Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1990 Apr;3(2):99–119. doi: 10.1128/cmr.3.2.99

Bacterial spores and chemical sporicidal agents.

A D Russell 1
PMCID: PMC358146  PMID: 2187595

Abstract

Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described.

Full text

PDF
99

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelaziz A. A., el-Nakeeb M. A. Sporicidal activity of local anaesthetics and their binary combinations with preservatives. J Clin Pharm Ther. 1988 Aug;13(4):249–256. doi: 10.1111/j.1365-2710.1988.tb00189.x. [DOI] [PubMed] [Google Scholar]
  2. Ando Y. Mechanism of nitrite-induced germination of Clostridium perfringens spores. J Appl Bacteriol. 1980 Dec;49(3):527–535. doi: 10.1111/j.1365-2672.1980.tb04727.x. [DOI] [PubMed] [Google Scholar]
  3. BORICK P. M., DONDERSHINE F. H., CHANDLER V. L. ALKALINIZED GLUTARALDEHYDE, A NEW ANTIMICROBIAL AGENT. J Pharm Sci. 1964 Oct;53:1273–1275. doi: 10.1002/jps.2600531041. [DOI] [PubMed] [Google Scholar]
  4. Babb J. R., Bradley C. R., Ayliffe G. A. Sporicidal activity of glutaraldehydes and hypochlorites and other factors influencing their selection for the treatment of medical equipment. J Hosp Infect. 1980 Mar;1(1):63–75. doi: 10.1016/0195-6701(80)90033-x. [DOI] [PubMed] [Google Scholar]
  5. Balassa G., Milhaud P., Raulet E., Silva M. T., Sousa J. C. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J Gen Microbiol. 1979 Feb;110(2):365–379. doi: 10.1099/00221287-110-2-365. [DOI] [PubMed] [Google Scholar]
  6. Baldry M. G. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J Appl Bacteriol. 1983 Jun;54(3):417–423. doi: 10.1111/j.1365-2672.1983.tb02637.x. [DOI] [PubMed] [Google Scholar]
  7. Bayliss C. E., Waites W. M. The effect of hydrogen peroxide on spores of Clostridium bifermentans. J Gen Microbiol. 1976 Oct;96(2):401–407. doi: 10.1099/00221287-96-2-401. [DOI] [PubMed] [Google Scholar]
  8. Beaman T. C., Pankratz H. S., Gerhardt P. Heat shock affects permeability and resistance of Bacillus stearothermophilus spores. Appl Environ Microbiol. 1988 Oct;54(10):2515–2520. doi: 10.1128/aem.54.10.2515-2520.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beveridge T. J., Williams F. M., Koval J. J. The effect of chemical fixatives on cell walls of Bacillus subtilis. Can J Microbiol. 1978 Dec;24(12):1439–1451. doi: 10.1139/m78-233. [DOI] [PubMed] [Google Scholar]
  10. Blocher J. C., Busta F. F. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate. J Appl Bacteriol. 1985 Nov;59(5):469–478. doi: 10.1111/j.1365-2672.1985.tb03347.x. [DOI] [PubMed] [Google Scholar]
  11. Bloomfield S. F., Miles G. A. The antibacterial properties of sodium dichloroisocyanurate and sodium hypochlorite formulations. J Appl Bacteriol. 1979 Feb;46(1):65–73. doi: 10.1111/j.1365-2672.1979.tb02582.x. [DOI] [PubMed] [Google Scholar]
  12. Bloomfield S. F., Uso E. E. The antibacterial properties of sodium hypochlorite and sodium dichloroisocyanurate as hospital disinfectants. J Hosp Infect. 1985 Mar;6(1):20–30. doi: 10.1016/s0195-6701(85)80014-1. [DOI] [PubMed] [Google Scholar]
  13. Bohin J. P., Lubochinsky B. Alcohol-resistant sporulation mutants of Bacillus subtilis. J Bacteriol. 1982 May;150(2):944–955. doi: 10.1128/jb.150.2.944-955.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Borick P. M. Chemical sterilizers (chemosterilizers). Adv Appl Microbiol. 1968;10:291–312. doi: 10.1016/s0065-2164(08)70195-3. [DOI] [PubMed] [Google Scholar]
  15. Boucher R. M. Advances in sterilization techniques: state of the art and recent breakthroughs. Am J Hosp Pharm. 1972 Aug;29(8):661–672. [PubMed] [Google Scholar]
  16. Boucher R. M. Potentiated acid 1,5 pentanedial solution--a new chemical sterilizing and disinfecting agent. Am J Hosp Pharm. 1974 Jun;31(6):546–557. [PubMed] [Google Scholar]
  17. Bovallius A., Anäs P. Surface-decontaminating action of glutaraldehyde in the gas-aerosol phase. Appl Environ Microbiol. 1977 Aug;34(2):129–134. doi: 10.1128/aem.34.2.129-134.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Briggs A., Yazdany S. Resistance of Bacillus spores to combined sporicidal treatments. J Appl Bacteriol. 1974 Dec;37(4):623–631. doi: 10.1111/j.1365-2672.1974.tb00486.x. [DOI] [PubMed] [Google Scholar]
  19. Cerf O. Tailing of survival curves of bacterial spores. J Appl Bacteriol. 1977 Feb;42(1):1–19. doi: 10.1111/j.1365-2672.1977.tb00665.x. [DOI] [PubMed] [Google Scholar]
  20. Cheung H. Y., Brown M. R. Evaluation of glycine as an inactivator of glutaraldehyde. J Pharm Pharmacol. 1982 Apr;34(4):211–214. doi: 10.1111/j.2042-7158.1982.tb04230.x. [DOI] [PubMed] [Google Scholar]
  21. Chiori C. O., Hambleton R., Rigby G. J. The inhibition of spores of Bacillus subtilis by cetrimide retained on washed membrane filters and on the washed spores. J Appl Bacteriol. 1965 Aug;28(2):322–330. doi: 10.1111/j.1365-2672.1965.tb02160.x. [DOI] [PubMed] [Google Scholar]
  22. Coates D., Death J. E. Sporicidal activity of mixtures of alcohol and hypochlorite. J Clin Pathol. 1978 Feb;31(2):148–152. doi: 10.1136/jcp.31.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cousins C. M., Allan C. D. Sporicidal properties of some halogens. J Appl Bacteriol. 1967 Apr;30(1):168–174. doi: 10.1111/j.1365-2672.1967.tb00286.x. [DOI] [PubMed] [Google Scholar]
  24. Craven S. E. Activation of Clostridium perfringens spores under conditions that disrupt hydrophobic interactions of biological macromolecules. Appl Environ Microbiol. 1988 Aug;54(8):2042–2048. doi: 10.1128/aem.54.8.2042-2048.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Craven S. E., Blankenship L. C. Activation and injury of Clostridium perfringens spores by alcohols. Appl Environ Microbiol. 1985 Aug;50(2):249–256. doi: 10.1128/aem.50.2.249-256.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dadd A. H., Daley G. M. Role of the coat in resistance of bacterial spores to inactivation by ethylene oxide. J Appl Bacteriol. 1982 Aug;53(1):109–116. doi: 10.1111/j.1365-2672.1982.tb04740.x. [DOI] [PubMed] [Google Scholar]
  27. Daher E., Rosenberg E., Demain A. L. Germination-initiated spores of Bacillus brevis Nagano retain their resistance properties. J Bacteriol. 1985 Jan;161(1):47–50. doi: 10.1128/jb.161.1.47-50.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Dancer B. N., Power E. G., Russell A. D. Alkali-induced revival of Bacillus spores after inactivation by glutaraldehyde. FEMS Microbiol Lett. 1989 Feb;57(3):345–348. doi: 10.1016/0378-1097(89)90326-1. [DOI] [PubMed] [Google Scholar]
  29. Death J. E., Coates D. Effect of pH on sporicidal and microbicidal activity of buffered mixtures of alcohol and sodium hypochlorite. J Clin Pathol. 1979 Feb;32(2):148–152. doi: 10.1136/jcp.32.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ernst R. R. Ethylene oxide sterilization kinetics. Biotechnol Bioeng Symp. 1974;0(4-2):865–878. [PubMed] [Google Scholar]
  31. Ernst R. R. Sterilization by means of ethylene oxide. Acta Pharm Suec. 1975;12(Suppl):44–64. [PubMed] [Google Scholar]
  32. Fitz-James P. C. Formation of protoplasts from resting spores. J Bacteriol. 1971 Mar;105(3):1119–1136. doi: 10.1128/jb.105.3.1119-1136.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Foegeding P. M., Busta F. F. Differing L-alanine germination requirements of hypochlorite-treated Clostridium botulinum spores from two crops. Appl Environ Microbiol. 1983 Apr;45(4):1415–1417. doi: 10.1128/aem.45.4.1415-1417.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Foegeding P. M., Busta F. F. Hypochlorite injury of Clostridium botulinum spores alters germination responses. Appl Environ Microbiol. 1983 Apr;45(4):1360–1368. doi: 10.1128/aem.45.4.1360-1368.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Foegeding P. M., Busta F. F. Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinum spores. Appl Environ Microbiol. 1983 Apr;45(4):1374–1379. doi: 10.1128/aem.45.4.1374-1379.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Foegeding P. M., Busta F. F. Proposed role of lactate in germination of hypochlorite-treated Clostridium botulinum spores. Appl Environ Microbiol. 1983 Apr;45(4):1369–1373. doi: 10.1128/aem.45.4.1369-1373.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. GILBERT G. L., GAMBILL V. M., SPINER D. R., HOFFMAN R. K., PHILLIPS C. R. EFFECT OF MOISTURE ON ETHYLENE OXIDE STERILIZATION. Appl Microbiol. 1964 Nov;12:496–503. doi: 10.1128/am.12.6.496-503.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Genigeorgis C. A. Factors affecting the probability of growth of pathogenic microorganisms in foods. J Am Vet Med Assoc. 1981 Dec 15;179(12):1410–1417. [PubMed] [Google Scholar]
  39. Gorman S. P., Hutchinson E. P., Scott E. M., McDermott L. M. Death, injury and revival of chemically treated Bacillus subtilis spores. J Appl Bacteriol. 1983 Feb;54(1):91–99. doi: 10.1111/j.1365-2672.1983.tb01305.x. [DOI] [PubMed] [Google Scholar]
  40. Gorman S. P., Jones D. S., Loftus A. M. The sporicidal activity and inactivation of chlorhexidine gluconate in aqueous and alcoholic solution. J Appl Bacteriol. 1987 Aug;63(2):183–188. doi: 10.1111/j.1365-2672.1987.tb02701.x. [DOI] [PubMed] [Google Scholar]
  41. Gorman S. P., Scott E. M., Hutchinson E. P. Emergence and development of resistance to antimicrobial chemicals and heat in spores of Bacillus subtilis. J Appl Bacteriol. 1984 Aug;57(1):153–163. doi: 10.1111/j.1365-2672.1984.tb02368.x. [DOI] [PubMed] [Google Scholar]
  42. Gorman S. P., Scott E. M., Hutchinson E. P. Interaction of the Bacillus subtilis spore protoplast, cortex, ion-exchange and coatless forms with glutaraldehyde. J Appl Bacteriol. 1984 Feb;56(1):95–102. doi: 10.1111/j.1365-2672.1984.tb04699.x. [DOI] [PubMed] [Google Scholar]
  43. Gorman S. P., Scott E. M., Russell A. D. Antimicrobial activity, uses and mechanism of action of glutaraldehyde. J Appl Bacteriol. 1980 Apr;48(2):161–190. doi: 10.1111/j.1365-2672.1980.tb01217.x. [DOI] [PubMed] [Google Scholar]
  44. Gould G. W. Injury and repair mechanisms in bacterial spores. Soc Appl Bacteriol Symp Ser. 1984;(12):199–220. [PubMed] [Google Scholar]
  45. Gould G. W. Recent advances in the understanding of resistance and dormancy in bacterial spores. J Appl Bacteriol. 1977 Jun;42(3):297–309. doi: 10.1111/j.1365-2672.1977.tb00697.x. [DOI] [PubMed] [Google Scholar]
  46. Gould G. W., Sale A. J. Initiation of germination of bacterial spores by hydrostatic pressure. J Gen Microbiol. 1970 Mar;60(3):335–346. doi: 10.1099/00221287-60-3-335. [DOI] [PubMed] [Google Scholar]
  47. Gould G. W., Stubbs J. M., King W. L. Structure and composition of resistant layers in bacterial spore coats. J Gen Microbiol. 1970 Mar;60(3):347–355. doi: 10.1099/00221287-60-3-347. [DOI] [PubMed] [Google Scholar]
  48. Gould G. W. Symposium on bacterial spores: IV. Germination and the problem of dormancy. J Appl Bacteriol. 1970 Mar;33(1):34–49. doi: 10.1111/j.1365-2672.1970.tb05232.x. [DOI] [PubMed] [Google Scholar]
  49. Hajdu J., Friedrich P. Reaction of glutaraldehyde with NH2 compounds. A spectrophotometric method for the determination of glutaraldehyde concentration. Anal Biochem. 1975 May 12;65(1-2):273–280. doi: 10.1016/0003-2697(75)90510-2. [DOI] [PubMed] [Google Scholar]
  50. Haselhuhn D. H., Brason F. W., Borick P. M. "In use" study of buffered glutaraldehyde for cold sterilization of anesthesia equipment. Anesth Analg. 1967 Jul-Aug;46(4):468–474. [PubMed] [Google Scholar]
  51. Hayakawa Y., Tochikubo K., Kozuka S. Mutual relationship between antibiotics and resting spores of Bacillus subtilis: morphological changes and macromolecular synthesis after germination of spores treated with cyclic polypeptide and aminoglycoside antibiotics. Microbiol Immunol. 1981;25(7):655–670. doi: 10.1111/j.1348-0421.1981.tb00069.x. [DOI] [PubMed] [Google Scholar]
  52. Hibbert H. R., Spencer R. An investigation of the inhibitory properties of sodium thioglycollate in media for the recovery of clostridial spores. J Hyg (Lond) 1970 Mar;68(1):131–135. doi: 10.1017/s0022172400028588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hill S. H. SpoVH and spoVJ--new sporulation loci in Bacillus subtilis 168. J Gen Microbiol. 1983 Feb;129(2):293–302. doi: 10.1099/00221287-129-2-293. [DOI] [PubMed] [Google Scholar]
  54. Hsieh L. K., Vary J. C. Germination and peptidoglycan solubilization in Bacillus megaterium spores. J Bacteriol. 1975 Aug;123(2):463–470. doi: 10.1128/jb.123.2.463-470.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Imae Y., Strominger J. L. Conditional spore cortex-less mutants of Bacillus sphaericus 9602. J Biol Chem. 1976 Mar 10;251(5):1493–1499. [PubMed] [Google Scholar]
  56. Imae Y., Strominger J. L. Relationship between cortex content and properties of Bacillus sphaericus spores. J Bacteriol. 1976 May;126(2):907–913. doi: 10.1128/jb.126.2.907-913.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Isenberg H. D. Clinical laboratory studies of disinfection with Sporicidin. J Clin Microbiol. 1985 Nov;22(5):735–739. doi: 10.1128/jcm.22.5.735-739.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Isenberg H. D., Giugliano E. R., France K., Alperstein P. Evaluation of three disinfectants after in-use stress. J Hosp Infect. 1988 Apr;11(3):278–285. doi: 10.1016/0195-6701(88)90106-5. [DOI] [PubMed] [Google Scholar]
  59. Jenkinson H. F. Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol. 1983 Jun;129(6):1945–1958. doi: 10.1099/00221287-129-6-1945. [DOI] [PubMed] [Google Scholar]
  60. Jenkinson H. F., Kay D., Mandelstam J. Temporal dissociation of late events in Bacillus subtilis sporulation from expression of genes that determine them. J Bacteriol. 1980 Feb;141(2):793–805. doi: 10.1128/jb.141.2.793-805.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. KAYE S., PHILLIPS C. R. The sterilizing action of gaseous ethylene oxide; the effect of moisture. Am J Hyg. 1949 Nov;50(3):296–306. doi: 10.1093/oxfordjournals.aje.a119362. [DOI] [PubMed] [Google Scholar]
  62. KAYE S. The sterilizing action of gaseous ethylene oxide; the effect of ethylene oxide and related compounds upon bacterial aerosols. Am J Hyg. 1949 Nov;50(3):289–295. doi: 10.1093/oxfordjournals.aje.a119361. [DOI] [PubMed] [Google Scholar]
  63. Kelsey J. C., Mackinnon I. H., Maurer I. M. Sporicidal activity of hospital disinfectants. J Clin Pathol. 1974 Aug;27(8):632–638. doi: 10.1136/jcp.27.8.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kereluk K., Gammon R. A., Lloyd R. S. Microbiological aspects of ethylene oxide sterilization. IV. Influence of thickness of polyethylene film on the sporicidal activity of ethylene oxide. Appl Microbiol. 1970 Jan;19(1):163–165. doi: 10.1128/am.19.1.163-165.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Keynan A., Berns A. A., Dunn G., Young M., Mandelstam J. Resporulation of outgrowing Bacillus subtilis spores. J Bacteriol. 1976 Oct;128(1):8–14. doi: 10.1128/jb.128.1.8-14.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. King J. A., Woodside W., McGucken P. V. Letter: Relationship between pH and antibacterial activity of glutaraldehyde. J Pharm Sci. 1974 May;63(5):804–805. doi: 10.1002/jps.2600630538. [DOI] [PubMed] [Google Scholar]
  67. King W. L., Gould G. W. Lysis of bacterial spores with hydrogen peroxide. J Appl Bacteriol. 1969 Dec;32(4):481–490. doi: 10.1111/j.1365-2672.1969.tb01002.x. [DOI] [PubMed] [Google Scholar]
  68. Koransky J. R., Allen S. D., Dowell V. R., Jr Use of ethanol for selective isolation of sporeforming microorganisms. Appl Environ Microbiol. 1978 Apr;35(4):762–765. doi: 10.1128/aem.35.4.762-765.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kulikovsky A., Pankratz H. S., Sadoff H. L. Ultrastructural and chemical changes in spores of Bacillus cereus after action of disinfectants. J Appl Bacteriol. 1975 Feb;38(1):39–46. doi: 10.1111/j.1365-2672.1975.tb00498.x. [DOI] [PubMed] [Google Scholar]
  70. Kutima P. M., Foegeding P. M. Involvement of the spore coat in germination of Bacillus cereus T spores. Appl Environ Microbiol. 1987 Jan;53(1):47–52. doi: 10.1128/aem.53.1.47-52.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Labbe R. G., Duncan C. L. Growth from spores of Clostridium perfringens in the presence of sodium nitrite. Appl Microbiol. 1970 Feb;19(2):353–359. doi: 10.1128/am.19.2.353-359.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Labbe R. G., Reich R. R., Duncan C. L. Alteration in ultrastructure and germination of Clostridium perfringens type A spores following extraction of spore coats. Can J Microbiol. 1978 Dec;24(12):1526–1536. doi: 10.1139/m78-244. [DOI] [PubMed] [Google Scholar]
  73. Milhaud P., Balassa G. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol Gen Genet. 1973 Sep 12;125(3):241–250. doi: 10.1007/BF00270746. [DOI] [PubMed] [Google Scholar]
  74. Miner N. A., McDowell J. W., Willcockson G. W., Bruckner N. I., Stark R. L., Whitmore E. J. Antimicrobial and other properties of a new stabilized alkaline glutaraldehyde disinfectant/sterilizer. Am J Hosp Pharm. 1977 Apr;34(4):376–382. [PubMed] [Google Scholar]
  75. Mitchell J. P., Alder V. G. The disinfection of urological endoscopes. Br J Urol. 1975 Oct;47(5):571–576. doi: 10.1111/j.1464-410x.1975.tb06263.x. [DOI] [PubMed] [Google Scholar]
  76. Moir A., Lafferty E., Smith D. A. Genetics analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J Gen Microbiol. 1979 Mar;111(1):165–180. doi: 10.1099/00221287-111-1-165. [DOI] [PubMed] [Google Scholar]
  77. Mossel D. A., Beerens H. Studies on the inhibitory properties of sodium thioglycollate on the germination of wet spores of clostridia. J Hyg (Lond) 1968 Jun;66(2):269–272. doi: 10.1017/s0022172400041127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Munton T. J., Russell A. D. Aspects of the action of glutaraldehyde on Escherichia coli. J Appl Bacteriol. 1970 Jun;33(2):410–419. doi: 10.1111/j.1365-2672.1970.tb02214.x. [DOI] [PubMed] [Google Scholar]
  79. Navarro J. M., Monsan P. Etude du mécanisme d'interaction du glutaraldéhyde avec les microorganismes. Ann Microbiol (Paris) 1976 Oct;127B(3):295–307. [PubMed] [Google Scholar]
  80. Nishihara T., Tomita M., Yamanaka N., Ichikawa T., Kondo M. Studies on the bacterial spore coat. (7) Properties of alkali-soluble components from spore coat of Bacillus megaterium. Microbiol Immunol. 1980;24(2):105–112. doi: 10.1111/j.1348-0421.1980.tb00568.x. [DOI] [PubMed] [Google Scholar]
  81. Nishihara T., Yoshimoto I., Kondo M. Studies on the bacterial spore coat. IX. The role of surface charge in germination of Bacillus megaterium spores. Microbiol Immunol. 1981;25(8):763–771. doi: 10.1111/j.1348-0421.1981.tb00080.x. [DOI] [PubMed] [Google Scholar]
  82. Nishihara T., Yutsudo T., Ichikawa T., Kondo M. Studies on the bacterial spore coat. (8) On the SDS-DTT extract from Bacillus megaterium spores. Microbiol Immunol. 1981;25(3):327–331. doi: 10.1111/j.1348-0421.1981.tb00034.x. [DOI] [PubMed] [Google Scholar]
  83. O'Brien H. A., Mitchell J. D., Jr, Haberman S., Rowan D. F., Winford T. E., Pellet J. The use of activated glutaraldehyde as a cold sterilizing agent for urological instruments. J Urol. 1966 Mar;95(3):429–435. doi: 10.1016/S0022-5347(17)63474-8. [DOI] [PubMed] [Google Scholar]
  84. PEPPER R. E., CHANDLER V. L. SPORICIDAL ACTIVITY OF ALKALINE ALCOHOLIC SATURATED DIALDEHYDE SOLUTIONS. Appl Microbiol. 1963 Sep;11:384–388. doi: 10.1128/am.11.5.384-388.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. PHILLIPS C. R., KAYE S. The sterilizing action of gaseous ethylene oxide; a review. Am J Hyg. 1949 Nov;50(3):270–279. doi: 10.1093/oxfordjournals.aje.a119359. [DOI] [PubMed] [Google Scholar]
  86. PHILLIPS C. R. The sterilizing action of gaseous ethylene oxide; sterilization of contaminated objects with ethylene oxide and related compounds; time, concentration and temperature relationships. Am J Hyg. 1949 Nov;50(3):280–288. [PubMed] [Google Scholar]
  87. Parker M. S., Bradley T. J. A reversible inhibition of the germination of bacterial spores. Can J Microbiol. 1968 Jun;14(6):745–746. doi: 10.1139/m68-123. [DOI] [PubMed] [Google Scholar]
  88. Parker M. S. Some effects of preservatives on the development of bacterial spores. J Appl Bacteriol. 1969 Sep;32(3):322–328. doi: 10.1111/j.1365-2672.1969.tb00979.x. [DOI] [PubMed] [Google Scholar]
  89. Power E. G., Dancer B. N., Russell A. D. Possible mechanisms for the revival of glutaraldehyde-treated spores of Bacillus subtilis NCTC 8236. J Appl Bacteriol. 1989 Jul;67(1):91–98. doi: 10.1111/j.1365-2672.1989.tb04959.x. [DOI] [PubMed] [Google Scholar]
  90. Power E. G., Russell A. D. Assessment of 'cold Sterilog glutaraldehyde monitor'. J Hosp Infect. 1988 May;11(4):376–380. doi: 10.1016/0195-6701(88)90092-8. [DOI] [PubMed] [Google Scholar]
  91. Power E. G., Russell A. D. Glutaraldehyde: its uptake by sporing and non-sporing bacteria, rubber, plastic and an endoscope. J Appl Bacteriol. 1989 Sep;67(3):329–342. doi: 10.1111/j.1365-2672.1989.tb02502.x. [DOI] [PubMed] [Google Scholar]
  92. Power E. G., Russell A. D. Uptake of L-[14C]-alanine by glutaraldehyde-treated and untreated spores of Bacillus subtilis. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):271–276. doi: 10.1016/0378-1097(90)90295-2. [DOI] [PubMed] [Google Scholar]
  93. Prasad C. Initiation of spore germination in Bacillus subtilis: relationship to inhibition of L-alanine metabolism. J Bacteriol. 1974 Sep;119(3):805–810. doi: 10.1128/jb.119.3.805-810.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. RITTENBURY M. S., HENCH M. E. PRELIMINARY EVALUATION OF AN ACTIVATED GLUTARALDEHYDE SOLUTION FOR COLD STERILIZATION. Ann Surg. 1965 Jan;161:127–130. doi: 10.1097/00000658-196501000-00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Reich R. R. Effect of sublethal ethylene oxide exposure on Bacillus subtilis spores and biological indicator performance. J Parenter Drug Assoc. 1980 May-Jun;34(3):200–211. [PubMed] [Google Scholar]
  96. Relyveld E. H. Etude du pouvoir bactéricide du glutaraldéhyde. Ann Microbiol (Paris) 1977 Nov-Dec;128B(4):495–505. [PubMed] [Google Scholar]
  97. Ridgway G. L. Decontamination of fibreoptic endoscopes. J Hosp Infect. 1985 Dec;6(4):363–368. doi: 10.1016/0195-6701(85)90052-0. [DOI] [PubMed] [Google Scholar]
  98. Rode L. J., Williams M. G. Utility of sodium hypochlorite for ultrastructure study of bacterial spore integuments. J Bacteriol. 1966 Dec;92(6):1772–1778. doi: 10.1128/jb.92.6.1772-1778.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Ronning I. E., Frank H. A. Growth inhibition of putrefactive anaerobe 3679 caused by stringent-type response induced by protonophoric activity of sorbic acid. Appl Environ Microbiol. 1987 May;53(5):1020–1027. doi: 10.1128/aem.53.5.1020-1027.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Rubbo S. D., Gardner J. F., Webb R. L. Biocidal activities of glutaraldehyde and related compounds. J Appl Bacteriol. 1967 Apr;30(1):78–87. doi: 10.1111/j.1365-2672.1967.tb00277.x. [DOI] [PubMed] [Google Scholar]
  101. Russell A. D., Ahonkhai I., Rogers D. T. Microbiological applications of the inactivation of antibiotics and other antimicrobial agents. J Appl Bacteriol. 1979 Apr;46(2):207–245. doi: 10.1111/j.1365-2672.1979.tb00818.x. [DOI] [PubMed] [Google Scholar]
  102. Russell A. D., Hammond S. A., Morgan J. R. Bacterial resistance to antiseptics and disinfectants. J Hosp Infect. 1986 May;7(3):213–225. doi: 10.1016/0195-6701(86)90071-x. [DOI] [PubMed] [Google Scholar]
  103. Russell A. D., Hopwood D. The biological uses and importance of glutaraldehyde. Prog Med Chem. 1976;13:271–301. doi: 10.1016/s0079-6468(08)70140-1. [DOI] [PubMed] [Google Scholar]
  104. Setlow P. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu Rev Microbiol. 1988;42:319–338. doi: 10.1146/annurev.mi.42.100188.001535. [DOI] [PubMed] [Google Scholar]
  105. Shaker L. A., Furr J. R., Russell A. D. Mechanism of resistance of Bacillus subtilis spores to chlorhexidine. J Appl Bacteriol. 1988 Jun;64(6):531–539. doi: 10.1111/j.1365-2672.1988.tb02444.x. [DOI] [PubMed] [Google Scholar]
  106. Shibata H., Uchida M., Hayashi H., Tani I. Effect of trichloroacetic acid treatment on certain properties of spores of Bacillus cereus T. Microbiol Immunol. 1979;23(5):339–347. doi: 10.1111/j.1348-0421.1979.tb00471.x. [DOI] [PubMed] [Google Scholar]
  107. Sierra G., Boucher R. M. Ultrasonic synergistic effects in liquid-phase chemical sterilization. Appl Microbiol. 1971 Aug;22(2):160–164. doi: 10.1128/am.22.2.160-164.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Spicher G., Peters J. Hitzeaktivierung von bakteriellen Sporen nach Inaktivierung durch Formaldehyd. Abhängigkeit der Hitzeaktivierung von der Temperatur und ihrer Einwirkungsdauer. Zentralbl Bakteriol Mikrobiol Hyg B. 1981;173(3-4):188–196. [PubMed] [Google Scholar]
  109. Stewart G. S., Johnstone K., Hagelberg E., Ellar D. J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981 Jul 15;198(1):101–106. doi: 10.1042/bj1980101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Sykes G. Symposium on bacterial spores: XII. The sporicidal properties of chemical disinfectants. J Appl Bacteriol. 1970 Mar;33(1):147–156. doi: 10.1111/j.1365-2672.1970.tb05240.x. [DOI] [PubMed] [Google Scholar]
  111. TREADWELL P. E., JANN G. J., SALLE A. J. Studies on factors affecting the rapid germination of spores of Clostridium botulinum. J Bacteriol. 1958 Nov;76(5):549–556. doi: 10.1128/jb.76.5.549-556.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Takahashi I., MacKenzie L. W. Effects of various inhibitory agents on sporulation of Bacillus subtilis. Can J Microbiol. 1982 Jan;28(1):80–86. doi: 10.1139/m82-006. [DOI] [PubMed] [Google Scholar]
  113. Thomas S., Russell A. D. Sensitivity and resistance to glutaraldehyde of the hydrogen and calcium forms of Bacillus pumilus spores. J Appl Bacteriol. 1975 Jun;38(3):315–317. doi: 10.1111/j.1365-2672.1975.tb00536.x. [DOI] [PubMed] [Google Scholar]
  114. Thomas S., Russell A. D. Studies on the mechanism of the sporicidal action of glutaraldehyde. J Appl Bacteriol. 1974 Mar;37(1):83–92. doi: 10.1111/j.1365-2672.1974.tb00417.x. [DOI] [PubMed] [Google Scholar]
  115. Thomas S., Russell A. D. Temperature-induced changes in the sporicidal activity and chemical properties of glutaraldehyde. Appl Microbiol. 1974 Sep;28(3):331–335. doi: 10.1128/am.28.3.331-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Toledo R. T., Escher F. E., Ayres J. C. Sporicidal properties of hydrogen peroxide against food spoilage organisms. Appl Microbiol. 1973 Oct;26(4):592–597. doi: 10.1128/am.26.4.592-597.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Tolon M., Thofern E., Miederer S. E. Disinfection procedures of fiberscopes in endoscopy departments. Endoscopy. 1976 Feb;8(1):24–29. doi: 10.1055/s-0028-1098370. [DOI] [PubMed] [Google Scholar]
  118. Trujillo R., David T. J. Sporostatic and sporocidal properties of aqueous formaldehyde. Appl Microbiol. 1972 Mar;23(3):618–622. doi: 10.1128/am.23.3.618-622.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Trujillo R., Laible N. Reversible inhibition of spore germination by alcohols. Appl Microbiol. 1970 Oct;20(4):620–623. doi: 10.1128/am.20.4.620-623.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Varpela E., Otterström S., Hackman R. Liberation of alkalinized glutaraldehyde by respirators after cold sterilization. Acta Anaesthesiol Scand. 1971 Dec;15(4):291–298. doi: 10.1111/j.1399-6576.1971.tb00773.x. [DOI] [PubMed] [Google Scholar]
  121. Vinter V. Symposium on bacterial spores: V. Germination and outgrowth: effect of inhibitors. J Appl Bacteriol. 1970 Mar;33(1):50–59. doi: 10.1111/j.1365-2672.1970.tb05233.x. [DOI] [PubMed] [Google Scholar]
  122. Waites W. M., Bayliss C. E. Damage to bacterial spores by combined treatments and possible revival and repair processes. Soc Appl Bacteriol Symp Ser. 1984;(12):221–240. [PubMed] [Google Scholar]
  123. Waites W. M., Bayliss C. E., King N. R., Davies A. M. The effect of transition metal ions on the resistance of bacterial spores to hydrogen peroxide and to heat. J Gen Microbiol. 1979 Jun;112(2):225–233. doi: 10.1099/00221287-112-2-225. [DOI] [PubMed] [Google Scholar]
  124. Waites W. M., Wyatt L. R., King N. R., Bayliss C. E. Changes in spores of Clostridium bifermentans caused by treatment with hydrogen peroxide and cations. J Gen Microbiol. 1976 Apr;93(2):388–396. doi: 10.1099/00221287-93-2-388. [DOI] [PubMed] [Google Scholar]
  125. Warth A. D. Molecular structure of the bacterial spore. Adv Microb Physiol. 1978;17:1–45. doi: 10.1016/s0065-2911(08)60056-9. [DOI] [PubMed] [Google Scholar]
  126. Watanabe K., Takesue S. Selective inhibition of the germination of Bacillus megaterium spores by alkyl p-hydroxybenzoates. Chem Pharm Bull (Tokyo) 1976 Feb;24(2):224–229. doi: 10.1248/cpb.24.224. [DOI] [PubMed] [Google Scholar]
  127. Woodhead S., Walker J. R. The effects of aeration on glucose catabolism in Penicillium expansum. J Gen Microbiol. 1975 Aug;89(2):327–336. doi: 10.1099/00221287-89-2-327. [DOI] [PubMed] [Google Scholar]
  128. Woods D. R., Jones D. T. Physiological responses of Bacteroides and Clostridium strains to environmental stress factors. Adv Microb Physiol. 1986;28:1–64. doi: 10.1016/s0065-2911(08)60236-2. [DOI] [PubMed] [Google Scholar]
  129. Yasuda-Yasaki Y., Namiki-Kanie S., Hachisuka Y. Inhibition of Bacillus subtilis spore germination by various hydrophobic compounds: demonstration of hydrophobic character of the L-alanine receptor site. J Bacteriol. 1978 Nov;136(2):484–490. doi: 10.1128/jb.136.2.484-490.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Yasuda Y., Tochikubo K. Disappearance of the cooperative effect of glucose on L-alanine binding during heat activation of germination of Bacillus subtilis spores. Microbiol Immunol. 1985;29(10):1011–1017. doi: 10.1111/j.1348-0421.1985.tb02965.x. [DOI] [PubMed] [Google Scholar]
  131. Yasuda Y., Tochikubo K. Germination-initiation and inhibitory activities of L- and D-alanine analogues for Bacillus subtilis spores. Modification of methyl group of L- and D-alanine. Microbiol Immunol. 1985;29(3):229–241. doi: 10.1111/j.1348-0421.1985.tb00822.x. [DOI] [PubMed] [Google Scholar]
  132. Yasuda Y., Tochikubo K., Hachisuka Y., Tomida H., Ikeda K. Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination. J Med Chem. 1982 Mar;25(3):315–320. doi: 10.1021/jm00345a016. [DOI] [PubMed] [Google Scholar]
  133. Yasuda Y., Tochikubo K. Relation between D-glucose and L- and D-alanine in the initiation of germination of Bacillus subtilis spore. Microbiol Immunol. 1984;28(2):197–207. doi: 10.1111/j.1348-0421.1984.tb00671.x. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES