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Background: Phospholipase C (PLC) isozymes are increasingly attractive therapeutic targets; however, pharmacological
modulators are lacking.
Results: A facile fluorescent high-throughput screen was developed and used to identify small molecule inhibitors of PLC
activity.
Conclusion: The new assay is robust and suitable for the rapid discovery of novel PLC modulators.
Significance:This newmethodology eliminates themajor roadblock hampering the discovery of smallmolecule PLC inhibitors.

Phospholipase C (PLC) isozymes are important signaling
molecules, but few small molecule modulators are available to
pharmacologically regulate their function. With the goal of
developing a general approach for identification of novel PLC
inhibitors, we developed a high-throughput assay based on the
fluorogenic substrate reporter WH-15. The assay is highly sen-
sitive and reproducible: screening a chemical library of 6280
compounds identified three novel PLC inhibitors that exhibited
potent activities in two separate assay formatswith purifiedPLC
isozymes in vitro. Two of the three inhibitors also inhibited G
protein-coupled receptor-stimulated PLC activity in intact cell
systems. These results demonstrate the power of the high-
throughput assay for screening large collections of small mole-
cules to identify novel PLC modulators. Potent and selective
modulators of PLCs will ultimately be useful for dissecting the
roles of PLCs in cellular processes, as well as provide lead com-
pounds for the development of drugs to treat diseases arising
from aberrant phospholipase activity.

Extracellular stimuli, including hormones, growth factors,
and neurotransmitters, promote activation of phospholipase C
(PLC)2 isozymes and cleavage of the membrane lipid phos-
phatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into the clas-
sical second messengers, diacylglycerol and inositol 1,4,5-tris-
phosphate (1). These second messengers coordinately control
numerous signaling cascades through themobilization of intra-
cellular Ca2� stores and the activation of protein kinase C.
Aberrant regulation of PLCs contributes to diverse human dis-
eases such as cancer (2–4), cardiovascular diseases (5, 6), and
neuropathic pain (7). Consequently, small molecule PLC inhib-

itors will be valuable pharmacological tools to dissect the roles
of PLCs in development and disease and could potentially serve
as candidates for drug development.
Few small molecule PLC inhibitors have been reported,

amongwhichU73122 is themostwidely used agent (8, 9).How-
ever, U73122 has been reported to have pleiotropic effects on
cellular processes. Because most experiments with U73122
monitored events secondary to activation of PLCs, e.g. intracel-
lular calcium release, it seems increasingly likely that U73122
does not faithfully report direct inhibition of these isozymes.
For example, it was shown that U73122 prevented calcium
release by directly inhibiting various Ca2� pumps (10–13). In
addition, the maleimide group within U73122 makes it highly
reactive such that most U73122 modifies membrane compo-
nents and does not enter cells (14). Internalized U73122 reacts
with and inhibits a variety of unrelated enzymes, including key
enzymes regulating lipid metabolism: phosphatidylinositol-4-
phosphate kinase and 5-lipoxygenase (15, 16). U73122 has also
been reported to sequester the PLC substrate PtdIns(4,5)P2 (17)
and even activate the phospholipase activity of purified PLCs
(18). Thus, U73122 is a singularly poor reagent to probe signal-
ing by PLC isozymes. Similarly, small peptides previously used
to inhibit PLC enzymes also suffer from indirect effects, as well
as from limited bioavailability. Thus, there is overwhelming evi-
dence that the current repertoire of small molecules used to
inhibit PLCs do so indirectly and can generate effects that are
mistakenly attributed to PLCs. Clearly, a substantial need exists
to develop small molecules that directly and selectively modu-
late PLC isozymes.
Current assays of the phospholipase activity of PLCs rely

upon quantification of radioactive inositol phosphates derived
from the hydrolysis of radiolabeled PtdIns(4,5)P2. These assays
are not readily amenable to high-throughput screens. Although
several fluorogenic reporters have been tested to monitor con-
tinuously the phospholipase activity of PLCs, they have signif-
icant drawbacks, including limited applicability, availability,
and reproducibility. For example, fluorescent substrates typi-
cally used to study bacterial PLCs are expected to be poorly
hydrolyzed by mammalian PLCs (19–23), which have more
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stringent substrate requirements, including an absolute need
for a 4�-phosphate on the inositol ring (24) that is absent from
these compounds and some more recently described reporters
(25). A second-generation fluorescein derivative of phosphati-
dylinositol 4-phosphate has been reported to be a fluorescent
substrate of PLC�1 (26); however, it is not commercially avail-
able and has not been used in subsequent reports to monitor
mammalian PLC activity. Furthermore, this compound is likely
to be a poor substrate for mammalian PLCs because it lacks an
acyl chain shown to be necessary for efficient hydrolysis by
these enzymes (27), a common flaw for most fluorescent sub-
strates reported for mammalian PLCs. More recently, PLC�1
was shown to efficiently hydrolyze phosphorothiolate ana-
logues of PtdIns(4,5)P2 (28). However, product detection
requires a coupled secondary assay that would introduce
unnecessary artifacts during high-throughput screens.
We recently developedWH-15, a robust fluorescent reporter

useful for directly monitoring the phospholipase activity of
mammalian PLCs (29). Here, we used WH-15 to develop a

high-throughput PLC assay and verified its utility by identifying
three new PLC inhibitors.

EXPERIMENTAL PROCEDURES

Screening of the LOPAC1280 Collection—Chemical com-
pounds (1 mM in 1 �l of dimethyl sulfoxide (DMSO)) were
added to assay buffer (19�l) containing 50mMHEPES (pH 7.2),
70 mM KCl, 3 mM CaCl2, 3 mM EGTA, 2 mM DTT, and 0.04
mg/ml fatty acid-free BSA. The resulting stock solutions (2 �l)
were then added to each well of a PerkinElmer ProxiPlateTM-
384 Plus F black plate that contained purified PLC�1 (4 ng) in
assay buffer (4�l). Themixture was incubated at room temper-
ature for 10 min, and the fluorogenic reporter WH-15 (30 �M)
in assay buffer (4 �l) was added to initiate the reaction. After
incubation at room temperature for 1 h, 5 �l of stop solution
(0.2 M EGTA in H2O (pH 10.2)) was added, and fluorescence
was recorded on a PerkinElmerWallac EnVision 2103 multila-
bel reader with an excitation wavelength of 355 nm (bandwidth

FIGURE 1. High-throughput screen for small molecule PLC inhibitors. A, fluorescence-based high-throughput assay of PLC activity. Upon PLC action, WH-15
is cleaved to inositol 1,4,5-trisphosphate (IP3), a quinomethide derivative, and 6-aminoquinoline. When excited at 355 nm and detected at 535 nm, WH-15
is non-fluorescent, whereas 6-aminoquinoline is highly fluorescent. B, scatter plot of fluorescence changes after incubation of PLC�1 and WH-15 with
individual compounds of the LOPAC1280 collection. The Z�-factor for the screen is 0.81, with a hit rate of 0.23% for �50% inhibition relative to DMSO.
C, screen reproducibility. The correlation coefficient for two parallel screens of the LOPAC1280 library is 0.98. D, chemical structures of representative
hits.
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of 10 nm) and an emissionwavelength of 535 nm (bandwidth of
10 nm).
Quantification of PLC Inhibition in the Fluorescence-based

Assay—Similar to the procedure described above, 2 �l of small
molecule inhibitors (10 mM) in DMSO were diluted with assay
buffer (78 �l) to make 250 �M stock solutions, which were sub-
sequently serially diluted at a 1:3 ratio with assay buffer con-
taining 2.5% DMSO. Inhibitors (4 �l) at the indicated concen-
trations were incubated with PLC�1 (0.5 ng) in assay buffer (2
�l) in a PerkinElmer ProxiPlateTM-384 Plus F black plate at
room temperature for 15 min before WH-15 (30 �M, 4 �l) was
added to initiate the reaction. The final assay mixtures con-
tained various concentrations of inhibitors (100, 33.3, 11.1,
3.70, 1.23, 0.411, 0.137, 0.046, 0.015, or 0.005 �M), PLC�1 (0.5
ng), WH-15 (12 �M), 1% DMSO, HEPES (50 mM, pH 7.2), KCl
(70 mM), CaCl2 (3 mM), EGTA (3 mM), DTT (2 mM), cholate
(0.5%), and fatty acid-free BSA (0.1 mg/ml). DMSO was used
instead of inhibitors as a control. Fluorescence was recorded
every 5 min as described above, and phospholipase activity was
quantified as the ratio of fluorescence intensity in the presence
and absence (DMSO only) of inhibitor.
Quantification of Phospholipase Activity of Purified PLC

Enzymes—Detergent mixed micelles containing 50 �M

PtdIns(4,5)P2 and �10,000 cpm of [3H]PtdIns(4,5)P2 per assay
were generated by combining lipids in a borosilicate glass tube
and drying under a stream of nitrogen. The dried lipids were
resuspended by sonication in assay buffer, and assays were ini-
tiated by the addition of PLC dissolved in assay buffer. Activity
assays were run for 10 min in 60 �l and stopped with trichloro-
acetic acid (200 �l) and 10 mg/ml BSA (100 �l). The reactions
were centrifuged at 5000 � g for 10 min, and the supernatant
containing soluble [3H]inositol 1,4,5-trisphosphate was mea-
sured by scintillation counting.

Quantification of [3H]Inositol Phosphate Accumulation in
Cells—HEK293A cells were maintained in high-glucose
DMEM containing 10% FBS, 100 units/ml penicillin, and 100
�g/ml streptomycin at 37 °C in an atmosphere of 95% air and
5% CO2. Forty-eight hours prior to measurements, cells were
seeded at a density of �20,000 cells/well into a 96-well culture
dish coated with 0.01% poly-L-lysine. The culture medium was
changed to inositol-free DMEM containing 1 �Ci/well myo-
[2-3H]inositol (American Radiolabeled Chemicals) �24 h after
plating, and metabolic labeling was allowed to proceed for
12–18 h. One hour prior to measurements, the medium was
changed to 20 mM HEPES-buffered Hanks’ balanced salt solu-
tion with various concentrations of the PLC inhibitors. After
1 h, cells were challenged with 25 �l of a 5-fold solution of
carbachol in 20mMHEPES (pH 7.2) containing LiCl (50mM) at
37 °C for 30 min. Incubations were terminated by aspiration of
the medium and addition of ice-cold formic acid (50 mM), fol-
lowed by neutralization with NH4OH (150 mM) after cell lysis.
[3H]Inositol phosphates were isolated and quantified using
Dowex chromatography. Experiments using 1321N1 human
astrocytoma cells stably expressing the human P2Y6 receptor
were carried out similarly, except the cells were maintained
with 5% fetal bovine serum, and uridine diphosphate (100 �M)
was used as the agonist.
cAMP Accumulation and Quantification of ATP Levels—

cAMP accumulation in P2Y6-1321N1 cells was quantified as
described previously (30). Briefly, cells in 24-well plates were
preincubated with [3H]adenine (1 �Ci) for 2 h in serum-free
DMEM. This medium was then aspirated, and various concen-
trations of aurintricarboxylic acid (ATA), 3013, or 3017 were
added in 25mMHEPES-bufferedHanks’ balanced salt solution.
After a 30-min incubation at 37 °C, a solution of 200 �M

3-isobutyl-1-methylxanthine, 10 �M forskolin, and 10 �M iso-

FIGURE 2. Concentration-dependent inhibition of phospholipase activity of PLC�1 by inhibitors. A, plot of PLC activity in the presence of increasing
concentrations of ATA, 3013, or 3017 in the fluorescence-based assays. Purified full-length PLC�1 was incubated with inhibitors at the indicated concentrations
for 15 min before WH-15 was added to initiate the enzymatic reactions. Phospholipase activity was calculated as described under “Experimental Procedures.”
The experiments were carried out in triplicate. Error bars are S.D. B, plot of PLC activity in the presence of increasing concentrations of ATA, 3013, or 3017 in the
radioactivity-based assays. Purified full-length PLC�1 was incubated with inhibitors at the indicated concentrations for 15 min before [3H]PtdIns(4,5)P2 was
added to initiate the enzymatic reactions. Phospholipase activity was calculated as described under “Experimental Procedures.” The experiments were carried
out in triplicate. Error bars are S.D. C, The IC50 values for ATA, 3013, and 3017.
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proterenol was added, and the incubation was continued for an
additional 15 min. Incubations were terminated by aspiration
of the medium and addition of 5% trichloroacetic acid.
[3H]cAMPwas isolated by sequentialDowex and alumina chro-
matography and quantified by liquid scintillation counting as
described previously (31). [3H]ATP was isolated by Dowex
chromatography and quantified by liquid scintillation counting
as described previously (32).
Thermal Shift Assay—Melting temperatures were deter-

mined bymonitoring binding of the dye SYPROOrange (Invit-
rogen) to versions of PLC�1 during thermal denaturation.
PLC�1 (1 �M) or PLC�1(E341A) (1 �M) was incubated with
ATA in buffer containing 100mMHEPES (pH 7.5), 70 mMKCl,
3 mM EGTA, 10 mM CaCl2, 2 mM DTT, 1% (v/v) DMSO, and
1:1000 SYPRO Orange. To determine melting temperatures in
the absence of Ca2�, the buffer consisted of 100mMHEPES (pH
7.5), 70mMKCl, 10mMEGTA, 2mMDTT, 1% (v/v)DMSO, and
1:1000 SYPRO Orange. All reactions were performed in tripli-
cate in a volume of 20 �l in 384-well PCR plates (Genesee Sci-
entific). Fluorescence was monitored with an Applied Biosys-
tems 7900HT fast real-time PCR system, using the filter sets for
NEDTM, as the temperature was increased from 25 to 95 °C at a
ramp rate of 3%.

RESULTS AND DISCUSSION

Assay Development and Pilot Screen—The hydrolysis of
WH-15 by PLC isozymes generates up to a 20-fold increase in
fluorescence. Thus, we determined whether WH-15 and
PLC�1 could be used to implement a prototype assay suitable
for high-throughput screens using 384-well microtiter plates
(Fig. 1A). Several parameters were assessed, including (i) order
of reagent addition; (ii) concentrations of WH-15, DMSO, and
PLC�1; (iii) reaction time; and (iv) potential stop conditions.
For instance, the capacity of PLC�1 to hydrolyzeWH-15 was

unaffected by up to 5%DMSO (data not shown), indicating that
residual DMSO in the final assay conditions and carried over
from the compound stocks will not affect assay performance.
Furthermore, the hydrolysis of 10�MWH-15 by as little as 4 ng
of wild-type PLC�1 was sufficient to generate an �15-fold
increase in fluorescence over the course of 1 h (data not shown).
In contrast, in the absence of PLC�1 or in the presence of a
catalytically inactive form (E341A) of the isozyme, no increase
in fluorescence occurred over the same time. WH-15 is stable
for up to 24 h at room temperature over a pH range of 7–10
(data not shown). Differences in fluorescence upon incubation
of WH-15 with either wild-type or catalytically inactive PLC�1
in multiple wells of a 384-well microtiter plate were used to
calculate an initialZ�-factor of 0.9, indicating that this format is
highly reproducible for high-throughput screening (data not
shown). Because PLC�1, PLC�2, and PLC�1 hydrolyzeWH-15
with similar rates (29), we expect this assay format to be appli-
cable to all PLC isozymes with only minor variations. Finally,
the addition of EGTA at a final concentration of 60 mM com-
pletely terminated the phospholipase activity of PLC�1, pre-
sumably through chelation with Ca2� normally required with
the catalytic site. Efficient termination of reaction conditions
provides for flexibility in plate handling.

Using the optimized assay conditions, we screened in dupli-
cate the 1280 compounds composing the Library of Pharmaco-
logically Active Compounds LOPAC1280 (Fig. 1B). Two
microliters of a 50 �M stock of each compound was incubated
with 4 ng of PLC (4 �l) for 10 min prior to incubation with 10
�M WH-15 in a final volume of 10 �l. The correlation coeffi-
cient for the parallel runs was 0.98, with an average Z�-factor of
0.81 for all plates (DMSO versus EGTA) (Fig. 1C). The hit rate
was 0.23% for compounds (10 �M) exhibiting �50% inhibition
relative to identical reactions containing DMSO alone.
Although this format exhibits excellent characteristics for a
high-throughput screen, we noted identification of a dispro-
portionate number of putative activators relative to inhibitors
of PLC�1 (Fig. 1B). The majority of these putative activators
most likely represent false hits due to high intrinsic fluores-
cence. This contention was confirmed by incorporating a sec-
ondary counterscreen using catalytically inactive PLC�1. Over-
all, the high signal-to-noise ratio and reproducibility of the
assay should ensure the successful identification of both activa-
tors and inhibitors of PLCs.

FIGURE 3. Inhibitory effects of ATA, 3013, and 3017 on different PLC iso-
forms. The phospholipase activities of purified PLC�1, PLC�1, and PLC�3 in
the presence of increasing concentrations of ATA (A), 3013 (B), or 3017 (C)
were measured and plotted as described in the legend to Fig. 2.
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As an interesting aside, U73122, which is included in
LOPAC1280 and iswidely accepted as an inhibitor of PLCs, was
not flagged as an inhibitor of PLC�1 in this screen. This result
is consistent with literature reports showing that U73122 does
not inhibit a panel of PLCs, including PLC�1 (18). The success
of the pilot screen prompted us also to screen an in-house col-
lection of 5000 compounds with diverse scaffolds. The three
most promising hit compounds from both screens (Fig. 1D)
inhibited�80%of the phospholipase activity of PLC�1 at 10�M

and were further assessed for inhibitory potential in additional
complementary assays.
Inhibitory Profiles of Hit Compounds with Purified Enzymes—

An unknown fraction of the hits identified from high-through-
put screens are expected to consist of nonspecific modulators.
For instance, a ubiquitous class of “promiscuous” inhibitors
tends to self-aggregate, leading to nonspecific adsorption of
proteins and concomitant inhibition (33–35). The addition of
low amounts (0.01–0.1%, w/v) of various detergents tends to
disrupt these aggregates and prevent nonspecific inhibition
(36). Unfortunately, the addition of detergents also tends to
increase artifacts in high-throughput screens due to increased
difficulties in reproducible liquid handling, such as bubbles and
varying menisci arising from lowered surface tension. In an
effort tominimize potential difficulties in handling the low vol-
umes required for 384-well plates, the high-throughput assays
described above were designed without detergents.
We thus retested the three identified hits (ATA, 3013, and

3017) to generate concentration effect curves for eachmolecule
in the presence of 0.5% cholate. This concentration of cholate is
traditionally used to solubilize PtdIns(4,5)P2 in detergent
mixed micelles for presentation to PLCs and does not di-

minish phospholipase activity relative to the presentation of
PtdIns(4,5)P2 in lipid vesicles (37). Accordingly, the inhibitors
at various concentrations were incubated with PLC�1 in the
presence of 0.5% cholate at room temperature for 15min before
WH-15 was added to initiate the reactions. A plot of the per-
centage modulation of activity as a function of compound con-
centration was used to calculate the potency of each inhibitor
(Fig. 2A). The half-maximal inhibitory concentrations (IC50)
for ATA, 3013, and 3017 were 0.53 � 0.36, 7.3 � 2.1, and 8.0 �
0.3 �M, respectively (Fig. 2C).

The above analyses monitored fluorescence change derived
from hydrolysis ofWH-15 by PLCs. However, compounds that
either are intrinsically fluorescent or affect the fluorescent
properties of WH-15 will likely produce confounding results.
To prevent mistaken interpretations based on monitoring the

FIGURE 4. PLC�1 is stabilized by ATA in thermal shift assay. Shown are plots of the fluorescence changes of PLC�1 (A) and PLC�1(E341A) (B) as the
temperature was increased in the presence or absence of Ca2� (7 mM). With the concentration of Ca2� at 7 mM, the fluorescence changes of PLC�1 (C) and
PLC�1(E341A) (D) as the temperature was increased in the presence of increasing concentrations of ATA were then recorded. The mean Tm was calculated from
a single experiment in which each condition was assayed in triplicate as described under “Experimental Procedures.”

FIGURE 5. Concentration-dependent inhibition of PLC�1 by 3013 at two
different concentrations of PtdIns(4,5)P2. Purified PLC�1 was incubated
with the indicated concentrations of 3013 in the presence of two different
concentrations (16 and 80 �M) of the PtdIns(4,5)P2 substrate. Phospholipase
activity was calculated as described under “Experimental Procedures.”
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fluorescence of WH-15, we also measured the effects of hit
compounds on the enzymatic activity of purified PLC proteins
using [3H]PtdIns(4,5)P2 solubilized in cholate as described in
the literature (Fig. 2B). In this traditional assay, the IC50 values
for ATA, 3013, and 3017 were 0.67 � 0.12, 7.4 � 1.1, and 5.0 �
0.5 �M, respectively (Fig. 2C). Although the slopes of the IC50
plots are slightly different (possibly due to different forms of
presentation of WH-15 and PtdIns(4,5)P2 in mixed micelles),
these values are essentially the same as those obtained from the
fluorescence-based assay, indicating that ATA, 3013, and 3017
are direct inhibitors of PLC isozymes.
Next, we tested whether the inhibitors are selective among

PLC isoforms. Under initial velocity conditions, the concentra-
tion-dependent inhibition of the phospholipase activity of
PLC�1, PLC�1, and PLC�3 by ATA (Fig. 3A), 3013 (Fig. 3B), or
3017 (Fig. 3C) wasmeasured. Each of the three inhibitors exhib-
ited similar effects on the different PLC isoforms, suggesting
that they are general inhibitors of PLCs. These results also are
consistent with the idea (but do not prove) that the inhibitors
bind to the active site because PLC isozymes share a conserved
binding pocket and mechanism of catalysis.
A fluorescence-based thermal shift assay was applied to

confirm that the inhibitors directly bind to PLC�1. Complex
formation of a small molecule with PLC�1 should stabilize
the native state of the protein, leading to enhanced thermal
stability. In the active site of PLCs, Ca2� binds to both the
enzyme and the substrate to facilitate catalysis. Conse-
quently, we used Ca2� as a positive control for the assay.
Indeed, the melting temperature (Tm) (27) of wild-type
PLC�1 was 5 °C higher in the presence of a high concentra-
tion of Ca2� than when Ca2� was depleted (Fig. 4A). In
contrast, the Tm of PLC�1(E341A), a mutant form that is
unable to properly ligate Ca2� in its active site due to a single
mutation, did not change irrespective of the Ca2� concen-
trations (Fig. 4B). Increasing concentrations of ATA were
added, and Tm values were quantified similarly. In the pres-
ence of 50 �M ATA, the Tm of wild-type PLC�1 was

increased by �9 °C (Fig. 4C), whereas that of PLC�1(E341A)
was increased by only �5 °C (Fig. 4D). These results suggest
that ATA directly binds within the active site of PLC�1. The
other two hits, 3013 and 3017, were not sufficiently soluble
under the required solution conditions for the assay.
Finally, concentration-dependent inhibition of phospho-

lipase activity of PLC�1 by 3013 was quantified in experiments
in which different concentrations of PtdIns(4,5)P2 were used
(Fig. 5). The IC50 values of 3013 were 3.7 and 9.1 �M in the
presence of PtdIns(4,5)P2 at 16 and 80 �M, respectively. These
data also are consistent with the idea that 3013 binds in the
lipase active site and inhibits activity at least in part by a com-
petitive mechanism.
Inhibitory Potential of Hit Compounds in Cellular Assays—

One critical feature of a useful chemical probe is its cell perme-
ability and interaction with its molecular target in intact cells.
Consequently, we also assessed the three inhibitors in two cell-
based assays. First, we investigated whether cellular PLCs were
inhibited by ATA, 3013, or 3017 using previously published
protocols to measure phospholipase activity (38, 39). Briefly,
1321N1 human astrocytoma cells stably expressing the UDP-
activated P2Y6 receptor were metabolically prelabeled with
myo-[2-3H]inositol, and UDP-stimulated [3H]inositol phos-
phate accumulation was quantified in the presence of various
concentrations of ATA, 3013, or 3017 (Fig. 6A). Similarly, car-
bachol-stimulated [3H]inositol phosphate accumulation was
quantified in HEK293A cells in the presence of various concen-
trations of inhibitors (Fig. 6B). Both 3013 and 3017 caused
concentration-dependent inhibition of agonist-stimulated
responses in the 1321N1 and HEK293A cell test systems. The
potency of ATA in these assays was lower than that of 3013 or
3017, likely due to low cell permeability.
To rule out the possibility that these molecules cause a non-

specific loss of cell viability, their effect onATP levelswas deter-
mined. Thus, P2Y6-1321N1 cells were preincubated with
[3H]adenine for 2 h, and these metabolically labeled cells were
then incubatedwith 100�MATA, 100�M3013, or 100�M3017

FIGURE 6. Concentration-dependent inhibition of receptor-promoted inositol lipid signaling by ATA, 3013, or 3017. A, P2Y6-1321N1 cells metabolically
prelabeled with [3H]inositol were incubated with increasing concentrations of ATA, 3013, or 3017 for 1 h before stimulation with UDP (100 �M). The cells were
lysed, and the radioactivity of the lysate was quantified as described under “Experimental Procedures.” The experiment was repeated three times. B, as
described for A, HEK293A cells were metabolically prelabeled with [3H]inositol and treated with increasing concentrations of the inhibitors before incubation
with carbachol (10 �M) and quantification of radioactivity. C, the IC50 values for ATA, 3013, and 3017.
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for an additional 30 min. [3H]ATP levels were quantified as
described under “Experimental Procedures,” and as illustrated
in Fig. 7A, no effect of ATA, 3013, or 3017 on ATP concentra-
tion was observed. We also examined whether these phospho-
lipase inhibitors exhibited inhibitory effects on another G pro-
tein-regulated effector enzyme. Preincubation of P2Y6-1321N1
cells with a broad range of concentrations of ATA, 3013, or
3017 had no effect on adenylyl cyclase-dependent cAMP accu-
mulation in the presence of forskolin plus the �-adrenergic
receptor agonist isoproterenol (Fig. 7B). We conclude from
these studies that the inhibitory effects of ATA, 3013, and 3017
on receptor-stimulated inositol lipid signaling are not due to
nonspecific effects that diminish cell viability or generally inter-
fere with G protein-mediated signaling cascades.
In summary, we have developed a robust fluorogenic high-

throughput assay of PLC activity and used it to screen a collec-
tion of 6280 compounds. Three new PLC inhibitors were iden-
tified and verified in assays with purified enzymes or in cells.
Given the small set of compounds that have been screened and
the preliminary nature of the studies on the hit compounds, the
current three inhibitors might not be optimal to inhibit cellular
PLC activity due to poor cell permeability, insufficient potency,
or unaccounted nonspecific effects. Indeed, ATA has been
shown to inhibit platelet aggregation (40), modulate glucocor-
ticoid receptor-mediated signaling (41), and promote survival
and regeneration of retinal ganglion cells (42). In addition, ATA
inhibits the activity of multiple enzymes such as DNA topoi-
somerase II (43), the cytosine deaminase APOBEC3G (44), and
the kinase c-Met (45). Thus, it is unlikely that ATA could serve
as an effective chemical probe to study PLC-regulated cellular
processes. Although there are no reports of the biological activ-
ity of 3013 and 3017 in the literature, their moderate potency
and solubility should be reasons for caution when using these
two inhibitors to modulate the phospholipase activity of PLCs.
Despite these limitations, this work provides a complete set of
screening protocols that are suitable for high-throughput
screening to identify PLC-selective modulators. These modu-
lators would then be exceptionally useful for dissecting signal-

ing cascades controlled by PLCs. Abnormal signaling through
PLC isozymes is implicated in amultitude of diseases, including
numerous cancers (2, 3, 46–51), atherosclerosis and cardiac
failure (5, 52), and schizophrenia and epilepsy (7, 53). Thus, this
work also has the potential to provide new and exciting avenues
to understand and treat human diseases.

Acknowledgments—We thank William Janzen and Emily Hull-Ryde
(University of North Carolina) for help in running the pilot screen.

REFERENCES
1. Harden, T. K., and Sondek, J. (2006) Regulation of phospholipase C

isozymes by Ras superfamily GTPases.Annu. Rev. Pharmacol. Toxicol. 46,
355–379

2. Sala, G., Dituri, F., Raimondi, C., Previdi, S., Maffucci, T., Mazzoletti, M.,
Rossi, C., Iezzi, M., Lattanzio, R., Piantelli, M., Iacobelli, S., Broggini, M.,
and Falasca, M. (2008) Phospholipase C�1 is required for metastasis de-
velopment and progression. Cancer Res. 68, 10187–10196

3. Shepard, C. R., Kassis, J., Whaley, D. L., Kim, H. G., and Wells, A. (2007)
PLC� contributes to metastasis of in situ-occurring mammary and pros-
tate tumors. Oncogene 26, 3020–3026

4. Bertagnolo, V., Benedusi,M., Brugnoli, F., Lanuti, P.,Marchisio,M., Quer-
zoli, P., and Capitani, S. (2007) Phospholipase C�2 promotes mitosis and
migration of human breast cancer-derived cells. Carcinogenesis 28,
1638–1645

5. Zhang, L., Malik, S., Kelley, G. G., Kapiloff, M. S., and Smrcka, A. V. (2011)
Phospholipase C� scaffolds to muscle-specific A kinase anchoring protein
(mAKAP�) and integrates multiple hypertrophic stimuli in cardiac myo-
cytes. J. Biol. Chem. 286, 23012–23021

6. Woodcock, E. A., Grubb, D. R., and Iliades, P. (2010) Potential treatment
of cardiac hypertrophy and heart failure by inhibiting the sarcolemmal
binding of phospholipase C�1b. Curr. Drug Targets 11, 1032–1040

7. Kurian, M. A., Meyer, E., Vassallo, G., Morgan, N. V., Prakash, N., Pasha,
S., Hai, N. A., Shuib, S., Rahman, F.,Wassmer, E., Cross, J. H., O’Callaghan,
F. J., Osborne, J. P., Scheffer, I. E., Gissen, P., and Maher, E. R. (2010)
Phospholipase C�1 deficiency is associated with early-onset epileptic en-
cephalopathy. Brain 133, 2964–2970

8. Bleasdale, J. E., Thakur, N. R., Gremban, R. S., Bundy, G. L., Fitzpatrick,
F. A., Smith, R. J., and Bunting, S. (1990) Selective inhibition of receptor-
coupled phospholipase C-dependent processes in human platelets and
polymorphonuclear neutrophils. J. Pharmacol. Exp. Ther. 255, 756–768

9. Bala, G. A., Thakur, N. R., and Bleasdale, J. E. (1990) Characterization of

FIGURE 7. ATA, 3013, and 3017 do not change cellular levels of basal ATP or (forskolin � isoproterenol)-stimulated cAMP levels. A, ATP levels in
the presence of ATA, 3013, and 3017. ATP pools of P2Y6-1321N1 cells were metabolically labeled by preincubation with [3H]adenine for 3 h. ATA (100
�M), 3013 (100 �M), or 3017 (100 �M) was then added, the incubation was terminated after 30 min, and [3H]ATP levels were quantified as described under
“Experimental Procedures.” The results are means � S.E. and are representative of results obtained in two independent experiments. B, (forskolin �
isoproterenol)-stimulated cAMP accumulation in the presence of ATA, 3013, or 3017. [3H]Adenine-prelabeled P2Y6-1321N1 cells were incubated with
the indicated concentrations of ATA, 3013, or 3017 for 30 min prior to a 10-min challenge with 10 �M forskolin and 10 �M isoproterenol. Accumulation
of [3H]cAMP was quantified as described under “Experimental Procedures.” The results are means � S.E. and are representative of results obtained in
two independent experiments. Basal cpm accumulation (data not shown) was �400 cpm for each condition and was not changed by the addition of
ATA, 3013, or 3017 at concentrations up to 100 �M.

High-throughput Screen for Small Molecule PLC Inhibitors

5846 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 8 • FEBRUARY 22, 2013



the major phosphoinositide-specific phospholipase C of human amnion.
Biol. Reprod. 43, 704–711

10. Hollywood, M. A., Sergeant, G. P., Thornbury, K. D., and McHale, N. G.
(2010) The PI-PLC inhibitor U-73122 is a potent inhibitor of the SERCA
pump in smooth muscle. Br. J. Pharmacol. 160, 1293–1294

11. Pulcinelli, F. M., Gresele, P., Bonuglia, M., and Gazzaniga, P. P. (1998)
Evidence for separate effects of U73122 on phospholipase C and calcium
channels in human platelets. Biochem. Pharmacol. 56, 1481–1484

12. Berven, L. A., and Barritt, G. J. (1995) Evidence obtained using single
hepatocytes for inhibition by the phospholipase C inhibitor U73122 of
store-operated Ca2� inflow. Biochem. Pharmacol. 49, 1373–1379

13. Wang, J. P. (1996) U-73122, an aminosteroid phospholipase C inhibitor,
may also block Ca2� influx through phospholipase C-independent mech-
anism in neutrophil activation. Naunyn-Schmiedebergs Arch. Pharmacol.
353, 599–605

14. Wilsher, N. E., Court, W. J., Ruddle, R., Newbatt, Y. M., Aherne, W.,
Sheldrake, P. W., Jones, N. P., Katan, M., Eccles, S. A., and Raynaud, F. I.
(2007) The phosphoinositide-specific phospholipase C inhibitor U73122
(1-(6-((17�-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-
pyrrole-2,5-dione) spontaneously forms conjugates with common com-
ponents of cell culture medium. Drug Metab. Dispos. 35, 1017–1022

15. Burgdorf, C., Schäfer, U., Richardt, G., and Kurz, T. (2010) U73122, an
aminosteroid phospholipase C inhibitor, is a potent inhibitor of cardiac
phospholipaseDby a PIP2-dependentmechanism. J. Cardiovasc. Pharma-
col. 55, 555–559

16. Feisst, C., Albert, D., Steinhilber, D., and Werz, O. (2005) The aminos-
teroid phospholipase C antagonist U-73122 (1-[6-[[17-�-3-methoxyes-
tra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) potently
inhibits human 5-lipoxygenase in vivo and in vitro. Mol. Pharmacol. 67,
1751–1757

17. Vickers, J. D. (1993) U73122 affects the equilibria between the phospho-
inositides as well as phospholipase C activity in unstimulated and throm-
bin-stimulated human and rabbit platelets. J. Pharmacol. Exp. Ther. 266,
1156–1163

18. Klein, R. R., Bourdon, D. M., Costales, C. L., Wagner, C. D., White, W. L.,
Williams, J. D., Hicks, S. N., Sondek, J., and Thakker, D. R. (2011) Direct
activation of human phospholipase C by its well known inhibitor U73122.
J. Biol. Chem. 286, 12407–12416

19. Zaikova, T. O., Rukavishnikov, A. V., Birrell, G. B., Griffith, O. H., and
Keana, J. F. (2001) Synthesis of fluorogenic substrates for continuous assay
of phosphatidylinositol-specific phospholipase C. Bioconjug. Chem. 12,
307–313

20. Scholze, H., Stütz, H., Paltauf, F., and Hermetter, A. (1999) Fluorescent
inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
Anal. Biochem. 276, 72–80

21. Hendrickson, E. K., Johnson, J. L., and Hendrickson, H. S. (1991) A fluo-
rescent substrate for the assay of phosphatidylinositol-specific phospho-
lipase C: 4-(1-pyreno)butylphosphoryl-1-myo-inositol. Bioorg. Med.
Chem. Lett. 1, 619–662

22. Rukavishnikov, A. V., Smith, M. P., Birrell, G. B., Keana, J. F., and Griffith,
O. H. (1998) Synthesis of a new fluorogenic substrate for the assay of
phosphoinositide-specific phospholipase C. Tetrahedron Lett. 39,
6637–6640

23. Shashidhar, M. S., Volwerk, J. J., Keana, J. F., and Griffith, O. H. (1991) A
fluorescent substrate for the continuous assay of phosphatidylinositol-
specific phospholipase C: synthesis and application of 2-naphthyl-myo-
inositol 1-phosphate. Anal. Biochem. 198, 10–14

24. Heinz, D. W., Essen, L. O., and Williams, R. L. (1998) Structural and
mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-
specific phospholipases C. J. Mol. Biol. 275, 635–650

25. Rose, T. M., and Prestwich, G. D. (2006) Synthesis and evaluation of fluo-
rogenic substrates for phospholipase D and phospholipase C.Org. Lett. 8,
2575–2578

26. Rukavishnikov, A. V., Zaikova, T. O., Birrell, G. B., Keana, J. F., and Grif-
fith, O. H. (1999) Synthesis of a new fluorogenic substrate for the contin-
uous assay of mammalian phosphoinositide-specific phospholipase C.
Bioorg. Med. Chem. Lett. 9, 1133–1136

27. Rebecchi, M. J., Eberhardt, R., Delaney, T., Ali, S., and Bittman, R. (1993)

Hydrolysis of short acyl chain inositol lipids by phospholipase C�1. J. Biol.
Chem. 268, 1735–1741

28. Liu, Y., Mihai, C., Kubiak, R. J., Rebecchi, M., and Bruzik, K. S. (2007)
Phosphorothiolate analogues of phosphatidylinositols as assay substrates
for phospholipase C. ChemBioChem 8, 1430–1439

29. Huang, W., Hicks, S. N., Sondek, J., and Zhang, Q. (2011) A fluorogenic,
small molecule reporter for mammalian phospholipase C isozymes. ACS
Chem. Biol. 6, 223–228

30. Carter, R. L., Fricks, I. P., Barrett, M. O., Burianek, L. E., Zhou, Y., Ko, H.,
Das, A., Jacobson, K. A., Lazarowski, E. R., andHarden, T. K. (2009)Quan-
tification of Gi-mediated inhibition of adenylyl cyclase activity reveals that
UDP is a potent agonist of the human P2Y14 receptor.Mol. Pharmacol. 76,
1341–1348

31. Harden, T. K., Scheer, A. G., and Smith, M. M. (1982) Differential modi-
fication of the interaction of cardiac muscarinic cholinergic and beta-
adrenergic receptors with a guanine nucleotide binding component(s).
Mol. Pharmacol. 21, 570–580

32. Salomon, Y., Londos, C., and Rodbell, M. (1974) A highly sensitive adeny-
late cyclase assay. Anal. Biochem. 58, 541–548

33. Feng, B. Y., and Shoichet, B. K. (2006) A detergent-based assay for the
detection of promiscuous inhibitors. Nat. Protoc. 1, 550–553

34. McGovern, S. L., Helfand, B. T., Feng, B., and Shoichet, B. K. (2003) A
specific mechanism of nonspecific inhibition. J. Med. Chem. 46,
4265–4272

35. Feng, B. Y., Shelat, A., Doman, T. N., Guy, R. K., and Shoichet, B. K. (2005)
High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol. 1,
146–148

36. Feng, B. Y., Simeonov, A., Jadhav, A., Babaoglu, K., Inglese, J., Shoichet,
B. K., and Austin, C. P. (2007) A high-throughput screen for aggregation-
based inhibition in a large compound library. J. Med. Chem. 50,
2385–2390

37. Hicks, S. N., Jezyk, M. R., Gershburg, S., Seifert, J. P., Harden, T. K., and
Sondek, J. (2008) General and versatile autoinhibition of PLC isozymes.
Mol. Cell 31, 383–394

38. Bourdon, D.M.,Wing,M. R., Edwards, E. B., Sondek, J., and Harden, T. K.
(2006)Quantification of isozyme-specific activation of phospholipase C�2
by Rac GTPases and phospholipase C� by Rho GTPases in an intact cell
assay system.Methods Enzymol. 406, 489–499

39. Bembenek, M. E., Jain, S., Prack, A., Li, P., Chee, L., Cao, W., Spurling, H.,
Roy, R., Fish, S., Rokas, M., Parsons, T., and Meyers, R. (2003) Develop-
ment of a high-throughput assay for two inositol-specific phospholipase
Cs using a scintillation proximity format. Assay Drug Dev. Technol. 1,
435–443

40. Owens, M. R., and Holme, S. (1996) Aurin tricarboxylic acid inhibits ad-
hesion of platelets to subendothelium. Thrombosis Res. 81, 177–185

41. Gerber, A. N., Masuno, K., and Diamond, M. I. (2009) Discovery of selec-
tive glucocorticoid receptor modulators by multiplexed reporter screen-
ing. Proc. Natl. Acad. Sci. U.S.A. 106, 4929–4934

42. Heiduschka, P., and Thanos, S. (2000) Aurintricarboxylic acid promotes
survival and regeneration of axotomised retinal ganglion cells in vivo.Neu-
ropharmacology 39, 889–902

43. Benchokroun, Y., Couprie, J., and Larsen, A. K. (1995) Aurintricarboxylic
acid, a putative inhibitor of apoptosis, is a potent inhibitor of DNA topoi-
somerase II in vitro and in Chinese hamster fibrosarcoma cells. Biochem-
ical Pharmacol. 49, 305–313

44. Li, M., Shandilya, S. M., Carpenter, M. A., Rathore, A., Brown, W. L.,
Perkins, A. L., Harki, D. A., Solberg, J., Hook, D. J., Pandey, K. K., Parniak,
M. A., Johnson, J. R., Krogan, N. J., Somasundaran, M., Ali, A., Schiffer,
C. A., and Harris, R. S. (2012) First-in-class small molecule inhibitors of
the single-strand DNA cytosine deaminase APOBEC3G.ACS Chem. Biol.
7, 506–517

45. Milanovic, M., Radtke, S., Peel, N., Howell, M., Carrière, V., Joffre, C.,
Kermorgant, S., and Parker, P. J. (2012) Anomalous inhibition of c-Met by
the kinesin inhibitor aurintricarboxylic acid. Int. J. Cancer 130,
1060–1070

46. Abnet, C. C., Freedman, N. D., Hu, N., Wang, Z., Yu, K., Shu, X. O., Yuan,
J. M., Zheng, W., Dawsey, S. M., Dong, L. M., Lee, M. P., Ding, T., Qiao,
Y. L., Gao, Y. T., Koh, W. P., Xiang, Y. B., Tang, Z. Z., Fan, J. H., Wang, C.,

High-throughput Screen for Small Molecule PLC Inhibitors

FEBRUARY 22, 2013 • VOLUME 288 • NUMBER 8 JOURNAL OF BIOLOGICAL CHEMISTRY 5847



Wheeler, W., Gail, M. H., Yeager, M., Yuenger, J., Hutchinson, A., Jacobs,
K. B., Giffen, C. A., Burdett, L., Fraumeni, J. F., Jr., Tucker, M. A., Chow,
W. H., Goldstein, A. M., Chanock, S. J., and Taylor, P. R. (2010) A shared
susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and
esophageal squamous cell carcinoma. Nat. Genet. 42, 764–767

47. LoVasco, V. R., Calabrese, G.,Manzoli, L., Palka, G., Spadano, A.,Morizio,
E., Guanciali-Franchi, P., Fantasia, D., and Cocco, L. (2004) Inositide-
specific phospholipase C�1 gene deletion in the progression of myelodys-
plastic syndrome to acute myeloid leukemia. Leukemia 18, 1122–1126

48. Li, M., Edamatsu, H., Kitazawa, R., Kitazawa, S., and Kataoka, T. (2009)
Phospholipase C� promotes intestinal tumorigenesis of ApcMin/� mice
through augmentation of inflammation and angiogenesis. Carcinogenesis
30, 1424–1432

49. Kassis, J., Moellinger, J., Lo, H., Greenberg, N. M., Kim, H. G., and Wells,
A. (1999) A role for phospholipase C�-mediated signaling in tumor cell
invasion. Clin. Cancer Res. 5, 2251–2260

50. Follo, M. Y., Finelli, C., Clissa, C., Mongiorgi, S., Bosi, C., Martinelli, G.,
Baccarani,M.,Manzoli, L., Martelli, A.M., and Cocco, L. (2009) Phospho-
inositide-phospholipase C�1mono-allelic deletion is associated with my-
elodysplastic syndromes evolution into acute myeloid leukemia. J. Clin.
Oncol. 27, 782–790

51. Bai, Y., Edamatsu, H., Maeda, S., Saito, H., Suzuki, N., Satoh, T., and
Kataoka, T. (2004) Crucial role of phospholipase C� in chemical carcino-
gen-induced skin tumor development. Cancer Res. 64, 8808–8810

52. Wang, Z., Liu, B.,Wang, P., Dong, X., Fernandez-Hernando, C., Li, Z., Hla,
T., Li, Z., Claffey, K., Smith, J. D., and Wu, D. (2008) Phospholipase C�3
deficiency leads to macrophage hypersensitivity to apoptotic induction
and reduction of atherosclerosis in mice. J. Clin. Invest. 118, 195–204

53. McOmish, C. E., Burrows, E. L., Howard, M., and Hannan, A. J. (2008)
PLC�1 knockout mice as a model of disrupted cortical development and
plasticity: behavioral endophenotypes and dysregulation of RGS4 gene
expression. Hippocampus 18, 824–834

High-throughput Screen for Small Molecule PLC Inhibitors

5848 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 8 • FEBRUARY 22, 2013


