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Abstract

Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance
of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss.
Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and
continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the
processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to
understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the
northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined
with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation.
Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and
Dest. Analyses using STRUCTURE suggest the occurrence of from 2 to 9 genetic clusters depending on the model used.
Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum
temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape
genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate
change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for,
and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost
path approaches. Further investigation into the use of information theoretic approaches for model selection is also
warranted.
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Introduction

Dispersal is a fundamental process that can greatly influence

ecological and demographic trajectories within and between

subpopulations [1]. For example, dispersal often leads to gene

flow, the transfer of genetic information from one population to

another [2,3]. Maintaining adequate rates of gene flow is often

beneficial because populations experiencing little gene flow are

susceptible to a loss of genetic diversity due to inbreeding and drift

[2,4,5]. A lack of genetic diversity may also make it difficult for

populations to adapt to changing environmental conditions that

may lead to local extinction [6,7].

Differences in dispersal rates can result from factors including

species-specific philopatry, intra- and interspecific interactions,

predation, physiological tolerances, and simple geographic (Eu-

clidean) distance [8]. Landscape heterogeneity often plays a

substantial role in the ability and/or choice of an organism to

disperse or not [9–11]. Both natural and anthropogenic habitat

fragmentation can detrimentally affect the connectivity and

persistence of populations [12–15]. Landscape genetics seeks to

explicitly quantify the influence of landscape and environmental

variables on microevolutionary processes such as gene flow and

natural selection [16,17]. The approach extends traditional

population genetic studies by explaining the spatial distribution

of genetic variation using components of the landscape. This

particularly powerful approach to studying fine-scale population

structure and its application is meeting with much success [18]. By

combining rapidly evolving molecular markers such as microsat-

ellites with novel approaches to statistical analysis, landscape

genetics identifies a suite of environmental variables likely to

influence population genetic structure [19–21]. Identifying the

landscape components facilitating or constraining gene flow can

aid in delimiting areas for conservation [22], for example, by

designing corridors that maximize functional connectivity [23,24].

Today, few landscape genetic studies focus on tropical areas [18],

which harbour the majority of species [25]. Compared to

temperate localities, relatively little is known about the processes

influencing functional connectivity in species inhabiting this mega-

diverse region.

Tropical deciduous or dry forests (TDF), which also occur in the

Neotropics, are a major biodiversity hotspot [25]. They form a

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e57433



semi-continuous belt throughout the New World from northern

Mexico southwards into northern South America. Both structural

and functional differences differentiate these forests from tropical

rainforests [26]. The amount of annual rainfall is a primary

distinction between these forests, with TDF experiencing up to

eight months of arid-like conditions followed by four months of

deluge. Although evidence suggests that TDF may be far more

diverse than currently realized [27], habitat fragmentation due to

both natural and anthropogenic factors is threatening the

evolutionary potential of species inhabiting this ecosystem

[28,29]. Habitat fragmentation is of particular concern in rapidly

developing countries such as Mexico, where dense continuous

forest is being cleared for both livestock and agriculture [28]. In

Mexico, TDF reaches its northern limit near Alamos, Sonora,

whereas forest density is highest in the southwestern states of

Jalisco, Colima, Michoacan, and Guerrero [30]. Fragmentation of

these forests is documented to have occurred for decades and

continues to increase [31,32]. Unfortunately, we know relatively

little about how fragmentation and other anthropogenic influences

affect species and populations distributed throughout these

ecosystems.

The diversity of Mexico’s herpetofauna is substantial, with

approximately 1,000 described species and many more awaiting

formal description [27,33]. Flanking the Pacific Coast, Mexico’s

TDF also appears to be a centre of endemism for a variety of

amphibian and reptilian taxa [34] including many species of leaf-

toed geckos of the genus Phyllodactylus [35]. These lizards inhabit

arid to semi-arid areas from southern California southwards

through Middle America into northern South America and into

the West Indies. Like many geckos, they are commonly found on

vertical surfaces including bridges and buildings. They also appear

to be common in close proximity to small streams, suggesting that

riparian connectivity may be an important predictor of dispersal

patterns.

Herein we use the Mexican yellow-bellied gecko, Phyllodactylus

tuberculosus, to understand the effects of landscape configuration

and anthropogenic influence on functional connectivity for a small

terrestrial vertebrate presumably dependent on TDF. This species

is an ideal choice to examine the relationship between landscape

and genetics for several reasons. First, the geographic distribution

of the gecko mirrors the distribution of TDF in Mexico. Second,

abundance is relatively high when populations are isolated,

providing a statistically suitable model. Third, along with others

in the genus, this species is at risk of local and area-wide

extirpation due to habitat fragmentation and recent introductions

of non-native, all female species, such as geckos of the genus

Hemidactylus, which appears to be displacing leaf-toed geckos (pers.

obs.). Further, local people actively kill leaf-toed geckos as they are

presumed to be venomous and dangerous to humans. For these

reasons, leaf-toed geckos may soon pose a conservation concern

and identifying landscape components that maximize genetic

connectivity may be necessary for managing the persistence of

populations. Our study site lay in the northernmost limit of TDF

near Alamos, Sonora. We specifically test the following hypoth-

eses: 1) high levels of genetic diversity and differentiation occur

over small spatial scales; 2) anthropogenic fragmentation influ-

ences functional connectivity; 3) riparian connectivity predicts

dispersal patterns, yet 4) some rivers act as dispersal barriers. We

also test for an influence of slope and temperature on genetic

patterns because the species is generally restricted to warm

lowland habitats. Testing these hypotheses and drawing robust

conclusions requires principles and practices drawn from diverse

research disciplines [16]. Therefore, we use recent advances in

landscape genetic techniques [18,36,37] to test our hypotheses

[38] and identify which landscape variables influence functional

connectivity in leaf-toed geckos. We are particularly interested in

adopting multivariate approaches to model selection to assess the

relative influence of multiple variables simultaneously [37].

Materials and Methods

Sampling
Our study area (Fig. 1) has a relatively high degree of forest

cover compared to other locations throughout western Mexico

due, in part, to the federal protection of land (Sierra de Alamos/

Rio Cuchujaqui Reserve). The landscape at lower elevations

(generally under 300 m) consists of tropical dry thornscrub that

gradually transitions into TDF closer to the Sierra de Alamos with

increasing elevation. From 2008 to 2010, we sampled 336 leaf-

toed geckos from 12 different localities (mean = 28 individuals per

locality) throughout the landscape surrounding the Alamos region

(Table 1). Sampling localities were chosen based on landscape

characteristics to allow for testing our hypotheses. We sampled on

opposite banks of two relatively large rivers or arroyos (Rio

Cuchujaqui and Arroyo Tabelo) to test the hypothesis that rivers

served as barriers to gene flow (in addition to conduits through

opposite banks). Following Animal Use Protocols approved by the

Royal Ontario Museum Animal Care Committee, tail tips were

taken in the field and immediately preserved in 95% ethanol for

subsequent genetic analysis. Subsequently, all individuals were

released at the precise site of capture.

DNA extraction and genotyping
DNA was extracted using standard phenol-chloroform proce-

dures. We used polymerase chain reaction (PCR) to amplify 12

polymorphic microsatellite loci developed specifically for P.

tuberculosus [39]. Both negative and positive controls were run on

each PCR plate. PCR products were visualized on an ABI 3730

automated sequencer (Applied Biosystems Inc.) at the Royal

Ontario Museum. Genotyping was performed using GENEMARKER

v.1.95 (SoftGenetics). We re-ran PCRs for approximately 10% of

our samples to quantify any potential errors in genotyping.

Genetic diversity
We calculated diversity statistics for each site including number

of alleles and allelic richness using MICROSATELLITE ANALYSER v.4.05

[40]. Observed (HO) and expected (HE) heterozygosites were

calculated in TFPGA v.1.3 [41]. We tested for site-specific deviations

from Hardy-Weinberg (exact test) and linkage equilibrium using

GENEPOP v.4.0.10 [42,43]. Significance for tests was assessed using

the Markov chain method using 100 batches with 1,000 iterations

per batch. We used the false-discovery rate method to control for

multiple comparisons [44].

Genetic differentiation
We calculated both traditional FST and Jost’s D between

populations. Unlike FST, D measured the degree of allelic

differentiation between populations and was particularly useful

for highly polymorphic markers such as microsatellites [45].

MICROSATELLITE ANALYSER was used to calculate both global and

pairwise multilocus FST [46]. Significance of comparisons was

assessed using 10,000 permutations while implementing a

Bonferroni correction for multiple tests. We used SMOGD v.1.2.5

[47] to calculate pairwise Dest based on harmonic means estimated

over all loci. Unbiased estimates of all metrics were employed to

account for artefacts of sample size [45,48].

Genetic Structure of Leaf-Toed Geckos
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Figure 1. Sampling sites for all individuals and populations of Phyllodactylus tuberculosus included in this study. Darker shades of gray
represent tropical dry forest. Dark lines represent rivers, streams and arroyos sampled throughout the study area.
doi:10.1371/journal.pone.0057433.g001

Table 1. Characterization of genetic diversity of Phyllodactylus tuberculosus at each sampling site included in this study based on
data from 10 microsatellite loci.

Population Elevation (m) n n(msat) HO HE # alleles allelic richness

Road to Navojoa 455 10 10 0.717 0.755 65 65.000

Alamos 375 36 35.2 0.762 0.773 88 64.887

Tabelo A 167 27 26.3 0.701 0.714 70 56.555

Tabelo B 199 30 29 0.721 0.734 69 54.234

Aduana 497 17 16.5 0.756 0.780 75 65.606

Rio Cuchujaqui A 358 30 28.9 0.749 0.762 86 65.451

Rio Cuchujaqui B 261 42 41.3 0.772 0.781 83 64.530

Sierrita 483 38 36.4 0.698 0.707 89 63.881

Mocuzari 124 30 29.6 0.701 0.713 70 55.220

El Quintero 361 30 29 0.690 0.703 83 61.761

Choquincahui (El Cobre) 433 31 29.2 0.709 0.721 81 59.340

San Antonio 388 15 13.6 0.724 0.752 69 62.731

n = number of individuals, n(msat) = number of individuals accounting for missing data, HO = observed heterozygosity, HE = expected heterozygosity; allelic richness
calculated based on population with smallest sample size (n = 10).
doi:10.1371/journal.pone.0057433.t001
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Population structure
We tested for the presence of genetic clusters using STRUCTURE

v.2.3.3 [49,50] to infer population structure. We employed the

admixture model with correlated allele frequencies while specify-

ing a range of K-values (1–12). For simplicity, we created a batch

run specifying the range of K-values to be evaluated and

implemented 10 independent runs per K. Each run was composed

of a burn-in of 30,000 followed by 100,000 iterations, which was

sufficient to reach convergence. We evaluated the most likely

number of clusters using both the ln Pr (X/K) and the DK method

[51]. STRUCTURE HARVESTER [52] was used to visualize outputs and

calculate K based on both methods. To deal with the multi-

modality of utilizing multiple independent runs, we used CLUMPP

v.1.1.2 [53] to permute the admixture coefficients for the runs with

the chosen K-value using the ‘‘Greedy’’ algorithm with 1,000

random input orders. DISTRUCT v.1.1 [54] was then used to

visualize the output from CLUMPP.

Geographic (spatial) information has often provided valuable

insights in population genetic structure [55]. Thus, we compared

our aspatial STRUCTURE results to those that incorporated

information about sampling locations as prior information [56].

We introduced an additional parameter (LOCPRIOR) into the

clustering analysis by specifying a different integer for each

sampling location. We then ran STRUCTURE under the same

conditions as the aspatial model.

Landscape genetic analysis—least-cost paths
We first calculated effective distances between populations using

least-cost path modeling [19,21,57,58]. This assessed the influence

of different landscape and environmental variables on population

genetic structure assuming a single optimal dispersal path. These

effective distances were created in a GIS environment by

parameterizing different resistance surfaces that represented the

hypothesized relationship between a specific habitat feature and

gene flow [8]. For example, if hypothesizing that urban

development versus undisturbed habitat constrained the move-

ment of individuals, we assigned a higher cost value to cells

representing urban habitat.

We tested for the relative influence of several landscape

variables on genetic differentiation based on pairwise Dest.

Landscape variables were selected based on expert knowledge of

which habitat characteristics were most likely important in shaping

patterns of gene flow in the species [8]. Our first model was based

on isolation-by-distance (IBD) [59], which assumed genetic

differentiation was a by-product of simple Euclidean distance

without regard to the landscape. Next, we tested a variety of

landscape genetic hypotheses that explicitly considered the

intervening matrix [10]. First, we tested for the influence of land

cover-type (specifically TDF vegetation) on genetic connectivity.

We utilized a raster data set produced by the North American

Land Change Monitoring System (NALCMS). Nineteen different

land cover-types were classified at a 250 m spatial resolution. We

created resistance surfaces by reclassifying the data to assign higher

cost values to non-forested versus forested habitat. We tested

several different cost ratios (1:2, 1:10, 1:100, 1:1000) to determine

how parameterization might have influenced the results. We used

the Mantel test function in the R package ECODIST [60,61] to test

for both the presence of IBD and to select among the four relative

cost values chosen for parameterization. Optimal values were

selected based on the Mantel r correlation statistic using 10,000

randomizations.

Because P. tuberculosus occurred in lowland tropical environ-

ments only, our second set of analyses developed least-cost paths

based on slope. These data were derived from a GTOPO30 digital

elevation model (DEM) with a 1 km2 spatial resolution produced

from Natural Resources Canada and the U.S. Geological Survey.

This layer consisted of seven elevation classes that were reclassified

into slope to test the prediction that gene flow occurred primarily

throughout lowland habitats. Our study area encompassed an

elevational range between 100 to 500 m above sea level. Because

slope represented continuous data and because we assumed a

linear relationship between slope and gene flow [62], we simply

reclassified the data into 32 classes using floating point (i.e.

continuous) cell values. Higher cost values were assigned to cells

with higher slope. This enabled us to test the prediction that higher

slope resulted in lower levels of gene flow or higher genetic

differentiation.

Because we often captured geckos adjacent to streams and

arroyos, we tested if dispersal occurred primarily via stream

corridors. We first obtained a polyline file representing all of

Mexico’s streams and tributaries from the GISDataDepot, a site

that compiled multiple data layers based on ESRI’s Digital Chart

of the World (DCW). To represent riparian corridors, we created

1 km buffers around stream networks in the polyline file. We then

converted these data into a raster file with a cell size of 100 m2 and

assigned different cost values to cells encompassing buffered

streams versus those that did not. We tested the same relative cost

values as our land cover analysis (1:2, 1:10, 1:100, 1:1000) and

selected the best values based on Mantel correlations.

We tested for effects of minimum temperature of the coldest

period of the year because these lizards are predominantly found

in warm tropical lowland habitats. A significant correlation

between gene flow and minimum temperatures was predicted.

Temperature data were obtained from the WorldClim database at

a resolution of 1 km2. As with slope, we assumed a linear

relationship between temperature and gene flow and we reclas-

sified the data into a continuous distribution with 32 classes. We

assigned higher cost values to cells representing lower minimum

temperatures.

Finally, we utilized a multivariate resistance surface representing

the combined effects of anthropogenic land-use (anthropogenic

model). Data were obtained from the Wildlife Conservation

Society (WCS) and the Center for International Earth Science

Information Network (CIESIN). These data represented the

combined effects of population density, built-up areas, roads,

railroads, navigable rivers, coastlines, land-use, and nighttime

lights (The Last of the Wild, Version Two 2005). The data were

categorized based on the Human Influence Index at a spatial

resolution of 817 m2. Cell values ranged between 0 and 64, with 0

representing no anthropogenic influence and 64 representing

maximum influence. To create least-cost paths, we reclassified the

data into a continuous distribution with 32 classes and assigned

cost values ranging from 0 to 31, with 31 representing the highest

cost to gene flow for cells with the highest anthropogenic influence.

Like slope and temperature, we assumed a linear relationship

between the degree of disturbance and gene flow.

For all least-cost path-analyses, we used the LANDSCAPE GENETICS

TOOLBOX 1.2.3 [63] implemented in ARCMAP 10 to calculate

effective distances between sampling localities. This calculated

both the cumulative cost-distance and the length of the least-cost

path between any two sampling points. Because both distances

could have been sensitive to relative cost values [64], we tested

several different relative values for categorical variables as

described above. For all least-cost path-analyses, we used the

cumulative cost-distance because this metric minimized the degree

of multicollinearity in our predictors.

Genetic Structure of Leaf-Toed Geckos
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Landscape genetic analysis—circuit theory
We also modelled patterns of gene flow using circuit theory [65–

67]. This so-called isolation-by-resistance (IBR) approach has been

shown to be powerful in modeling functional connectivity in both

simulated and empirical data sets [65,66]. We calculated resistance

distances between populations using CIRCUITSCAPE 3.5.7 [68]. Each

calculation used focal points in pairwise mode and an eight-

neighbors connection scheme. Due to memory issues with the

original 100 m stream data, we aggregated cells in this raster to a

resolution of 200 m to obtain reasonable computing times.

Resistance distances based on all other variables were calculated

using the original resolution of the data layer (e.g. 250 m for the

land cover). All calculations were based on values of per-cell

resistance.

Statistical analysis
We used multiple regression analyses on distance matrices

(MRM; [69,70]) in ECODIST to evaluate landscape-genetic

relationships. Although a potentially powerful method for land-

scape-genetic inference [37], few studies have incorporated MRM

analyses (e.g. [71]). Similar to the commonly used partial Mantel

test [72], MRM was developed to test for significant relationships

between a dependent distance matrix (e.g. linearized Dest) and a

number of indicator matrices and identify the contribution of each

explanatory variable to the overall fit of the model [69]. Further,

MRM modeled polynomial and nonlinear relationships [70]. Each

distance matrix was unfolded into vectors representing pairwise

distances. The response vector (i.e. linearized Dest) was then

regressed against each indicator vector (i.e. least-cost or resistance

distances) and the significance of the model was assessed by

permuting the objects of the response vector.

MRM models using all six explanatory variables were not

created for the least-cost analyses due to a relatively high degree of

collinearity among the predictors, which could have resulted in

coefficients with large variances and lead to erroneous conclusions

regarding the direction and magnitude of slope. Some authors

have suggested calculating Variance Inflation Factors (VIF) for

each predictor in a model to ascertain if collinearity might be a

problem in parameter estimation [73]. Like previous studies, we

used VIF values.10 as evidence for substantial multicollinearity

[71]. Thus, for least-cost paths we selected candidate models (see

below) based on both our hypotheses of interests and to minimize

the potential error in estimated regression coefficients. Because

multicollinearity was minimal with our resistance distances

calculated from CIRCUITSCAPE, we included all variables in the

model selection procedure. We predicted a negative relationship

between genetic differentiation and several of our landscape

features including stream networks and the degree of undisturbed

habitat. Because multiple regression models account for the effects

of all included predictors, we anticipated that the regression

coefficients may change depending upon the other variables

included in the model (e.g. Euclidean distance). Univariate MRM

models all resulted in positive coefficients due to spatial

autocorrelation. Thus, particular attention was placed on regres-

sion coefficients in highly supported models containing Euclidean

distance as a predictor.

We utilized information theoretic criteria to select among

candidate models hypothesized to be important predictors of

spatial genetic variation in our system [74]. Specifically, we

calculated second-order AIC values (AICc) for competing candi-

date models based on either least-cost or resistance distances.

Candidate models were selected based on a priori hypotheses

regarding which combination of variables best explained patterns

of genetic structure. In all cases we tested fewer than 20 candidate

models [75]. The best model minimized the amount of informa-

tion lost as represented by the combination of variables with the

lowest AICc value [76]. Different combinations of variables were

compared to the null model of IBD to determine if the

incorporation of landscape variables explained more of the

variation in Dest. We followed previous recommendations in

assessing the relative importance of models [75]. We also used

MUMIN [77] to calculate AICc weights for each model and we

estimated the 95% confidence set of candidate models [74].

Because it remained unknown how information theoretic

criteria performed when evaluating models based on pairwise

distances, we compared our MRM results with a linear mixed

modeling approach [78]. This approach was based on a maximum

likelihood population effects (MLPE) model that explicitly

accounts for non-independence of values in regressions on distance

matrices [79]. We created linear mixed models using the R

package LME4 [80] defining populations as the random effect and

each predictor matrix as a fixed effect. Parameter estimation was

performed using restricted maximum likelihood (REML). All

predictor matrices were centered around their mean prior to

analysis. Statistical significance of both fixed and random effects

were calculated using the R package MIXMOD [81]. Finally, to

select among competing models, we calculated R2
b [82] for each

model based on the Kenward-Roger F and degrees of freedom

[83] calculated using the R package PBKRTEST [84]. MLPE models

were calculated for the top set of candidate models as determined

from the MRM analysis to compare relative performance.

Results

Genetic diversity
All microsatellite data were deposited in Dryad (Provisional

DOI: doi:10.5061/dryad.tj1k5). The genotyping and scoring of

microsatellite alleles had an error rate of less than 1%, and, thus,

high reproducibility. After controlling for false discovery rates,

some loci showed significant deviations from Hardy-Weinberg

expectations within collecting sites. For example, locus G2_96

showed heterozygote deficits at six of the 12 sites, locus P7 at eight

of 12, and locus G2_59 at four of 12 (Table S1). However, only

three alleles were present at locus G2_59 and, thus, there was a

high probability that random chance resulted in significance.

Because loci G2_96 and P7 showed a significant heterozygote

deficit at multiple sites, we ran preliminary analyses with and

without these loci to see how results changed. Although results did

not differ substantially, we adopted a conservative approach and

chose to report results from subsequent analyses excluding these

two loci.

After controlling for false discovery rates, a few loci showed

signs of linkage disequilibrium. For example, locus G2_22 showed

linkage to loci G2_96, P2, P7, P12, and P19. Locus G2_85 showed

signs of linkage with locus P7, and locus P2 with P15. However,

linkage occurred at only two of our 12 sites (Arroyo Tabelo B and

Mocuzari) suggesting that our loci were, in fact, independent,

unlinked markers.

In general, within-site diversity was moderate as shown by both

expected heterozygosity and allelic richness (Table 1). Expected

heterozygosity ranged from 0.7025 to 0.7812 and allelic richness

from 54.2341 to 65.6058. Allelic diversity within loci over all

populations ranged from three alleles at locus G2_59 to 26 alleles

at locus G2_37 (mean number of alleles per locus = 13.1). In

general, diversity estimates were fairly similar among sites. A

highly significant positive relationship occurred between elevation

and genetic diversity that generally corresponded to habitat-type

(tropical thornscrub versus TDF; R2 = 0.5836;P = 0.004; Fig. 2).

Genetic Structure of Leaf-Toed Geckos
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Genetic differentiation
Moderate levels of global genetic differentiation were resolved

based on both FST (FST = 0.0869;P = 0.0001) and D (Dest = 0.248).

Pairwise measures of differentiation revealed moderate to high

levels of population divergence (Table 2). Pairwise FST values

ranged from zero between Aduana and the road to Navojoa (RN)

to 0.201 between La Sierrita and El Quintero. Further, the

majority of FST values were significant based on 10,000 random

permutations of alleles after a Bonferroni correction (P,0.00075).

Values of Dest ranged from moderate to high, showing similar

relative values between populations. El Quintero and Choquinca-

hui were the most divergent from the remaining populations based

on both statistics. We found a high correlation between FST and

Dest (Pearson r = 0.940). Because of this correlation, all subsequent

landscape genetic analyses were performed with Dest only. We

detected a significant positive correlation between Euclidean

distance and Dest (Mantel r = 0.4897, P,0.001).

Population structure
An optimal K-value based on DK suggested a K = 3

(DK = 138.332; Fig. 3a; Fig. S1b). A K-value of 5 was obtained

using the ln Pr(X|K) method (Fig. 3b; Fig. S1a). Individuals on

opposite banks of Rio Cuchujaqui and Arroyo Tabelo did not

form distinct clusters. However, individual-based Mantel tests

found a highly significant barrier effect for both Rio Cuchujaqui

(Mantel r = 0.1148; P ,0.0001) and Arroyo Tabelo (Mantel

r = 0.1126; P = 0.0006).

A second set of analyses utilized a model that explicitly

incorporated prior information for sampling localities to aid in

clustering. These results differed from the clustering results that

did not utilize sampling localities. For example, whereas the DK

method suggested a K of 2 (DK = 80.915; Fig. 4a; Fig. S2b), the plot

of K versus ln Pr(X|K) reached a slight peak at 9 (Fig. 4b; Fig. S2a).

For K = 9, some structure was resolved across opposite banks of

Rio Cuchujaqui and Tabelo (Fig. 4b). The plot of K versus ln

Pr(X|K) showed that likelihood values began to stabilize at about

K = 3, which was a value similar to that chosen using the DK

method in the aspatial analysis. At K = 3, cluster memberships and

admixture coefficients were very similar to those of the aspatial

analysis.

Landscape genetics—least-cost paths
For both forest cover and streams, Mantel r values were highest

with a cost ratio of 1:2 (respectively Mantel r = 0.4344, P = 0.002;

r = 0.6090, P,0.001). The MRM analysis based on least-cost path

distances suggested that the incorporation of landscape variables

explained significantly more variance in genetic differentiation

than a simple IBD model (Table 3; Table S2). Whereas Euclidean

distance was able to explain approximately 44% of the variation in

Dest values, the incorporation of landscape variables increased this

value to approximately 62%. The statistically best supported

model (using AICc weights) was based on a combination of

Euclidean distance, stream connectivity, and the degree of

anthropogenic disturbance (R2 = 0.621; wi = 0.856). Our least-cost

paths based on temperature and slope explained slightly more

variation in Dest than Euclidean distance (0.548 and 0.539 versus

0.44, respectively; Table S1). Least-cost paths based on forest

connectivity received relatively little support with similar weights

to the Euclidean distance model. However, these two distances

were highly correlated (Mantel r = 0.995; P,0.001) leading to very

large VIF values. After accounting for Euclidean distance in

models, regression coefficients for stream connectivity, forest, and

undisturbed habitat (anthropogenic model) were negative and,

thus, associated with a lower Dest and higher gene flow.

Similar results were obtained from the MLPE models with a

model containing Euclidean distance, anthropogenic disturbance,

and stream connectivity receiving the highest support

(R2
b = 0.517; Table 3). All fixed effects for each model were

statistically significant as was the population (random) effect. In

general, the sign of regression coefficients was identical between

MRM and MLPE models. However, for Model C stream had a

negative coefficient for MRM and a positive coefficient in MLPE.

The relative support for top models was the same for both MRM

and MLPE.

Figure 2. Relationship between elevation and genetic diversity (allelic richness) for all populations of Phyllodactylus tuberculosus
included in this study.
doi:10.1371/journal.pone.0057433.g002
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Landscape genetics—circuit theory
Results of MRM based on resistance distances were similar to

those based on least-cost path distances (Table 4). However, slope

appeared to be an important variable influencing gene flow under

a circuit-theoretic approach. The best supported model based on

AICc weights included Euclidean distance, slope, and stream

connectivity (wi = 0.585), with stream being the only variable with

a negative coefficient. The next most supported model, which

included all six variables, received considerably less support

(DAICc = 2.37; wi = 0.167), although well within the estimated

confidence set. Visual examination of cumulative current based on

a composite map of Euclidean distance, stream networks, and

slope was highly congruent with the genetic clusters inferred from

the STRUCTURE analysis (Fig. 5). In most cases AICc weights were

higher for multivariate models incorporating landscape variables

versus a model of simple IBD (Table S3). VIF values were less than

10 for all models suggesting that multicollinearity among

predictors was not likely to be a problem.

Relative support for top candidate models differed between

MRM and MLPE. Unlike MRM, MLPE favored the model

containing all predictors (Rb
2 = 0.673) versus a model with

Euclidean distance, slope, and stream connectivity (R2
b = 0.615;

Table 4). However, in the former many of the fixed effects were

not significant. In general, direction of slope was similar for both

MRM and MLPE models. Incongruence was only detected in

models with non-significant predictors. The population (random)

effect was highly significant in all models.

Discussion

This study highlights the power of adopting a landscape genetics

approach to understanding functional connectivity for tropical

organisms. We show how the incorporation of landscape

heterogeneity into our models can enhance our understanding of

processes shaping the genetic structure of populations. Rates of

deforestation and habitat fragmentation are increasing exponen-

tially throughout these regions. Coupled with climate change, we

still know relatively little about how organisms will respond to

these continuing threats [32,85–87]. Based on our results we

cannot reject the hypothesis that landscape composition is an

important predictor of spatial genetic variation in this system. This

suggests that if we are to fully comprehend how natural and

anthropogenic habitat alteration influences functional connectivity

in tropical organisms, additional landscape genetic studies are

required to infer species-specific responses to continued habitat

change.

Genetic diversity and population structure
Our results detect moderate to high levels of genetic diversity

within populations of P. tuberculosus. Diversity is not substantially

higher in the population near Alamos versus the other areas, as

might be predicted given the tendency for many gecko species to

aggregate near human settlements. Further, a statistically signif-

icant relationship occurs between elevation and allelic richness.

These results corroborate field observations that these lizards are

predominantly encountered in TDF habitat. For example,

elevation of our sites ranges from 100 m to 500 m. This range

in elevation spans two distinct habitat types: tropical thornscrub

and TDF [27]. An abrupt change in tropical vegetation occurs at

approximately 400 m as well as an apparent change in abundance

of geckos; more individuals are encountered per unit of time at El

Quintero (361 m) and Choquincahui (433 m) than the other sites.

Significant population structure occurs based on both pairwise

differentiation statistics and results from STRUCTURE. Most pairwise

Fst values are high and statistically significant, with the localities El

Quintero and Choquincahui being most divergent from all other

populations. Values of Dest yield similar results. Thus, leaf-toed

geckos appear to exhibit substantial population differentiation over

relatively fine spatial scales.

Considerable recent debate exists as to the best FST-like

analogue for assessing genetic differentiation between populations

[48,88–90]. The traditional FST metric (GST for multiple loci and

alleles) is highly sensitive to within-population heterozygosity,

making it difficult to compare values between studies and markers

[45,91]. Further, because FST is dependent on the number of

alleles and heterozygosity, two populations can have low FST

values despite sharing no alleles. For example, studies have shown

that in two hypothetical populations with a total of 16 alleles, FST

is constrained to less than 0.1 even when the two populations share

no alleles [90]. New metrics such as G’ST [91] and D [45]

circumvent some of the more common issues found with FST [92].

Although these new metrics are not without criticism [93], a

Table 2. Pairwise genetic differentiation between populations estimated from 10 microsatellite loci.

Road to
Navojoa Alamos Tabelo A Tabelo B Aduana Cuch A Cuch B

La
Sierrita Mocuzari El QuinteroChoquincahui

San
Antonio

Rd to Navojoa -- 0.106 0.181 0.174 0.000 0.119 0.075 0.048 0.094 0.325 0.311 0.113

Alamos 0.032 -- 0.197 0.166 0.072 0.086 0.095 0.139 0.151 0.217 0.309 0.032

Tabelo A 0.080 0.080 -- 0.050 0.125 0.196 0.223 0.257 0.133 0.260 0.309 0.248

Tabelo B 0.065 0.059 0.026 -- 0.143 0.224 0.232 0.252 0.100 0.293 0.377 0.197

Aduana 20.003 0.021 0.058 0.059 -- 0.074 0.084 0.069 0.123 0.207 0.269 0.083

Cuch A 0.039 0.028 0.082 0.076 0.024 -- 0.059 0.131 0.150 0.170 0.195 0.134

Cuch B 0.033 0.029 0.087 0.075 0.031 0.021 -- 0.137 0.197 0.236 0.319 0.101

La Sierrita 0.042 0.056 0.154 0.123 0.047 0.078 0.069 -- 0.176 0.345 0.378 0.155

Mocuzari 0.045 0.063 0.068 0.049 0.056 0.055 0.070 0.097 -- 0.267 0.318 0.172

El Quintero 0.149 0.118 0.147 0.151 0.128 0.096 0.111 0.201 0.150 -- 0.009 0.217

Choquincahui 0.140 0.122 0.142 0.150 0.125 0.092 0.114 0.199 0.142 0.008 -- 0.336

San Antonio 0.040 0.019 0.099 0.078 0.027 0.040 0.042 0.069 0.083 0.135 0.144 --

Values above diagonal represent Dest and values below diagonal FST. Bold values of FST indicate significance (P,0.00075) after Bonferroni correction.
doi:10.1371/journal.pone.0057433.t002
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comparison of multiple statistics can maximize information [92].

Whereas D is a useful metric for landscape-genetic inference,

spatially explicit computer simulations may provide a greater

understanding of how this measure compares to other commonly

used differentiation statistics.

Our STRUCTURE analyses reveal cryptic population structure.

We infer values of K both with and without incorporating prior

information on sampling localities. Incorporating locality data as a

prior changes our inference of K. The DK method suggests K = 2,

whereas the plot of K versus ln Pr(X|K) suggests K = 9. Populations

at El Quintero and Choquincahui always group together into a

single cluster and the populations at Mocuzari and Tabelo fall into

separate clusters from the remaining populations in several

STRUCTURE analyses. STRUCTURE plots generally corroborate the

levels of differentiation based on Dest and FST.

We never detect structure on opposite banks of the Rı́o

Cuchujaqui or Arroyo Tabelo based on aspatial Bayesian

clustering (i.e. individuals on opposite banks cluster as one group

with similar admixture coefficients). However, spatial clustering at

K = 9 reveals different ancestries on opposite banks. Further,

Mantel tests suggest a significant barrier effect for these features.

Although Bayesian clustering methods, and STRUCTURE in

particular, can be a powerful tool for inferring recent linear

barriers to gene flow [94,95], their high Type-1 error rates,

relatively low power, and difficulty in interpretation require

caution when using these methods to test barrier hypotheses. Of

interest is that we were able to detect a barrier effect even though

on several occasions we witnessed geckos dispersing across the

underside of bridges. This suggests that some individuals are

crossing streams and suggests that Mantel tests may be the most

sensitive to detect a relatively weak barrier effect.

New, sophisticated algorithms achieve difficult genetic cluster-

ing. Although early algorithms are entirely aspatial in nature [49],

recent applications incorporate prior locality information into the

analysis [96–99]. STRUCTURE incorporates geographic information

by assigning different codes to different populations [56]. Although

relatively underutilized, this method is appealing in cases like ours

where geographic information is available for populations and not

individuals. Different Bayesian clustering programs often obtain

different results [94,95] and this necessitates additional empirical

and simulation studies to test the power of the spatial approach in

STRUCTURE in comparison to the fully spatial models implemented

in other software packages.

To date, few studies examine the population genetic structure of

other lineages of geckos. For example, a recent study on two

species of sympatric gecko species report significant differences in

genetic diversity and structure [100]. Their results suggest different

dispersal abilities in sympatric species, with one species exhibiting

a maximum dispersal distance of only 500 m. The results of our

analysis of P. tuberculosus also suggest that many gecko species may

have limited dispersal abilities and rely on landscape character-

istics to facilitate dispersal.

Landscape genetics: least-cost paths
To date, few studies investigate landscape-genetic relationships

in Neotropical vertebrates [18,101]. Our results identify several

landscape variables important in shaping the genetic connectivity

of leaf-toed geckos. Landscape variables explain significantly more

variation in genetic differentiation than IBD. For example, our

qualitative observations of relative abundance in different habitats

suggest that forest fragmentation will have detrimental effects on

functional connectivity. Several landscape genetic studies also

report a negative relationship between forest fragmentation and

genetic connectivity in small vertebrates [62,102], but most of

these focus on temperate systems. After controlling for Euclidean

distance, our least-cost path results show a negative relationship

between forest connectivity and genetic differentiation, suggesting

that gene flow is higher through forest patches (Table S2).

However, we view these results with caution for several reasons.

First, models including forest are less well-supported than

alternative candidate models. Second, VIF values are exception-

ally high for these models and this may be causing large variances

in regression coefficients. Third, our study area contains a

relatively large amount of undisturbed forest compared to localities

in southern Mexico. Thus, Euclidean distances and least-cost path

distances based on forest are nearly identical. Additional landscape

genetic studies are necessary in areas experiencing rapid loss of

TDF in order to understand the effect of forest patch dynamics on

functional connectivity.

Our least-cost path analysis suggests that anthropogenic

disturbance is influencing functional connectivity in geckos.

Because we parameterize the multivariate anthropogenic resis-

tance surface by assigning higher costs to disturbed areas, the

significantly negative regression coefficient (after controlling for

Euclidean distance) suggests that undisturbed habitat is associated

with a lower Dest or higher gene flow. These results are concordant

with other studies that show a negative relationship between

anthropogenic disturbance and rates of gene flow [103–105]. This

concordance suggests that although geckos are frequently

encountered in close proximity to human settlements, these areas

have a detrimental impact on genetic connectivity.

Although geckos are common on abandoned houses in TDF

habitat, individuals of P. tuberculosus are only present in and around

houses in absence of introduced geckos of the genus Hemidactylus

(pers. obs.). Very few leaf-toed geckos can be found syntopically

with Hemidactylus and on one occasion we witnessed the head of a

P. tuberculosus in the jaws of H. frenatus. Thus, in heavily

anthropogenically influenced areas, it appears that introduced

Hemidactylus are directly competing with native Phyllodactylus. To

exacerbate this issue, people often kill leaf-toed geckos on site as

they believe the darker colour of these geckos indicates that they

are venomous. Conservation efforts should focus on educating

local people on differences between native and non-native flora

and fauna to aid in the maintenance and protection of the native

species. This is especially important for species commonly found

close to human settlements.

The minimum temperature of the coldest period influences gene

flow, which explains slightly more of the variance in Dest than

Euclidean distance (0.548 vs. 0.444). TDF is a seasonal forest with

approximately eight months of warm, wet conditions and four

months of dry, cooler conditions [26]. These geckos commonly

occur in hot tropical lowland environments, and less gene flow will

occur in localities that experience lower temperatures. Our MRM

and MLPE results suggest that these geckos are avoiding areas

experiencing colder temperatures. Seasonality and climate are

important variables shaping connectivity for other species [106–

Figure 3. STRUCTURE results excluding prior information on sampling locality for Phyllodactylus tuberculosus included in this study. a)
Results for K = 3 selected using the DK method. b) Results for K = 5 selected using ln Pr(X|K). Each vertical bar represents a single individual with
different colors representing the proportion of an individual’s genome originating from that specific cluster. Names below plots represent population
codes referred to in the text. Colored circles represent the most likely ancestry.
doi:10.1371/journal.pone.0057433.g003
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109]. Future studies will identify if this is a common trend in

temperature-dependent species and if/how patterns will change

with the continual threat of global warming.

Many geckos are from near bridges and rocky outcroppings

adjacent to streams and rivers. Thus, we test the hypothesis that

riparian networks are an important component shaping patterns of

gene flow. Our results suggest that riparian connectivity is an

important predictor for patterns of dispersal, as this variable

always occurs in our top models. However, these features may also

serve as a genetic barrier. Thus, it appears as if geckos may

disperse along riparian networks, but seldom cross them. Previous

studies conflict as to the role riparian networks play in shaping

functional connectivity in small terrestrial vertebrates. For

example, streams facilitate gene flow among populations of

blotched tiger salamanders (Ambystoma tigrinum melanosticum) [19]

as they do in Rocky Mountain tailed frogs, (Ascaphus montanus)

[110], and Pacific jumping mice, (Zapus trinotatus) [20]. Conversely,

gene flow occurs terrestrially in coastal tailed frogs (Ascaphus truei)

and does not follow riparian corridors [62]. Combined, these

results illustrate the utility of a GIS-based landscape genetic

approach to understanding the influence of stream networks on

genetic connectivity of small terrestrial vertebrates and reaffirm

the necessity for examining species-specific processes [18].

Nevertheless, evidence suggests that riparian corridors should be

given conservation priority in many cases.

Landscape genetics: circuit theory
Our results based on resistance-distances derived from a circuit

theoretic approach are similar to those based on least-cost paths.

However, slope becomes a more important predictor of genetic

variation in the former models, where populations separated by

higher slopes experience lower rates of gene flow (Table 4). These

results are similar to numerous other studies that show a direct

relationship between topological relief, elevation, and slope on

rates and patterns of gene flow in terrestrial vertebrates [19,111–

113]. Riparian connectivity and anthropogenic disturbance also

appear as important components based on resistance-distances.

Similar to the least-cost models, we find relatively weak evidence

for an influence of forest structure on genetic connectivity.

However, when forest is included in a model with Euclidean

distance its coefficient is negative, suggesting that intact forest may

facilitate gene flow.

Circuit theoretic approaches complement least-cost path

modeling and often explain more of the variance in genetic

differentiation than more traditional methods [66,67]. For

example, slope becomes an important predictor of genetic

differentiation in our resistance models. This makes sense

intuitively and biologically because geckos are unlikely to disperse

along one narrow strip of optimal slope. Thus, the application of

circuit theoretic approaches is particularly attractive when a single

optimal dispersal route is unlikely. The relative utility of least-cost

versus resistance distances will likely depend on the scale of the

study and the specific landscape feature in question. However,

testing for congruence with both approaches will result in more

robust conclusions regarding the influence of specific landscape

features. Our model with the largest AICc weight (0.626) and R2
b

(0.673) based on resistance distances explains similar variation in

Dest as our least-cost models. However, unlike the least-cost

analysis, we can combine all resistance distances into our models

due to the lack of collinearity among the predictors. Our results

corroborate previous findings and suggest that a combination of

circuit theoretic and least-cost models provides a powerful tool for

investigating functional connectivity in dynamic landscapes.

Statistics and landscape genetics
Landscape genetics is still a relatively new discipline [16] and a

large number of recent studies focus on testing the power of

various analytical techniques for understanding the influence of

landscape variables on microevolutionary processes

[37,38,94,95,114,115]. Although the Mantel and partial Mantel

tests continue to be the most widely used methods to link

landscape and genetic data [18], recent research suggests that

Figure 4. STRUCTURE results including prior information on sampling locality for Phyllodactylus tuberculosus included in this study. a)
Results for K = 2 selected using the DK method. b) Results for K = 9 selected using ln Pr(X|K). Each vertical bar represents a single individual with
different colors representing the proportion of an individual’s genome originating from that specific cluster. Names below plots represent population
codes referred to in the text. Colored circles represent the most likely ancestry.
doi:10.1371/journal.pone.0057433.g004

Table 3. Multiple regression on distance matrices (MRM) and maximum likelihood population effects (MLPE) results showing the
relationship between pairwise genetic distance (linearized Dest) and least-cost path cost distances incorporating landscape
heterogeneity.

Model Variables b P
Model
R2 P VIF

Model
AICc DAICc

Akaike
Weight (wi) b (MLPE) P (MLPE) R2

b PRE

A Euclidean 2.75E-05 0.0014 0.621 0.0001 20.26 2118.13 0.00 0.856 1.89E-05 ,2E-16 0.517 0.0200

Anthropogenic 21.72E-06 0.0077 4.20 21.12E-06 ,2E-16

Stream 26.77E-06 0.1152 13.64 24.11E-06 0.0090

B Euclidean 1.62E-05 0.0002 0.573 0.0001 3.86 2112.60 5.53 0.054 1.16E-05 ,2E-16 0.467 0.0100

Anthropogenic 21.46E-06 0.0426 3.86 28.42E-07 ,2E-16

C Temperature 1.99E-06 0.0052 0.566 0.0001 5.39 2111.53 6.60 0.032 1.09E-06 ,2E-16 0.454 0.0020

Stream 22.65E-06 0.3308 5.39 2.01E-07 0.0300

D Temperature 1.44E-06 0.0001 0.548 0.0001 2111.06 7.07 0.025 1.14E-06 ,2E-16 0.446 0.0050

Candidate models tested were based on a priori hypotheses and to minimize collinearity among predictors. For clarity, only models with relatively high support based
on DAICc and wi are shown (i.e. confidence set of candidate models; [74]). Optimal cost values used to parameterize resistance surfaces prior to calculating each least-
cost path were selected based on Mantel r correlation coefficients. VIF = Variance Inflation Factor. PRE represents P-value for population effect.
doi:10.1371/journal.pone.0057433.t003
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these methods suffer from low power and high Type-1 errors

[37,116]. Recognizing these limitations, recent studies have

concluded that partial Mantel tests implemented in a causal

modeling framework are a powerful tool [38,114]. However,

landscape-genetic relationships are often multivariate and are best

represented in models that simultaneously consider multiple

landscape and environmental variables [8]. Thus, a MRM

approach serves as a powerful method to understanding the

complex suite of factors important in shaping the spatial

distribution of genetic variation [37]. Our study highlights the

value of applying MRM analyses to both least-cost and resistance

distances. Surprisingly, few studies use this analytical method [71].

Although powerful, MRM approaches have limitations that

need to be addressed [69,70]. Collinearity often occurs among

independent variables because they are in the form of distances.

Often, this will manifest itself in least-cost analyses and its severity

depends on landscape structure and the chosen distance metric

[37]. Multicollinearity will not affect predictions of the variance of

the dependent variable, but it may have a consequence on

individual regression coefficients because of higher standard

errors. Regression coefficients for predictors can change drastically

depending on what other predictors are included in the model

[69]. Researchers implementing MRM should examine the

influence of multicollinearity on model results and how regression

coefficients change with different models. Rigorous model-

selection criteria, such as information theoretic or stepwise

regression methods, can identify the best combination of

explanatory variables.

Although multicollinearity occurs in our least-cost path data,

coefficients change little with different explanatory models

(Table 3; Table S2). Thus, we are confident in our conclusions

regarding landscape-genetic relationships in this system. In cases

where coefficients change drastically between models, VIF values

will identify the degree of correlation among the predictors. We

recommend that future landscape genetic studies using methods

such as MRM and Mantel tests report VIF for each model

examined. We also encourage the exploration of ridge regression

techniques for landscape-genetic inference.

It remains unclear how the pairwise nature of distance matrices

can influence model-selection using information theoretric metrics

such as AIC, which generally assume independent observations.

Other recent studies acknowledge this potential issue and propose

alternatives through the use of Delaunay triangulation [102] or

linear mixed models [78]. Unfortunately, the former drastically

simplifies landscape heterogeneity while model selection in linear

mixed models brings another component of statistical uncertainty.

Further, both the sign and magnitude of coefficients may differ

depending on the method of analysis used (Table 3,4). The relative

performance of these methods for landscape-genetic inference

requires evaluation using spatially explicit simulations before strict

recommendations can be made.

Conservation implications
Habitat fragmentation and extirpation continue to threaten

tropical ecosystems throughout the globe [86,117]. Fragmentation

of TDF in Mexico is of particular concern as these forests form the

predominant vegetation-type and are known to be a biodiversity

hotspot [27,30,31]. A time-series analysis of Mexican TDF

reported that by 1990 only 27% of intact forest remained due to

unabated anthropogenic conversion for agriculture and pasture-

land [28]. The TDF near Alamos constitutes one of the most

undisturbed tracts of continuous forest in Mexico due, in part, to

federally protected reserves [27]. However, even in areas of

relatively high forest cover, slight anthropogenic disturbance may

have detrimental impacts to functional connectivity. Our study

highlights the need for additional landscape genetic studies

focusing on TDF ecosystems to better understand how habitat

fragmentation and climatic change will influence ecological and

Table 4. Multiple regression on distance matrices (MRM) and maximum likelihood population effects (MLPE) results showing the
relationship between pairwise genetic distance (linearized Dest) and resistance distances incorporating landscape heterogeneity.

Model Variables b P Model R2 P VIF Model AICc DAICc Akaike Weight (wi)b (MLPE) P (MLPE) R2
b PRE

A Euclidean 7.81E-06 0.0005 0.626 0.0001 1.65 2118.94 0 0.545 4.95E-06 ,2E-16 0.615 3.00E-04

Slope 9.00E-02 0.0070 1.77 1.19E-01 ,2E-16

Stream 21.95E-01 0.0734 2.11 21.28E-01 0.0010

B Euclidean 8.47E-06 0.0006 0.654 0.0003 2.18 2116.57 2.37 0.167 4.75E-06 ,2E-16 0.673 9.00E-05

Anthropogenic 22.03E-02 0.4354 3.31 7.61E-03 0.1200

Stream 22.02E-01 0.1782 3.33 28.56E-02 0.0700

Forest 8.64E-02 0.7342 4.62 21.04E-01 0.9700

Slope 4.74E-02 0.4369 6.48 1.47E-01 0.0400

Temperature 2.75E-02 0.5779 8.30 21.19E-02 0.3200

C Euclidean 7.90E-06 0.0006 0.626 0.0002 1.92 2116.56 2.38 0.166 5.20E-06 ,2E-16 0.624 2.00E-04

Forest 21.83E-02 0.9152 2.52 25.99E-02 0.3000

Stream 21.87E-01 0.1851 3.21 28.95E-02 0.1000

Slope 8.92E-02 0.0111 1.88 1.17E-01 ,2E-16

D Euclidean 8.32E-06 0.0003 0.606 0.0001 2.06 2115.53 3.41 0.099 5.11E-06 ,2E-16 0.568 1.00E-05

Slope 5.05E-02 0.0670 1.47 8.60E-02 ,2E-16

Anthropogenic 22.53E-02 0.1106 1.54 29.21E-03 2.00E-04

Candidate models tested were based on a priori hypotheses. For clarity, only models with relatively high support based on DAICc and wi are shown (i.e. confidence set
of candidate models; [74]). Optimal cost values used to parameterize resistance surfaces prior to calculating resistance distances were selected based on Mantel r
correlation coefficients. VIF = Variance Inflation Factor. PRE represents P-value for population effect.
doi:10.1371/journal.pone.0057433.t004

Genetic Structure of Leaf-Toed Geckos

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e57433



evolutionary processes. To this end, researchers should focus on

developing geospatial data sets at finer spatial resolutions. This will

allow a far more comprehensive examination of the effect of

landscape-level processes on the spatial distribution of genetic

variation. Analyses incorporating high-resolution landscape layers,

highly polymorphic genetic markers, and sophisticated analytical

techniques will allow the design of movement corridors to

maximize functional connectivity for species inhabiting this

threatened ecosystem.
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Figure S1 a) STRUCTURE results illustrating changes in ln
Pr(X|K) under the aspatial model. b) STRUCTURE results

based on the second order rate of change (DK method) under the

aspatial model. For each K, 10 independent simulations were

performed.

(TIF)

Figure S2 a) STRUCTURE results illustrating changes in ln
Pr(X|K) under the spatial model. b) STRUCTURE results based

on the second order rate of change (DK method) under the spatial

model. For each K, 10 independent simulations were performed.

(TIF)

Table S1 Genetic diversity statistics per locus and
population for Phyllodactylus tuberculosus sampled
throughout the Alamos, Sonora region.
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Table S2 Multiple regression on distance matrices
(MRM) results showing the relationship between pair-
wise genetic distance (linearized Dest) and least-cost
path cost distances incorporating landscape heteroge-
neity. Candidate models tested were based on a priori hypotheses

and to minimize collinearity among predictors. Optimal cost

values used to parameterize resistance surfaces prior to calculating

each least-cost path were selected based on Mantel r correlation

coefficients. VIF = Variance Inflation Factor.
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Table S3 Multiple regression on distance matrices
(MRM) results showing the relationship between pair-
wise genetic distance (linearized Dest) and resistance
distances incorporating landscape heterogeneity. Candi-

date models tested were based on a priori hypotheses. Optimal

cost values used to parameterize resistance surfaces prior to

calculating resistance distances were selected based on Mantel r

correlation coefficients. VIF = Variance Inflation Factor.

(DOCX)

Acknowledgments

We thank Anibal Dı́az de la Vega, Martı́n Gabriel Figueroa Martinez, and

Stephanie Meyer for help with field work. Marie Josée Fortin, Ilona

Naujokaitis-Lewis, Erika Crispo, and Maarten van Strien helped with GIS

and statistical analysis. Oliver Haddrath, Kristen Choffe, and Amy

Lathrop provided laboratory assistance. All research was conducted using

approved Animal Use Protocols. All necessary permits (SGPA/DGVS/

1995/08, SGPA/DGVS/01493/09, SGPA/DGVS/3220/10) were ob-

tained from SEMARNAT through the Universidad Nacional Autónoma

de México (UNAM).

Author Contributions

Conceived and designed the experiments: CB VHJ FRM RWM.

Performed the experiments: CB VHJ. Analyzed the data: CB. Contributed

reagents/materials/analysis tools: RWM. Wrote the paper: CB RWM.

References

1. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford

University Press, New York. Pp. 452.

2. Slatkin M (1987) Gene flow and the geographic structure of natural

populations. Science 236: 787–792.

3. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol

74: 21–45.

4. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation

Genetics. New York, Cambridge University Press, 617 p.
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