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Abstract
Tongue Drive System (TDS) is a new assistive technology that enables individuals with severe
disabilities such as those with spinal cord injury (SCI) to regain environmental control using their
tongue motion. We have developed a new sensor signal processing (SSP) algorithm which uses
four 3-axial magneto-resistive sensor outputs to accurately detect and classify between seven
different user-control commands in stationary as well as mobile conditions. The new algorithm
employs a two-stage classification method with a combination of 9 classifiers to discriminate
between 4 commands on the left or right side of the oral cavity (one neutral command shared on
both sides). Evaluation of the new SSP algorithm on five able-bodied subjects resulted in true
positive rates in the range of 70–99% with corresponding false positive rates in the range of 5–7%,
showing a notable improvement in the resulted true-false (TF) differences when compared to the
previous algorithm.

I. Introduction
Among currently available assistive technologies (ATs), there are only a few that are widely
accepted and used by individuals with severe disabilities in everyday living [1]. The main
challenges here are for a device to be highly reliable, both in terms of safety and accurate
operation, practical for individuals with various disabilities, and offer sufficient degrees of
freedom to the end users. Powered wheelchairs, for example, are the only and the most
reliable AT aimed for mobility. However, they require hand motion for joystick control
unless they are equipped with alternative controls. Voice recognition systems are another
example that cannot be used by SCI patients whose speech function may also be impaired.
Sip-n-Puff switches, which operate by blowing or sucking through a straw, on the other
hand, are very reliable in a variety of environments, and widely used for wheelchair control.
However, they can only provide a limited number of commands (four). Brain Computer
Interfaces (BCIs), have the potential to become the ideal AT by offering means to
communicate with brain activities. However, the research on BCI has not yet yielded to a
reliable AT that can be made available to the public [2]–[4].

Alternatively, human tongue is an attractive option for the control site in an AT. It escapes
damage even in severe spinal cord injuries or most neurological diseases. It is inherently
capable of sophisticated motor control tasks and does not fatigue easily. The tongue is easily
accessible inside the oral cavity which remains hidden from the sight therefore providing
users with privacy [5]. By utilizing the tongue capabilities, we have developed an
unobtrusive, minimally invasive AT, called Tongue Drive System (TDS), which can provide
a high level of control to the user by offering 7 simultaneously available commands and has
the potential to offer even more degrees of freedom [6].
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The external TDS (eTDS) consists of a small permanent magnetic tracer, attached to the
user’s tongue by adhesives or piercing, and an array of magnetic sensors mounted on a
wireless headset worn by the user. Magnetic field variations resulted from tongue
movements are captured by the magnetic sensor array and wirelessly transmitted to a PC or
a Smartphone (iPhone) [7]. A Sensor Signal Processing (SSP) algorithm running on the
computer or Smartphone then takes charge of continuous detection and classification of the
user intended commands in real-time and provides the output. The extracted commands can
then be used for computer access or to control any device that can be controlled by a
computer.

Since the central processing core of the TDS is its SSP algorithm, the overall characteristics
of the system such as accuracy, response time, and sensitivity heavily depend on this
algorithm. Some of the common pitfalls of signal processing algorithms devised for ATs
include: the “Midas touch” problem i.e. the issuance of unintended commands [8], [9], sub-
optimum computational cost which results in lower speed as well as excessive
computational power, and insufficient sensitivity in detecting user control commands.

In previous TDS systems, we were using a single-stage classification algorithm with K-
Nearest Neighbor (KNN) classifier applied on PCA components extracted from a pair of
magnetic sensors. Even though the resulting performance was acceptable, the system
occasionally suffered from misclassification among 7 commands especially when the
subjects were using magnetic tongue studs, as opposed to glued-on magnetic tracers. The
main objective of this work, however, has been to provide TDS with a more computationally
efficient SSP algorithm to detect and classify up to 7 different control states as accurately
and promptly as possible and in real-time. We have employed two additional magnetic
sensors to achieve a better coverage over the oral cavity resulting in better resolution,
classification accuracy, and noise cancellation efficacy [10].

II. Experimental Paradigm
A. Graphical User Interface

The Graphical User Interface (GUI) used in this experiment consists of two parts: the
Training session and the Testing session. During the training session, the subject was asked
to issue randomly selected commands when their corresponding lights turn on (Fig. 1). Here,
after each light turned on, there was a 2 s interval when the subject was allowed to move his/
her tongue to the ordered command position followed by a 1.5 s period when the subject was
asked to fix the tongue in that position while the program collects the sensor outputs for that
command. In order to provide the operator with a visual feedback of the quality of the data
being recorded concerning the inter cluster separability and intra class consistency; we used
the differentiated sensor output to display the average of each trial as one data point in a 3-D
space, as shown in Fig. 1.

For online experiment, we implemented our new SSP algorithm in C programming language
and compiled it into two dynamic-link libraries (DLLs) of Train and Test functions. These
functions were then employed in the LabVIEW GUI. After the training data was recorded by
repeating each command for 10 times, it was then fed to the Train module. The Train
module includes the training phase of the SSP algorithm to train the classifiers, and
calculates the parameters needed for online classification of the commands in the testing
phase.

For testing session we have used the GUI, originally designed for TDS Information Transfer
Rate measurement, to evaluate our new algorithm and measure the resulted improvement in
TDS functionality. In the testing session, shown in Fig. 2, one out of 6 commands was
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randomly selected and its light turned red during when the subject got ready to issue the
depicted command. The subject was asked to make the necessary tongue movement once the
center light turned green and message “Go” appeared on the screen. A hit was captured
when the algorithm detecting the tongue motion moved the center light toward that
command and changed its color to green. The subject was instructed to keep his/her tongue
in that position until both lights turn off and then return the tongue back to the Resting
position where the algorithm would recognize it as a Neutral command. In order to
challenge both the system (algorithm) and the subject, we applied three different time
intervals during which the subject had to reach the command position or otherwise a miss hit
would be recognized.

The task of recognizing the issued command is due to the testing phase of the SSP algorithm
which was implemented as the “Test function” inside another DLL module. The LabVIEW
GUI automatically feeds the output parameters of the “Train function” along with the raw
data to the input of the Test module and shows the outputted command on the screen (Fig.
2).

B. Dataset
In order to measure the performance of our algorithm we collected the raw sensor outputs
along with all the necessary timing information and performed an offline analysis on the
data recorded from five able-bodied subjects. Four of these subjects have had tongue
piercings and did not have any prior experience with TDS. The tongue studs of these
subjects were replaced by magnetic tongue studs, especially manufactured for this purpose,
which had a small magnet encased in their upper titanium welded ball. The last subject was
however totally familiar with TDS and had the magnetic tracer temporarily attached to her
tongue with tissue adhesive. To simulate the dynamic situation, this subject performed the
experiment while moving around carrying a notebook computer which was running the
software. All the other subjects did the experiment while sitting in front of a desktop
computer. The training data consists of 12-dimensional raw sensor outputs i.e. the data
recorded from 4 three-axial magnetic sensors sampled at 50 Hz frequency in addition to time
and tag information which refers to transition and fixing periods. This data includes 70 trials
i.e. 10 repetitions of 7 commands. The testing data was collected during 3 different time
intervals of 1s, 0.7s, and 0.5s each consisting of 4 rounds of experiment. Each round
includes issuing 24 random commands i.e. each command randomly occurs 4 times. We also
repeated the experiment in 5 different sessions.

III. Data Processing
A. Preprocessing

External magnetic interference (EMI) including Earth magnetic field (EMF) can potentially
affect the magnetic sensor readings and reduce the signal-to-noise ratio (SNR). In order to
cancel EMI effect on four sensor readings, we apply a differential noise cancellation
method. In the current TDS prototype we have four 3-axial magnetic sensors mounted on
two PCBs which are implemented on two poles extending from both sides of the TDS
headset. Noise cancellation is performed separately on each pair of front-side, back-side,
two sensors in the right, and two in the left-side of the TDS headset (Fig. 3). Here, we
mathematically align two sensors in each pair and only consider their difference for future
calculations. Advantageous of this process is that it also reduces the dimensionality of raw
data from 12 to 6. For a complete mathematical description on this process please refer to
[10].
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B. Classification
In signal processing field, it is customary to combine several stages of classification when
number of classes increase or differet types of patterns are to be recognized [11],[12]. We
have employed a two-stage classification algorithm which with near absolute accuracy can
distinguish between 7 different control commands of Left, Right, Up, Down, Left-Select,
Right-Select, and Resting (Neutral) inside the oral cavity (Fig. 4). In the first phase we
mainly focus on performing a hundred percent accurate discrimination between left (left, up,
left-select) versus right-side (right, down, right-select) commands. Here, the noise
cancellation is performed on left and right-side sensors separately to provide a 6 dimensional
vector including 3 components from the left and 3 from the right-side sensors. The reason
for this selection is that, alternatively, the difference between front and back-side sensors
masks the discriminatory information between left vs. right-side commands since they will
both produce two differential vectors with similar magnitudes. Then, we calculate the
Euclidean distance of an upcoming point to the left and right command-positions which are
averaged from training trials. These distances are normalized to compensate for any
asymmetry in user’s left vs. right-side commands and then compared to produce a left/right
decision. Based on the outcome of the first stage, the second stage of classification is applied
on either left or right side of the oral cavity to detect and discriminate between left, up, left-
select, and neutral commands on the left side; or right, down, right-select, and neutral
commands on the right side. Note that neutral command can be interpreted as belonging to
either left or right side and therefore classified to either side in the first stage since it is going
to be re-classified in the second stage and against different commands in the left or right-
side as well.

Second stage of classification begins with de-noising the raw data using the front and back-
side sensors. This provides another 6 dimensional vector including 3 components on the
back and 3 on the front side of the oral cavity. Successively, this vector is fed to a group of 9
linear and nonlinear classifiers consisting of Linear, Diagonal linear, Quadratic, Diagonal
Quadratic, Mahalanobis minimum distance, and four KNN classifiers. Four different
distances used in KNN classifiers include Euclidean, Cosine, Correlation, and City Block
among which the last three are defined as follows:

(1)

where X1 is the upcoming test data, X2 is the training data recorded for every class, and X̄1
& X̄2 are their mean values respectively. We calculate the distance of each upcoming sample
from the training samples in each class; however, we down-sample the training data by a
factor of 10 in order to retain computational efficiency and speed for our online application.
At the end, the outputs of all classifiers are combined following a Majority Voting schema
to provide a final result.

IV. Results
A. Offline Experiment

In our offline analysis, we evaluated the algorithm performance throughout the whole time
when the test session was running. It included both the transition phase i.e. when the tongue
was moving, as well as when the tongue was in a command position. Therefore, 4 different
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measures of true positive rate (TPR) and false positive rate (FPR) can be provided. These
measures were calculated in a sample-by-sample analysis and captured as follows:

(2)

where TP (true positive) and FN (false negative) are a true detection and a misclassified
sample during the issuance of a command, respectively; FP (false positive) is a false
detected command during the transition phase as well as during a neutral command; TN
(true negative) is a sample during the transition or neutral command that has correctly been
classified as neutral. Note that in our analysis these definitions differ from the common ones
used in binary detection model since we are measuring the accurate detection of 7
commands all at the same time.

To measure the improvement achieved, the results of the new algorithm were compared with
the previous algorithm [10] where all 7 commands were classified in one stage using a KNN
classifier. Table 1 reveals the TPR (left side columns) and FPR (right side column)
percentages for the last four rounds of all subjects. For each subject, only the results
regarding the best session are shown.

B. Online Experiment
One major issue we were previously facing was the issuance of some unintended commands
during the phase when the tongue was in the transition between different commands. This
problem named as “Junk Commands” was better experienced with manually moving the
magnet in the 3-D space inside the headset. We could find different positions at which
rotating the magnet could result in a misclassification where a command of the opposite side
was being detected. The reason is that orientation of the magnet can potentially change the
magnetic flow measured by the magnetic sensors and therefore affect the classifier output.
Nevertheless, by relying on the magnitude of the sensor readings during the first stage of
classification, we could successfully discriminate left vs. right-side commands with near
absolute accuracy. As a result, by implementing the new algorithm, we covered the entire 3-
D space inside the headset and recognize 7 command positions with almost no mistake.

V. conclusion
In this work we implemented our new SSP algorithm in TDS software and verified the
potential improvement gained in the accuracy and sensitivity of the system in detecting user-
intended control commands. Offline experiments with 5 able-bodied subjects showed that
with as high as 99% of true detections and as low as 5% of false positives TDS can now
offer 7 different regions inside the oral cavity that can be reliably used as user control
commands. Based on promising results, this shows a potential for increasing the number of
commands to more than 10. We also are in the process of assessing the new system by
people with severe disabilities and plan to add the proportional control capability to TDS.
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Fig. 1.
TDS-GUI for 7 command training session in the LabVIEW environment.
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Fig. 2.
TDS-GUI for 7 commands testing session with different time intervals.
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Fig. 3.
eTDS-Headset prototype; the figure shows the alignment of four magneto-resistive sensors
which was used in EMI cancellation.
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Fig. 4.
Flowchart of the 2-stage classification algorithm.
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