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Background: The small GTPase RhoC is an essential mediator of tumor cell invasion and metastasis.
Results: The protein kinase MRK binds to and is activated by both RhoA and RhoC, but phenocopies RhoC in the control of

LPA-stimulated tumor cell invasion.

Conclusion: MRK is a novel RhoC effector that mediates tumor cell invasion.
Significance: Dissecting RhoC-mediated signaling is important for understanding tumor metastasis.

The small GTPase RhoC is overexpressed in many invasive
tumors and is essential for metastasis. Despite its high structural
homology to RhoA, RhoC appears to perform functions that are
different from those controlled by RhoA. The identity of the
signaling components that are differentially regulated by these
two GTPases is only beginning to emerge. Here, we show that
the MAP3K protein MRK directly binds to the GTP-bound
forms of both RhoA and RhoC in vitro. However, siRNA-
mediated depletion of MRK in cells phenocopies depletion of
RhoC, rather than that of RhoA. MRK depletion, like that of
RhoC, inhibits LPA-stimulated cell invasion, while depletion of
RhoA increases invasion. We also show that active MRK
enhances LPA-stimulated invasion, further supporting a role for
MRK in the regulation of invasion. Depletion of either RhoC or
MRK causes sustained myosin light chain phosphorylation after
LPA stimulation. In addition, activation of MRK causes a reduc-
tion in myosin light chain phosphorylation. In contrast, as
expected, depletion of RhoA inhibits myosin light chain phos-
phorylation. We also present evidence that both RhoC and MRK
are required for LPA-induced stimulation of the p38 and ERK
MAP kinases. In conclusion, we have identified MRK as a novel
RhoC effector that controls LPA-stimulated cell invasion at
least in part by regulating myosin dynamics, ERK and p38.
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Rho proteins form a subgroup of the Rho family of small
GTPases that are involved in tumor progression and metastasis
(1, 2). The closely related Rho GTPases RhoA and RhoC have
been found to be overexpressed in a variety of tumors (3—6). In
some cases their expression correlates with tumor progression
(7-9). In addition, RhoC has been shown to play an essential
role in metastasis in animal models (10 -12), and RhoC expres-
sion correlates with increased invasion in several tumor types
(5, 13-16).

RhoA and RhoC proteins are 94% identical, and, although
they activate the same effectors upon overexpression in cells
(17), they appear to have different roles in cell invasion, as RhoC
down-regulation inhibits invasion, whereas RhoA depletion
increases it, although not in all cell types (9, 18 —22). However,
the identity of the signaling components involved in RhoC-
mediated cell invasion is only beginning to emerge (9, 23, 24).

Lysophosphatidic acid (LPA)7 is a well-established activator
of RhoA. LPA stimulates RhoA via Gal3 (25), the « subunit of
a heterotrimeric GTPase (26, 27). Both LPA and Gal3 are
known to play important roles in cell migration. LPA is an
extracellular lipid that mediates hormone and growth factor-
like responses in many cell types (28) and stimulates cell migra-
tion of both neoplastic and non-neoplastic cells (29). Ga13 is
essential for cell migration during development ((30, 31), as well
as for migration of cancer cells (32).

Among the known signaling cascades that act downstream of
Rho GTPases are the mitogen-activated kinase (MAPK) path-
ways JNK and p38 (33—37). These cascades relay a wide range of
signals downstream of growth factors as well as cellular stress
stimuli and cytokines. MRK (MLK-related kinase (38), also
known as MLTK (39) and ZAK (40)), is a member of the
MAP3K family of protein kinases that activates MAP kinase
pathways upon overexpression (38, 39). MRK is activated in
response to cellular stresses (38, 39, 41), but its upstream acti-
vator/s are not known. In this report, we have used recombi-
nant proteins and RNA interference to show that MRK func-

”The abbreviations used are: LPA, lysophosphatidic acid; MRK, MLK-
related kinase; MLC, myosin light chain; GTPyS, guanosine
5'-O-y-[thioltriphosphate.
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tions downstream of RhoC and is a novel signaling element in
LPA-stimulated tumor cell invasion.

EXPERIMENTAL PROCEDURES

Cell Cultures and Transfections—The osteosarcoma U2-OS
cells were obtained from ATCC and cultured as suggested. The
ovarian ES-2 cells were kindly provided by Karen Auborn (Fein-
stein Institute). The M28 cell line was derived from U2-OS
Tet-On cells (Clontech) that were engineered to express a
trans-activator responsive to doxycyclin, a tetracycline deriva-
tive. These cells were transfected with a pTRE plasmid express-
ing the MRK gene under the control of the Tet-inducible
promoter. Individual clones were selected for puromycin resist-
ance and tested for MRK inducibility following doxycyclin
treatment. Clone M28 was identified for good inducibility and
used in these studies. UMDI and EMDI cells were derived from
U2-0OS and ES-2 cells, respectively, after stable transfection
with plasmid pC,-F,1E that contains a fusion of the MRK ORF
with the binding domain of a FKBP12 drug derivative separated
by the following hinge sequence: TCTAGAATTTCCGGTGG-
TGGTGGTGGAGGTGGTGGTGGTGGAGGAGGAGGTG-
GTGGTGGAATTACTAGT (the underlined sequences are the
restriction sites used in cloning). The pC,-F 1E plasmid is part
of the ARGENT-regulated homodimerization kit, now avail-
able from Clontech as the Idimerize System. The resulting con-
struct expresses the MRK protein that is activated upon treat-
ment with the dimerizing drug AP20187, or upon stimulation
with physiological stimuli like LPA. Transfections of plasmids
or siRNAs were performed using Lipofectamine 2000 (Invitro-
gen) as previously described (41). Transfections of siRNAs were
done using 20 pmol of the siRNA oligos and 2 ul of Lipo-
fectamine 2000 per well of a 6-well plate.

All siRNA duplexes were supplied by Dharmacon (Thermo
Fisher Scientific). Specific oligonucleotides for each target gene
were as follows: 5'-GAAUGUCUGAGGAGUCUUA-3" (M1)
targeting MRK; 5'-AUGGAAAGCAGGUAGAGUU-3" (Al)
and 5'-GCAGAGAUAUGGCAAACAG-3' (A2) targeting RhoA;
5'-GGAGAGAGCUGGCCAAGAU-3' (C1) and 5'-GAACU-
AUAUUGCGGACAUU-3’ (C2) targeting RhoC; and 5'-CGU-
ACGCGGAAUACUUCGA-3' luciferase siRNA as control.

Western Blot Analysis—Cells were lysed for 30 min in NETN
lysis buffer (50 mm Tris/HCl pH 7.5, 150 mm NaCl, 1 mm
EDTA, 1% Nonidet P-40, 2 mm DTT, 1 mm Na,OVO,, 1 mm
B-glycerophosphate, 5 mm NaFl, supplemented with protease
inhibitors (Roche and Benzonase (Novagen). Proteins were
resolved on 10% NuPAGE gels (Invitrogen).

Antibodies—The MRK antibodies 4-23 (monoclonal), 40-5
(polyclonal), and phosphospecific antibody were previously
described (38, 41). The Ga13 antibody, the monoclonal RhoA
antibody (sc-418), the goat RhoC polyclonal antibody (sc-
12116) and the ROCKII antibody were from Santa Cruz Bio-
technology. The tubulin and Rac antibodies were from Upstate
(Millipore). The P-ERK, P-p38, and P-MLC antibodies were
from Cell Signaling. The vinculin antibody was from Sigma.
The Myc tag antibody was from Roche and the KT3-tag anti-
body was from Bethyl.

Rho Pull-down Assay—Rho proteins were expressed as GST-
fusions in Escherichia coli, purified and loaded with GDP or
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GTP~S as described in Self and Hall (42). Nucleotide-loaded
proteins were incubated with purified MRK or ROCKIL, immo-
bilized onto beads as immunoprecipitates from serum-starved
cells. Protein complexes were washed and resolved on
SDS-PAGE.

Rho Activation Assay—Rho GTPase activity was measured
using the EZ-Detect Rho Activation kit from Pierce, using 1 mg
of protein lysate.

Cell Motility Assay—Cell motility was measured with the
wound-healing assay as previously described in Valster et al.
(43).

Matrigel Invasion Assay—Invasion was assayed using Matri-
gel Invasion Chambers (Becton Dickinson). Cells were trans-
fected with the appropriate siRNAs. Twenty-four hours post-
transfection, they were starved from serum overnight. Then,
they were trypsinized; trypsin was neutralized by trypsin inhib-
itor, and 3 X 10 cells were placed in the top chamber in serum-
free media supplemented with 0.1% fatty acid-free BSA. LPA
(50 uMm) in serum-free media containing BSA was added to the
bottom chamber. After 24 h of incubation at 37 °C, cells on the
top surface of the filter were wiped off with a Q-tip, and
the filter was fixed in 4% formaldehyde/PBS. After staining with
Crystal Violet, all of the cells on the bottom of the chamber
were counted using an IX70 Olympus inverted microscope.

Immunofluorescence— 40,000 cells were plated onto cover-
slips, and 24 h later they were fixed with 4% formaldehyde and
processed for immunofluorescence with vinculin antibodies as
previously described (44). Phalloidin was used to stain the actin
cytoskeleton. Images were collected using an IX70 Olympus
inverted microscope equipped with a X60 (1.4 numerical aper-
ture) objective, an Orca II cooled charge coupled device (CCD)
camera (Hamatsu) and ESee (Inovision) image analysis
software.

RESULTS

Lysophosphatidic Acid Activates MRK—To identify extracel-
lular signals that activate MRK, we tested several growth factors
that included epidermal growth factor (EGF), transforming
growth factor B (TGEP), and lysophosphatidic acid (LPA). We
determined MRK activity by detecting its autophosphorylation,
which we have shown previously to be essential for its activity
(38, 41). Because of the low affinity of the MRK phospho-spe-
cific antibody, whenever we have examined MRK activity in this
study we have used a derivative of the osteosarcoma cells
U2-0S (termed UMDI) or a similar derivative of the ovarian
cancer cell line ES-2 (EMDI). These cells are stably transfected
with a fusion protein of MRK and the drug-binding domain of a
FKBP12 derivative (45), which enables forced dimerization in
the presence of the homodimerizing drug AP20187. In the
absence of the drug, however, the fusion MRK protein is not
active, although it can be activated by stimuli like osmotic shock
(data not shown). Thus, for this experiment we used the UMDI
cells in the absence of the dimerizing drug. We observed that
MRK was readily activated by LPA, but not by TGF-f or EGF
(Fig. 1A). To confirm that this response was not affected by the
fusion with the drug-binding domain, we also examined
another derivative of U2-OS cells (termed M28) that expresses
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FIGURE 1. MRK is activated by LPA, Ga13 and Rho proteins. A, UMDI cells,
expressing recombinant MRK fused to a drug-binding domain of FKBP12,
were treated for 5 min with the following growth factors: 25 um LPA, 10 ng/ml
TGF-B1, and 50 pg/ml EGF, or left untreated (—). Cell lysates were tested by
Western blotting for MRK activation using the P-MRK specific antibody. The
P-ERK antibody was used to test for cellular stimulation by the growth factors.
B, M28 cells that express KT3-tagged MRK after treatment with doxycyclin,
were stimulated with LPA for the indicated times and tested for MRK activa-
tion as in A. Blots were scanned and the band intensities were quantified
using ImageJ. Histograms are the means + S.E. of three independent exper-
iments. C, M28 cells were transfected with vector control, Rac-V12, RhoA-L63,
or Ga13-QL constructs. Forty-eight hours later they were treated overnight
with doxycyclin (Dox) to induce expression of KT3-MRK and then tested for
MRK activity by Western blotting with the P-MRK specific antibody. D, UMDI
cells were transfected with the indicated DNA plasmids, 48 h later cells were
harvested and tested for MRK activity as in C.

Tubulin - |-————|

recombinant wild type MRK and found that in these cells LPA
also activates MRK (Fig. 1B).

MRK Is Activated by Gal3, RhoA, and RhoC—LPA is known
to signal via heterotrimeric G-protein-coupled receptors and
Rho GTPases (26, 27). We, therefore, asked whether constitu-
tively active forms of Gal3, Racl, and RhoA could activate
MRK. Constitutive activation of Cdc42 was toxic to the M28
cells and therefore could not be evaluated. M28 cells were
transfected with control, Rac1-V12, RhoA-L63, or Gal3-QL
plasmids and treated overnight with doxycyclin to induce
recombinant MRK expression. Subsequently, cell lysates were
analyzed by Western blotting to detect active MRK. Fig. 1C
shows that expression of either RhoA-L63 or Gal3-QL
induced MRK phosphorylation. Interestingly, activation of
MRK was accompanied by an increase in MRK protein levels,
suggesting the existence of a positive feedback loop that con-
trols MRK protein levels. We obtained similar results in UMDI
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FIGURE 2. MRK interacts with Rho proteins in vitro. KT3-MRK was immuno-
precipitated with KT3 antibodies from M28 cells grown in serum-free medium
and incubated in vitro with purified RhoC or RhoA proteins loaded with GDP
or GTP-vS. ROCKII protein was used as a positive control for RhoC-binding.
Rho proteins were detected using the X-Press antibody that recognizes their
tag.

cells, where we observed that, in addition to active Ga13, both
active RhoA and RhoC can activate MRK (Fig. 1D).

MRK Binds to Both RhoA and RhoC in Vitro—Next, we asked
whether MRK acts as an effector of RhoA and RhoC. The defi-
nition of a GTPase effector is a protein that selectively binds to
the GTP-bound active form of the GTPase, and mediates at
least some of the functions of this GTPase. To examine whether
MRK directly binds to either RhoA or RhoC, we immunopre-
cipitated KT3-tagged MRK from serum starved M28 cells and
incubated it with purified RhoA or RhoC proteins that had been
loaded with either GDP or GTP+S. As a positive control for the
quality of the Rho proteins, we used ROCKII, which was
reported to bind to RhoC (46). Fig. 2 shows that MRK binds to
the GTP-bound forms of both RhoA and RhoC, and to a lesser
extent to the GDP-bound form of these GTPases, suggesting a
role for MRK as an effector of RhoA and RhoC.

Both RhoA and RhoC Contribute to Gal3-QL as Well as to
LPA-stimulated Activation of MRK—To examine whether
MRK functions downstream of RhoA or RhoC, we used
siRNA-mediated depletion of the Rho proteins in M28 cells
transfected with Ga13-QL. Fig. 3 shows that RhoC depletion
strongly inhibits MRK activation stimulated by active Ga13,
while RhoA depletion partially reduces it. To confirm this result
in a more physiological context, we measured MRK activation
levels in response to LPA in UMDI cells transfected with RhoA-
or RhoC-specific siRNAs.

To date, RhoC has not been implicated in LPA-induced sig-
naling. To verify that LPA stimulates RhoC activity, we per-
formed a rhotekin pull-down assay in U2-OS cells. Fig. 44
shows that RhoC is significantly activated by LPA in a time-de-
pendent fashion, albeit to a lesser extent than RhoA. RhoC acti-
vation by LPA was also observed in EMDI cells, a derivative of
the ES-2 cells that also express the homodimerizing MRK
fusion protein (Fig. 4B).

UMDI cells were starved overnight and subsequently stimu-
lated with LPA for 5 min. MRK activation was determined using
the phospho-MRK antibody. Quantification of the phospho-
MRK signal indicated that depletion of RhoA did not affect
LPA-stimulated MRK activity, although it increased the basal
activity of MRK. In contrast, depletion of RhoC strongly inhib-
ited LPA-stimulated MRK activation (Fig. 4C).

We also extended our observations to the EMDI cells, which
demonstrated a strong LPA-dependent activation of MRK.
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FIGURE 3. Rho proteins are necessary for Ga13-QL-induced stimulation of MRK activation. M28 cells were co-transfected with vector control or Ga13-QL
plasmids and either RhoA, RhoC, or luciferase (L) siRNAs. After 24 h they were treated with doxycyclin for 18 h to induce MRK expression and then harvested.
Whole cell extracts were probed with the indicated antibodies. Two different siRNAs targeting RhoA and RhoC were tested. Histograms are means + S.E. of five

independent experiments.

However, in these cells, LPA-stimulated MRK activation was
dependent on both Rho proteins (Fig. 4D). The EMDI cells also
showed an increase in basal MRK activity upon depletion of
RhoA.

We note that in some cell types, depletion of RhoA has been
shown to cause up-regulation of RhoB (24, 47). Thus, in prin-
ciple, RhoB could contribute to MRK activity in RhoA-depleted
EMDI cells. However, we observed that RhoB levels in these
cells are not affected by RhoA down-regulation (data not
shown). In conclusion therefore, both RhoA and RhoC contrib-
ute to MRK activation.

MRK and RhoC Are Necessary for LPA-stimulated Tumor
Cell Invasion—Rho proteins are key regulators of the actin
cytoskeleton and cell migration and invasion. To examine the
role of MRK in the invasive behavior of tumor cells, we used the
ovarian carcinoma cell line ES-2, as the U2-OS cells were poorly
invasive in response to LPA. It also is important to note that
LPA plays an important role in ovarian cancer, controlling both
tumor cell proliferation and invasion (48, 49).

We first tested cell migration using the wound healing assay.
Fig. 5A shows that depletion of MRK inhibits cell migration by
about 40%. Depletion of MRK also strongly inhibited LPA-
stimulated invasion through Matrigel, to an extent that was
similar to that achieved by depleting RhoC (Fig. 5B). In con-
trast, depletion of RhoA resulted in an increase in cell invasion,
as previously reported for other cell types (18, 24). Taken
together, these results suggest that MRK, even though it can be
activated by both RhoA and RhoC, in the context of cell inva-
sion, it functions as an effector of RhoC, rather than RhoA.

To substantiate the role of MRK in tumor cell invasion, we
asked whether activating MRK promotes invasion in ES-2 cells.
To specifically activate MRK, we reasoned that, like other MLK
family members, MRK may homodimerize via its leucine zipper
domain, which would lead to its activation (50, 51). To test this
possibility, we used the EMDI cells in which MRK was activated
by the homodimerizing drug AP20187. We showed that the
EMDI cells expressing the activatable MRK construct have a
low level of MRK activation in the absence of the AP20187
dimerizing drug, but a high level of activation in response to the
drug (Fig. 5C, left panel).

We then examined the invasiveness of these cells in the pres-
ence or absence of AP20187. In the absence of LPA, we did not
observe any significant increase in cell invasion upon addition
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of AP20187 (data not shown). However, in the presence of rel-
atively low levels of LPA (1 um), AP20187 induced a significant
increase in cell invasion (Fig. 5C, right panel). No effect of the
drug was detected in the parental ES-2 cells (data not shown).

Down-regulation of MRK or RhoC Impairs LPA-stimulated
Activation of ERK and p38—We and others have shown that
overexpression of MRK leads to activation of ERK and p38
MAP kinases (38, 39). To examine the role of MRK in LPA-
stimulated activation of these MAP kinases, we silenced MRK
in U2-OS cells and determined the activation levels of ERK and
p38 using their respective phospho-specific antibodies. We
showed that MRK depletion decreased the activity of these
MAP kinases by 50 to 60%, confirming the role of MRK in the
regulation of these MAP kinase pathways (Fig. 6, A and B).
RhoC depletion also reduced ERK and p38 activity in response
to LPA (Fig. 6C). In contrast, depletion of RhoA did not signif-
icantly change the activity of these proteins after LPA treat-
ment, although it clearly caused an increase in their basal level
(Fig. 6C).

The ERK and p38 MAP Kinases Are Necessary for Ovarian
Cancer Cell Invasion—Both the ERK and p38 MAP kinase path-
ways have been implicated in the invasive behavior of a number
of tumor cell types, including ovarian cancer cells (52-55). To
confirm the role of these pathways in ES-2 cells, we used U0126
and SB203580, inhibitors that specifically block the respective
pathways, in the context of LPA-stimulated invasion. Fig. 6, D
and E show that the ERK and p38 MAP kinase pathways are
both essential for ES-2 cell invasion. These results support the
notion that MRK controls cell invasion downstream of RhoC at
least in part by stimulating both the ERK and p38 MAP kinase
pathways.

MRK and RhoC Are Necessary for Down-regulation of Myosin
Activity—A major signaling event downstream of Rho proteins
is myosin light chain phosphorylation which controls actomy-
osin contractility (56). We therefore also investigated the role of
MRK in the regulation of myosin light chain phosphorylation in
response to LPA. ES-2 cells were transfected with control or
MRK-specific siRNAs and the phosphorylation state of myosin
light chain (pMLC) was determined after short and long term
stimulation with LPA. Fig. 7A shows that, although the pMLC
level at 5 min was not affected by MRK depletion, the pMLC
level remained relatively high after 60 min, whereas in control
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down-regulation. LPA stimulates activation of RhoA and RhoC proteins. U20S
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then tested for activation of Rho proteins using pull-down assay with GST-
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trol luciferase, RhoC or RhoA targeting siRNAs and then treated with 25 um LPA
for 5 min. Cell lysates were immunoblotted with the pMRK specific antibody to
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bands were quantified with ImageJ. Histograms are means + S.E. of three inde-
pendent experiments. p values representing Student’s t test were *, p < 0.05;
* p < 0.01;** p < 0.005; *** p < 0,001,

cells it was almost back to basal levels. This result suggests that

MRK may be important for down-regulating myosin activity.
Next, we determined the effects of depleting RhoA and RhoC

on myosin phosphorylation. As expected, RhoA depletion
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strongly inhibited myosin phosphorylation (Fig. 7B). Interest-
ingly, however, we found that depleting RhoC had an effect that
was very similar to that of depleting MRK: there was no effect
on short term phosphorylation of myosin, but it remained ele-
vated at 60 min.

To confirm the role of MRK in down-regulating myosin
phosphorylation, we treated EMDI cells, or their vector control
counterpart, with LPA and monitored the effects of specific
activation of MRK by induced homodimerization on the levels
of pMLC. Fig. 8 shows that the pMRK levels stimulated by LPA
in the absence of the homodimerizing drug (lane 5) were fur-
ther increased by the AP drug after 30 min of stimulation. Coin-
cident with this increase in MRK activation, LPA-stimulated
activation of ERK and p38 increased, as expected, but LPA-
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stimulated pMLC levels were reduced, although pMLC levels
began to recover at 60 min. These results demonstrate that
MRK is necessary for the down-regulation of myosin activity, a
function that is shared with RhoC, but not RhoA, further sup-
porting that MRK functions as an effector of RhoC.

Sustained activation of myosin is expected to result in an
increase of focal adhesions and stress fibers (56). To examine
this, ES-2 cells were transfected with the respective siRNAs,
fixed, and stained with phalloidin to monitor polymerized
actin, or vinculin to visualize focal adhesions. Fig. 9 shows that,
as previously reported by Vega et al. (24), depletion of RhoA
and RhoC have strikingly different effects on cell morphologies:
RhoA-depleted cells are elongated, whereas depletion of RhoC
causes an increase in cell spreading. Quantification of focal
adhesion length and numbers indicated that, whereas RhoA-
depleted cells had fewer and shorter focal adhesions compared
with controls, they were longer and more numerous in the
RhoC- or MRK-depleted cells. Quantification of cell spreading
showed about a 20% reduction after depletion of RhoA, in con-
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trast toa ~50% increase after depletion of either RhoC or MRK.
Similar phenotypes were observed in U2-OS cells (data not
shown). Thus, taken together, these results are in line with our
observations that RhoC and MRK, in contrast with RhoA, pro-
mote MLC deactivation.

DISCUSSION

In this work, we provide evidence that MRK functions down-
stream of RhoC in the control of tumor cell invasion. In addi-
tion, our observations indicate that MRK-regulated invasion is
mediated at least in part by activation of the ERK and p38 MAP
kinase proteins and inactivation of myosin light chain.

Consistent with the paradigm that MAP3Ks can function as
effectors of Rho family GTPases (34, 57, 58), this study shows
that MRK interacts both with RhoA and RhoC in vitro. In addi-
tion, we found that both RhoA and RhoC can contribute to
LPA-stimulated activation of MRK. Interestingly, however, our
mechanistic analysis of cell invasion shows that depletion of
MRK phenocopies depletion of RhoC, in contrast to that of
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RhoA. Taken together, these findings establish MRK as a novel
effector of RhoC in the control of tumor cell invasion.

For a considerable time, the closely related RhoA and RhoC
proteins have been assumed to perform similar functions in the
context of regulation of the actin cytoskeleton and in the pro-
cess of cell invasion (59). However, there is now accumulating
evidence that RhoA and RhoC play distinct roles in these pro-
cesses (18,23, 24, 60). In addition, members of the FMNL family
have been shown to specifically bind to RhoC and act as effec-
tors of this GTPase (23, 24). Thus, MRK joins a list of RhoC
effectors that can differentially mediate functions that are con-
trolled by RhoC versus RhoA.
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A potential mechanism for selective signaling through the
RhoC-MRK axis could be the formation of scaffold-mediated
signaling complexes that also include Rho GEFs (34, 58, 61). It
remains to be seen whether MRK also can mediate biological
functions that are specifically regulated by RhoA.

The role of RhoC in the regulation of MLC phosphorylation
has not been previously investigated. Rho subfamily proteins
are thought to control myosin activity by binding to and acti-
vating ROCK kinases, which in turn phosphorylate both myo-
sin light chain and myosin light chain phosphatase, thereby
inhibiting its phosphatase activity (56, 62—64). Notably how-
ever, recent findings remain equivocal as to whether ROCKs
are predominantly controlled by RhoA or RhoC (24, 60). Inter-
estingly, our observations that, unlike depletion of RhoA,
depletion of RhoC did not affect initial LPA-stimulated MLC
phosphorylation, but retarded its down-regulation, strongly
suggest that RhoA and RhoC have opposite roles in the regula-
tion of myosin activity: whereas RhoA stimulates myosin activ-
ity, RhoC contributes to myosin dynamics by inhibiting its
activity. These findings are in line with observations in prostate
cancer cells that RhoA, rather than RhoC, controls ROCK pro-
teins in the regulation of cell morphology and migration (24).

Our observation that depletion of MRK, similar to depletion
of RhoC, causes sustained MLC phosphorylation, strongly sug-
gests that MRK mediates the inhibitory effect of RhoC on myo-
sin activation, in line with the notion that MRK acts as an effec-
tor of RhoC. How MRK inhibits MLC phosphorylation remains
to be elucidated. One possible mechanism is that MRK could
activate MYPT1, the myosin phosphatase. This is in line with
the finding that depletion of MYPT]1, like depletion of RhoC
and MRK, causes excess formation of stress fibers and focal
adhesions and inhibits cell migration (65). The inhibitory roles
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of RhoC and MRK on MLC phosphorylation highlight the
essential role of dynamic regulation of myosin in the process of
cell migration that requires rapid reorganization of the actin
cytoskeleton (66).

Rho subfamily proteins have already been implicated in the
activation of p38 (36). To our knowledge however, our obser-
vations are the first showing a role for RhoC, but not RhoA, in
ERK activation. Our results also suggest that RhoC-mediated
activation of ERK contributes to the role of RhoC in tumor
cell invasion. Whether RhoC-mediated signaling also con-
tributes to additional ERK-regulated functions remains to be
determined.

Our study also connects the motogenic and mitogenic extra-
cellular factor LPA to RhoC and MRK. Contrary to findings in
other cell types (22), we have shown that LPA significantly stim-
ulates RhoC activity in osteosarcoma and ovarian cancer cells,
the two cell lines used in this study. Interestingly, LPA levels
have been found to be elevated in plasma from ovarian cancer
patients and its receptors are aberrantly expressed in several
human cancers (reviewed in Refs. 67). The ecto-enzyme auto-
taxin that produces LPA is also involved in tumor invasion and
metastasis (68). Thus, it is expected that tumors exposed to
high levels of LPA may also have high levels of MRK activity.

The requirement of Rho proteins in cancer cell invasion is
well established (9, 69). In particular, RhoC has emerged as a
key factor in tumor progression in many types of cancer that
include invasive breast carcinoma (5,15), gastric cancer (13),
non small cell lung carcinoma (14), ovarian carcinoma (8), and
esophageal squamous cell carcinoma (70). In addition, RhoC
has been shown to be essential for metastasis in animal models
(10, 11, 12, 72).

The importance of Rho family GTPases as key signaling hubs
in tumorigenesis and metastasis has been recognized since a
long time (1, 73). However, despite extensive drug discovery

SN
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efforts, small GTPases have remained extremely difficult to tar-
get (71). Thus, the identification of MRK as a novel effector of
RhoC that mediates the role of RhoC in the regulation of tumor
cell invasion raises the possibility that small molecule inhibitors
of MRK kinase activity may be effective in the treatment of
RhoC-dependent metastatic tumors.

Acknowledgment—We thank Eric Sahai for the gift of the RhoC-V14
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