
�

Eb‚ 0(u‚ v) - (b - k + 1)2(Pq(u) + Pq(�u))(Pq(v) + Pq(�v))
�

+ h
X1
g = 1

rg

�
Eb‚ g(u‚ v) + Eb‚ g(v‚ u) - 2(b - k + 1)2(Pq(u) + Pq(�u))(Pq(v) + Pq(�v))

�
:

For simplicity of notation, we also denote r2
q(u) = rq(u‚ u). The following proposition gives the normal

approximation for Xu‚ u 2 S, where S is a subset of words of length k.

Proposition 2.2 Let S be a subset of words of length k such that
P

q = (rq(u‚ v))u‚v2S is non-

degenerate. Then

lim
M!1

ffiffiffiffiffi
M
p Xu

M
- (b - w + 1)(Pq(u) + Pq(�u))

� �
u2Ak

=MN
�

0‚
P

q

�
‚

where MN (0‚
P

q) is a multinormal distribution.

ALIGNMENT-FREE SEQUENCE COMPARISON BASED ON NGS READS 67



2.4. The approximate distributions of D2, D�2, and DS
2 under the null

and the alternative models

The following theorems give the approximate distributions of D2, D�2, and DS
2 under the null and the

alternative models, respectively. These theorems are then used to give the thresholds for a type I error a
under the null model q = 1 and to derive the approximate power formulas for detecting the relationships

between two sequences under the alternative model q < 1 in Theorem 2.5. These theorems are extensions

of the corresponding results for the limiting distributions of D2, D�2, and DS
2 for long sequences without

NGS in Wan et al. (2010). For the theorems in this subsection, we assume that both the sequence length n

and the number of reads M tend to infinity such that limn!1
M
n

= h, where h is a constant. We also assume

that the alphabet size, motif length, and word length are kept fixed. The conditions in Propositions 2.1 and

2.2 should also be satisfied. All the limits in Theorems 2.2–2.4 are in distribution. The proof of the

theorems are given in the Supplementary Materials.

Theorem 2.1 Under the models for the long sequences and the NGS sampling of sequence reads as in

Subsection 2.2, the means of D2 and D�2 and the approximate mean of DS
2 are given by

ED2 = M2(b - k + 1)2
X

(Pq(w) + Pq(�w))2‚

ED�2 = M(b - k + 1)
X (Pq(w) + Pq(�w) - (pw + p�w))2

pw + p�w
‚

lim
M!1

EDS
2

M
=

b - k + 1ffiffiffi
2
p

X��(Pq(w) + Pq(�w)) - (pw + p�w)
��‚

where the summation is over all the word patterns of length k.

Theorem 2.2 Assume that in the background model for the long sequences, not all letters are equally

likely.

a) Suppose q = 1 (the null model that the sequences are iid). Then

lim
M!1

ffiffiffiffiffi
M
p D2

M2
- (b - k + 1)2

X
w2Ak

(pw + p�w)2

 !
= Z1‚

where Z1 has normal distribution N (0‚ 2(
P

1 )2).
b) Suppose 0 < q < 1. Then

lim
M!1

ffiffiffiffiffi
M
p D2

M2
- (b - k + 1)2

X
w2Ak

(Pq(w) + Pq(�w))2

0
@

1
A = Zq‚

where Zq has normal distribution N (0‚ 2(
P

q )2), and (
P

q)2 is given by

(b - k + 1)2

� X
w2Ak

(Pq(w) + Pq(�w))2r2
q(w)

+
X
w 6¼w0

(Pq(w) + Pq(�w))(Pq(w0) + Pq(�w0))rq(w‚ w0)

	
:

Theorem 2.3 a) Suppose q = 1. Then the limit distribution of D�2 is given by

lim
M!1

D�2 = Z�1 =
X

w2Ak

Z(1)
w Z(2)

w

(b - k + 1)(pw + p�w)
‚

where fZ(1)
w ‚ w 2 Akg and fZ(2)

w ‚ w 2 Akg are independent and have mean 0 normal distributions.

b) Suppose 0 < q < 1 and that
(Pq(w) + Pq(�w) - (pw + pw))

pw + pw
is not constant in w. Then

lim
M!1

ffiffiffiffiffi
M
p D�2

M
- (b - k + 1)

X
w2Ak

(Pq(w) + Pq(�w) - (pw + p�w))2

pw + p�w

0
@

1
A = Z�q‚
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where Z�q has normal distribution N (0‚ 2(
P�

q )2), and (
P�

q )2 is given by

X
w2Ak

(Pq(w) + Pq(�w) - (pw + p�w))2

(pw + p�wÞ2
r2

q(w)

+
X
w 6¼w0

(Pq(w) + Pq(�w) - (pw + p�w))(Pq(w0) + Pq(�w0) - (pw0 + p�w0 ))

(pw + p�w)(pw0 + p�w0 )
rq(w‚ w0):

Theorem 2.4 a) Suppose q = 1. Then

lim
M!1

DS
2ffiffiffiffiffi
M
p = ZS

1 =
X

w2Ak

Z(1)
w Z(2)

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Z(1)

w )2 + (Z(2)
w )2

q ‚

where fZ(1)
w ‚ w 2 Akg and fZ(2)

w ‚ w 2 Akg are independent and have mean 0 normal distributions.

b) Suppose 0 < q < 1, and (Pq(w) + Pq(�w) - (pw + p�w)) have different signs in w. Then

lim
M!1

ffiffiffiffiffi
M
p DS

2

M
- (b - k + 1)

X
w2Ak

jPq(w) + Pq(�w) - (pw + p�w)jffiffiffi
2
p

0
@

1
A = ZS

q‚

where ZS
q has normal distribution N (0‚ 2(

PS
q )2), and (

PS
q )2 is given by

1

8

� X
w2Ak

r2
q(w) +

X
w 6¼w0

sign(Pq(w) + Pq(�w) - (pw + p�w))sign(Pq(w0) + Pq(�w0) - (pw0 + p�w0 ))rq(w‚ w0)

	
:

The following theorem gives the theoretical formulas for the power of D2, D�2, and DS
2 to detect the

relationship between two sequences.

Theorem 2.5 Assume that
(Pq(w) + Pq(�w) - (pw + p�w))

pw + p�w
and (Pq(w) + Pq(�w) - (pw + p�w)) are not constant in w.

Then, for any given type I error a, the power of detecting the relationship between two sequences under the

common motif model in Subsection 2.2 against the null model that q = 1 using D2, D�2, and DS
2 can be

approximated by 1 - F(C(q)), 1 - F(C*(q)), and 1 - F(CS(q)), respectively, where

C(q) = - (b - k + 1)
ffiffiffiffiffi
M
p

B(q) + za=ð
ffiffiffi
2
p P

qÞ‚
C�(q) = - (b - k + 1)

ffiffiffiffiffi
M
p

B�(q) + z�a=ð
ffiffiffiffiffiffiffi
2M
p P�

qÞ‚
CS(q) = - (b - k + 1)

ffiffiffiffiffi
M
p

BS(q) + zS
a=ð

ffiffiffi
2
p PS

qÞ‚

and

B(q) =
b - k + 1ffiffiffi

2
p P

q

X
w2Ak

((Pq(w) + Pq(w))2 - (pw + p�w)2)‚

B�(q) =
1ffiffiffi

2
p P�

q

X
w2Ak

(Pq(w) + Pq(�w) - (pw + p�w))2

pw + p�w
‚

BS(q) =
1

2
PS

q

X
w2Ak

jPq(w) + Pq(�w) - (pw + p�w)j‚

where, za, z�a, and zS
a are upper a quantiles of Z1, Z�1 , and ZS

1 from Theorems 2.2, 2.3, and 2.4, respectively.

2.5. New dissimilarity measures for clustering genome sequences based
on k-tuple distributions

The statistics D2, D�2, and DS
2 cannot be used directly to cluster genome sequences, as the ranges of the

statistics depend on several factors such as the nucleotide frequencies, the length of the reads, and the
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number of reads. To avoid these problems, we define the following dissimilarity measures d2, d�2, and dS
2

such that they range from 0 to 1, an interval not depending on these factors.

d2 =
1

2
1 -

D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak X2

w

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak Y2

w

p
 !

‚

d�2 =
1

2
1 -

M(b - w + 1)D�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak ~X2

w=pw

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak ~Y2

w=pw

q
0
B@

1
CA‚

dS
2 =

1

2
1 -

DS
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w2Ak ~X2
w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~X2

w + ~Y2
w

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak ~Y2

w=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~X2

w + ~Y2
w

qr
0
BB@

1
CCA:

When the genome sequences of interest are closely related, the values of d2, d�2, and dS
2 are close to 0.

Therefore, we can use them to measure the dissimilarities among different genome sequences.

To evaluate the validity of these dissimilarity measures in clustering genome sequences, we first use

them to classify human, rabbit, mouse, opossum, and chicken based on pseudo-simulated shotgun reads

using MetaSim (Richter et al., 2008). The phylogenetic relationship among the five species are clearly

known. We then use d2, d�2, and dS
2 to cluster whole genome NGS data in Cannon et al. (2010), including

eight tree species of Fagaceae (primarily of the stone oaks, Lithocarpus) and five tree species of Moraceae

(ficus), mostly tropical Asian trees.

3. RESULTS

In this section, we first study the power of D2, D�2, and DS
2 for detecting the relationships between two

sequences related through the common motif model using NGS data. In the simulation study, we consider

both homogeneous sampling and heterogeneous sampling of the reads across the genome. Then we

compare the simulated power and the theoretical power using the formulas given in Theorem 2.5. Finally,

we use the d2, d�2, and dS
2 dissimilarity measures to first cluster human, rabbit, mouse, opossum, and

chicken, and then cluster 13 tree species using NGS read data.

3.1. Simulation Studies

We use three different models to generate the underlying background forward sequence as in Reinert

et al. (2009): 1) guanine-cytosine (GC)-rich with pG = pC = 1/3, pA = pT = 1/6; 2) uniform with pA = pC =
pG = pT = 0.25; and 3) GC-poor with pG = pC = 1/6, pA = pT = 1/3. For the foreground, we assume that the

motif intensity 1 - q = 0.01 and that the inserted motif is AGCCA. Once the forward sequence is generated,

we then obtain the complementary sequence.

The sampling of the reads is simulated as follows. The length of the reads is assumed to be a constant

b = 200, and the coverage of the reads over the genome is defined by C = Mb/n. Two read distributions are

simulated: a) homogeneous sampling with ki = 1=(n - b + 1)‚ i = 1‚ 2‚ � � � ‚ n - b + 1, corresponding to the

case that a read starts from each position with equal probability, and b) heterogeneous sampling as in Zhang

et al. (2008). In heterogeneous sampling, we evenly divide the long genome sequence of length n into 100

blocks. For each block, we sample a random number from the gamma distribution G(1, 20), and the

sampling probability ki for each position in the block is proportional to the chosen number.

For a given parameter set (n‚ M‚ b‚ pA‚ pC‚ pG‚ pT ‚ ki‚ i = 1‚ 2‚ � � � ‚ n - b + 1), the simulation is run

10,000 times and the statistics D2, D�2, and DS
2 are calculated to yield the empirical distributions of the

various statistics.

The type I error was set at a = 0.05 throughout the article. Using the empirical distribution of the statistic

S (S can be one of D2, D�2, and DS
2) under the null model q = 1, we find the threshold s so that P(S ‡ s) = a.

The power of the statistic S is then approximated by the proportion of times that the score S exceeds s under

the alternative model H1 : q = 0.99.

We first study the power of D2, D�2, and DS
2 as a function of sequence length and the size of word k under

both the homogeneous and the heterogeneous sampling schemes. The results are given in Figure 1. It can be
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FIG. 1. The power of D2 (a, b), D�2 (c, d), and DS
2 (e, f) under the homogeneous (left column) and the heterogeneous

(right column) NGS read sampling as a function of sequence length and word size k. Here, GC-rich distribution:

q = 0.99, coverage C = 10, and b = 200. The number of simulations is 10,000. GC, guanine-cytosine.
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seen from the first row that the power of D2 is generally low and can be smaller than the type I error of 0.05

when k = 2 or 4. Thus, D2 is not appropriate for detecting the relationships between sequences related

through the common motif model.

The second row of Figure 1 shows that the power of D�2 increases with sequence length and reaches the

maximum when the word length k is the same as the length of the inserted motif (here, k = 5 according to

our simulations). When k = 5, the power of D�2 quickly increases to 1, demonstrating the high power of D�2
for detecting the relationships between two sequences. Comparing the left column to the right column, we

can see that the power of D�2 under the heterogeneous read sampling is lower than that under the homo-

geneous read sampling. Some parts of the genome sequence may not be sampled or undersampled in

heterogeneous sampling, resulting in lowered power of the D�2 statistic.

The third row shows the power results for DS
2. These results are generally similar to those for D�2.

However, the power of DS
2 is highest at k = 4, instead of 5. Comparing the second and third row, we also see

that the power of D�2 is generally slightly higher than the power of DS
2.

Second, we study the effects of read coverage on the power of D�2 and DS
2 and compare their power using

NGS with their corresponding power when the entire genome sequences are known. We do not consider D2

in the rest of this subsection as it generally has low power. Figure 2 shows that the power of both D�2 and DS
2

increases with the read coverage as expected and approaches the corresponding power when the genome

sequences are known as the coverage increases. However, the power of both statistics using NGS data is

lower than the corresponding power when the complete genome sequences are known. The relatively low

power of these statistics using NGS reads can be attributed to the randomness of the reads due to NGS

sampling.

Third, we study the effect of read length b on the power of D�2 and DS
2, and the results are given in

Supplementary Figure S1 in the Supplementary Materials. It can be seen that, for fixed coverage, the power

of each statistic decreases first and then increases as the read length increases. The results are somewhat

surprising because we originally expected that the read length would not significantly affect the power of

these statistics. The following reasons can explain this observation. On one hand, when we fix the coverage,

the number of reads, M, is inversely proportional to the read length b. As b increases, M decreases. Smaller

number of reads with longer read length will result in more uneven samples of the genome compared to

more reads but with shorter read length, thus decreasing the power of the statistics. On the other hand, for a

read of length b, we only count the number of k tuples starting from the first position to the b - k + 1-th

position. As b increases, more k-tuples are used in these statistics resulting in increased power of the

statistics. The trade-off between these two factors results in the first decrease and then increase of the power

of these statistics.

Finally, we study the effect of sequencing errors on the power of D�2 and DS
2 using error rate 0.005. Figure

S2 in the Supplementary Materials shows their power with/without errors. It can be seen from the figure

that the power of the statistics with errors is only moderately lower than the power without errors.

The same conclusions as above are obtained for the GC-poor and uniform models for the background

sequences. The results are shown in Supplementary Figures S3–S10.

3.2. Comparison of the theoretical power with the simulated power of the statistics
D2, D�2, and DS

2

In Subsection 2.4, we present theoretical results for the approximate distributions of D2, D�2, and DS
2, as

well as formulas for calculating their power of detecting the relationships between two sequences. Next, we

compare the simulation results with the theoretical results to see when the theoretical approximations work

well.

First, we study the approximate mean and variance for D2, D�2, and DS
2. For notational simplicity, we let

ND2 = D2=(M
ffiffiffiffiffi
M
p

)‚ ND�2 = D�2=
ffiffiffiffiffi
M
p

‚ NDS
2 = DS

2=
ffiffiffiffiffi
M
p

:

The approximate means of ND2, ND�2, and NDS
2 can be derived from Theorem 2.1. From Theorems 2.2–2.4,

the approximate variances of ND2, ND�2, and NDS
2 are 2(

P
q )2‚ 2(

P�
q )2, and 2(

PS
q )2, respectively.

It can be seen from Table 1 that the simulated means of D2 and D�2 are very close to their theoretical

approximations. On the other hand, the simulated mean of DS
2 is much smaller than the theoretical ap-

proximation. The simulated standard deviation of D2 is very close to the theoretical approximation. The

simulated standard deviation of D�2 is generally larger than the theoretical approximation. When the
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FIG. 2. The power of D�2 (a, b) and DS
2 (c, d) under the homogeneous (left column) and the heterogeneous (right

column) NGS read sampling as a function of sequence length and coverage. For comparison, the power of the statistics

when the whole genome sequences are known is also shown (underline). Here, GC-rich distribution: q = 0.99, k = 5,

and b = 200. The number of simulations is 10,000.

Table 1. Comparison of Simulated Means and Standard Deviations of ND2, ND�2, and NDS
2

for Different Sequence Length n with the Corresponding Theoretical Limits, with GC-rich

Background and Motif = AGCCA, C = 1, b = 200, and q = 0.99

D2 D�2 DS
2

n · 10 - 4 END2 · 103ffiffiffi
M
p

(b - k + 1)2 r(ND2) · 10 - 5 END�
2

· 102ffiffiffi
M
p

(b - k + 1)
r(ND�2) · 10 - 2 ENDS

2
· 10ffiffiffi

M
p

(b - k + 1)
r(NDS

2) · 10

0.32 6.69 8.60 1.27 14.13 2.57 5.48

0.64 6.70 8.95 1.29 10.09 2.80 6.15

1.28 6.49 8.53 1.27 7.25 3.12 6.16

2.56 6.49 8.56 1.28 6.70 3.57 6.52

10 6.69 8.54 1.29 5.30 4.60 6.68

20 6.69 8.56 1.29 5.02 5.05 6.72

Theory 6.69 8.57 1.28 4.80 6.40 7.19

For the expectation, word length k = 5, and for the standard deviation, word length k = 2. The number of simulations is 10,000.
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sequence length is larger than 105, the simulated standard deviation of D�2 is within 20% of the theoretical

approximation. For DS
2, the simulated standard deviation is generally smaller than the theoretical ap-

proximation. From the table, we can also see that as sequence length increases, the simulated means and

variances of D�2 and DS
2 approach their corresponding theoretical approximations.

Second, we compare the simulated power with the theoretical power for the three statistics. We use

10,000 simulations based on the null model q = 1 to find the threshold values za, z�a, and zS
a. The type I error

is set at 0.05. Table 2 compares the simulated and the theoretical power for the three statistics. It can be

seen from the table that the theoretical power is close to the simulated power for D2 and D�2. However, the

theoretical power for DS
2 is much higher than the simulated power. A potential explanation for the poor

performance of the theoretical approximate power for DS
2 is that its theoretical mean is somewhat higher

than the simulated mean as shown in the sixth column of Table 1 when the sequence length is less than

2 · 105 bps.

In our simulation studies, to save computational time, we let the sequence length be relatively short. In

reality, whole genome sequences are usually much longer. It is interesting to know which of the three

statistics are most powerful for very long sequences. From Table 1, we expect that the approximate power

for all the three statistics given in Theorem 2.5 should work well for very long sequences as the simulated

means and standard deviations are close to their corresponding theoretical approximations. From Theorem

2.5, we can see that the dominant term for C(q), C*(q), and CS(q) is the first term, and the second term can

be ignored for very long sequences. Thus, the higher the values of B(q), B*(q), and BS(q), the more

powerful the statistic is. Figure 3 shows their values for k = 2, 3, 4, and 5 for the GC-rich background

model under homogeneous read sampling. It is clear that when the sequence length and the number of reads

are high, D2
S should be the most powerful. Similar results for the GC-poor and uniform background models

are given as Supplementary Figures S11–S12.

Similar results are obtained for other parameter sets. In Supplementary Tables S1–S4, we give the results

for the uniform and GC-poor background models.

3.3. Clustering of five mammalian species using d2, d�2 , and dS
2 based on pseudo-NGS reads

In order to see the validity of clustering different species using NGS short reads based on d2, d�2 and dS
2, we

simulate NGS short reads using MetaSim (Richter et al., 2008) from five mammalian species: human, rabbit,

mouse, opossum, and chicken, whose phylogenetic relationships are well established (Miller et al., 2007).

We first download their complete genome sequences from UCSC Genome Browser and Ensembl.org.

Next, we use MetaSim to simulate NGS reads from each of the five species under the ‘‘empirical error

model,’’ which is derived from empirical studies of the Illumina Sequencing Technology. The read length

is set at 62 bp and the coverage is set to 1. Finally, we calculate the dissimilarities between any pair of the

species using d2, d�2, and dS
2 for k = 7, 9, 11, based on the simulated reads, and use UPGMA (Unweighted

Pair Group with Arithmetic Mean) in PHYLIP (http://evolution.genetics.washington.edu/phylip.html) to

cluster them. Unfortunately, none of the resulting clustering is consistent with the known phylogenetic

relationships of the five species (data not shown).

We reason that the large fraction of repeat regions along the genomes may make the k-tuple frequencies

along the complete genomes significantly different from the k-tuple frequencies along the nonrepeat

Table 2. Comparison of the Theoretical and the Simulated Power for D2, D�2, and DS
2

for Different Sequence Length n with GC-rich Background and Motif = AGCCA, C = 1,

q = 0.99, and Word Length k = 5

D2 D�2 DS
2

n · 10 - 4 Theory Simulated Theory Simulated Theory Simulated

0.32 5.1 5.6 85.4 85.8 53.3 41.1

0.4 5.6 6.2 91.5 93.8 62.1 50.9

0.5 5.9 6.5 95.9 98.1 71.4 61.2

0.64 6.9 7.3 98.6 99.7 82.1 74.6

1.28 9.1 8.7 100 100 97.7 97.4

The type I error a = 0.05. The number of simulations is 10,000.
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regions. Thus, we take the following approach to eliminate or mitigate the effects of repeat regions. The

basic idea is that if the number of occurrences of a k-tuple in the reads is much higher than expected, we

eliminate the k-tuple from consideration when we calculate d2, d�2, and dS
2. For every w, we calculate

Tw = Xw/EXw. When Tw is larger than a threshold T0, we set Xw to 0 in the calculation of d2 and set Xw to

EXw in the calculation of d�2, and dS
2.

When k = 7 and T0 = 2, we observe that the clustering using dS
2 is consistent with the true underlying

evolutionary tree, while the clusterings using d2 and d�2 are not (Supplementary Fig. S13). This indicates

that dS
2 identifies the relationships between species more efficiently than d2 and d�2. We also note that the

clusterings using any of the three dissimilarity measures for k = 9 and k = 11 are consistent with the true

phylogenetic tree of the five species.

3.4. Applications to the detection of the relationship among different tree species using NGS data

We then use the dissimilarity measures d2, d�2, and dS
2 defined in Subsection 2.5 to cluster the 13 tree

species based on the NGS shotgun read data sets in Cannon et al., (2010). Note that the number of tree

species we study here is more than the 9 tree species in the original paper (Cannon et al. 2010) because
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FIG. 3. The values of B(q),B*(q), and BS(q) as a function of 1 - q from 0 to 0.01 for the GC-rich background

distribution and b = 200 under homogeneous read sampling.
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more data are now available. The 13 tree species can be generally classified into two groups: 5 tree species

from Moraceae and 8 tree species from Fagaceae. Using the data set, we answer the following questions:

� Can the three dissimilarity measures d2, d�2, and dS
2 clearly separate the two groups of tree species

based on the shotgun read data?
� How does the tuple size k affect the clustering of the tree species?
� How does the sequence depth c affect the clustering of the tree species?

To answer these questions, we first use the complete shotgun read data to calculate the dissimilarities, d2,

d�2, and dS
2, between any pair of tree species from the 13 species for different values of tuple size k = 7, 9,

11. Taking the dissimilarity matrix as input, we apply the UPGMA program to cluster the tree species.

Figure 4 shows the resulting clusterings using d2, d�2, and dS
2, respectively, with k = 9. The clusterings of the

tree species using k = 7, 11 are given as Supplementary Figures S14–S15.

Second, in order to see whether the clustering of the tree species can be correctly inferred using only a

portion of the shotgun read data, we use c = 5% of the total read data for each tree species to cluster them.

Since the c percent of the reads can be sampled randomly from the original read data, the resulting

clustering of the tree species can be different. To study the variation of the clusters due to random sampling

of the reads, we repeat the sampling process of the reads 100 times and calculate the frequencies of each

internal branch of the clustering using all the reads occurring among the 100 clusterings. The frequencies

are given in Figure 4 for k = 9 and c = 5%.

It can be seen from the figure that the two groups of tree species can be completely separated using the

dissimilarity measures d�2 and dS
2 for any k = 7, 9, 11. However, the tree species cannot be distinguished

using the dissimilarity measure d2. These two tree groups are quite far apart, as they are in different orders

and probably separated by at least 50 million years, if not considerably longer (Cannon, personal com-

munication). A good clustering should be able to separate the two groups of trees. This result indicates that

d�2 and dS
2 are more sensitive to distinguish the tree species than d2. With dS

2, most of the resulting clusters

can be completely recovered with only 5% of the reads. However, the clustering with d�2 is less stable when

a small fraction of the data are available.

In addition, Ficus altissima and Ficus microcarpa cluster together using all three dissimilarity measures,

which is consistent with the fact that both are large trees and are closely related while the other three

Moraceae species are small dioecious shrubs. Similarly, the two Castanopsis species within the Fagaceae

group also cluster together separate from the others using dS
2. Thus, the clustering based on dS

2 is the most

reasonable among the three dissimilarity measures we study. Finally, we note that the clustering by dS
2 is not

perfect. F. Trigonobalanus is an ancestral genus that is very divergent from the rest of the family and has

undergone considerable sequence evolution. It should not group within Lithocarpus (Cannon, personal

communication).

4. DISCUSSION

We modified the original D2, D�2, and DS
2 statistics for alignment-free sequence comparison of two long

sequences to the scenario of genome sequence comparison using NGS data. Based on the HMM model for

long sequences with random instances of motif occurrences (Reinert et al., 2009; Wan et al., 2010; Zhai

et al., 2010) and a general model for the sampling of NGS reads from the genome, we studied the ap-

proximate distributions of D2, D�2, and DS
2. We also studied the power of detecting the relationships between

two sequences related through the common motif model by both simulations and theoretical studies, and

studied factors affecting the power of these statistics including genome sequence length, coverage of the NGS

reads, read length, word length, and the distribution of the reads along the genome sequence. It is shown that

D�2 and DS
2 are more powerful than D2 for detecting relationships between two sequences related through a

common motif model. These results are consistent with those for alignment-free comparison of long se-

quences found in Reinert et al. (2009) and Wan et al. (2010). We also found that D�2 and DS
2 are generally less

powerful when applied to NGS data than when they are applied to complete sequences. Heterogeneity in the

sampling of reads along the genome further decreases the power of these statistics. On the other hand, when

the sampling of reads is relatively homogeneous across the genome and the coverage is high, the power of D�2
and DS

2 approaches the power that is achieved when these statistics are applied to complete sequences. Based

on these statistics, we defined corresponding dissimilarity measures d2, d�2, and dS
2 with ranges from 0 to 1.
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We applied the dissimilarity measures with some modifications to cluster five mammalian species and

showed that they can all cluster them well when the tuple size is 9 or 11. When applied to the real shotgun

read data from 13 tree species whose complete genome sequences are unknown, the d�2 and dS
2 dissimilarity

measures can correctly separate the two groups of tree species even with 5% of the reads from the shotgun

read data sets.

Although we showed the usefulness of D�2 and DS
2 for detecting the relationships between sequences and

for clustering sequences using NGS data without assembly, our study has several limitations. First, we

assumed that the background sequences are iid, which can be violated for many real molecular sequences.

One solution is to use the Markov model to fit the background sequences. In this case, the D2, D�2, and DS
2

should be further modified by replacing pw with the probability of word pattern w according to the Markov

model. We expect that the qualitative results regarding the relationships among D2, D�2, and DS
2 will still

hold. Second, we assumed that the foreground consists of just one motif. In many regulatory sequences, the

regulatory modules consist of multiple motifs. Simulation studies can be carried out to compare the

performance of the different statistics under the module assumption. However, theoretical formulas for

calculating the power of the statistics can be challenging. Third, in modeling the distribution of the shotgun

reads from NGS, although we considered heterogeneous distribution of the reads along the genome, we did

not assume that the sampling probabilities ki depend on the base compositions at the neighborhood of

position i. Previous studies (Hansen et al., 2010; Li et al., 2010) showed that the sampling probabilities are

associated with the base composition in the neighborhood of the position. One solution to this problem is to

ignore the first 6–10 bases of the reads and only consider the remaining bases of the reads. Without

trimming each read, the k-tuple composition vector from the shotgun read data may be significantly

different from the k-tuple composition from the original genome that the shotgun read data are sampled

from. On the other hand, new sequencing technologies will reduce the dependence of sampling probability

on the base composition and the read distributions will be increasingly homogeneous. Despite all these

problems, we expect that our study lays the foundations for the study of alignment-free sequence com-

parison based on NGS shotgun read data.
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