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Abstract
Mammalian gene regulation is often mediated by distal enhancer elements, in particular, for tissue
specific and developmental genes. Computational identification of enhancers is difficult because
they do not exhibit clear location preference relative to their target gene and also because they lack
clearly distinguishing genomic features. This represents a major challenge in deciphering
transcriptional regulation. Recent ChIP-seq based genome-wide investigation of epigenomic
modifications have revealed that enhancers are often enriched for certain epigenomic marks. Here
we utilize the epigenomic data in human heart tissue along with validated human heart enhancers
to develop a Support Vector Machine (SVM) model of cardiac enhancers. Cross-validation
classification accuracy of our model was 84% and 92% on positive and negative sets respectively
with ROC AUC = 0.92. More importantly, while P300 binding has been used as gold standard for
enhancers, our model can distinguish P300-bound validated enhancers from other P300-bound
regions that failed to exhibit enhancer activity in transgenic mouse. While GWAS studies reveal
polymorphic regions associated with certain phenotypes, they do not immediately provide
causality. Next, we hypothesized that genomic regions containing a GWAS SNP associated with a
cardiac phenotype might contain another SNP in a cardiac enhancer, which presumably mediates
the phenotype. Starting with a comprehensive set of SNPs associated with cardiac phenotypes in
GWAS studies, we scored other SNPs in LD with the GWAS SNP according to its probability of
being an enhancer and choose one with best score in the LD as enhancer. We found that our
predicted enhancers are enriched for known cardiac transcriptional regulator motifs and are likely
to regulate the nearby gene. Importantly, these tendencies are more favorable for the predicted
enhancers compared with an approach that uses P300 binding as a marker of enhancer activity.
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1. Introduction
Eukaryotic transcription is intricately regulated at multiple levels including chromatin
reorganization through epigenomic modifications and sequence specific binding of
transcription factors (TF) to either proximal promoter or to distal enhancer/repressor regions
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of the gene.1,2 Enhancers can regulate their target genes from long distances, up to a
megabase away and are especially important in regulating developmental and tissue-specific
genes.3,4 Numerous genome wide association studies (GWAS) have revealed genomic loci
associated with various human traits.5 Going from association to causality is however a
major challenge, because a vast majority of GWAS signals lie in non-coding regions, often
far from any gene, and our understanding of functional consequences of non-coding
mutations is incomplete. It is possible that many of these associations are mediated via
regulatory regions.6 By investigating putative polymorphic enhancers near GWAS signals,
we might be able to identify the causal links between genetic variability and disease, at least
in some cases. Thus, both for our fundamental understanding of transcriptional regulation as
well as for interpretation of genotype-phenotype relationships, a comprehensive knowledge
of context-specific enhancers is critical.

Large scale identification of enhancers is challenging because they do not have sufficiently
discriminating sequence properties (except for their tendency to harbor homotypic binding
motifs7) and their location is not restricted relative to the location of the target gene.
Moreover, enhancers are often tissue and cell-type specific and are detectable only under the
appropriate conditions. Recent revolution in sequencing technologies have triggered several
large scale profiling of epigenomic marks and analysis of these marks have revealed strong
associations between enhancers and specific epigenomic marks (either positive or
negative8–10). Using genome-wide profiling of several epigenomic marks, Ernst et al.
segmented the genome into 51 segment classes, where each segment class is defined by a
specific combination of epigenomic marks.8,11 They designated two of these segment
classes as strong and weak enhancers. Apart from epigenomic marks, histone acetylase P300
is known to bind to tissue-specific enhancers, with high rate of experimental validation
using mouse transgenic.10,12 However, it is argued that while P300 may mark tissue-specific
enhancers, those enhancers are not necessarily active in a specific context.13 This assertion
is consistent with less than perfect validation rate of P300 bound regions as enhancers.
Despite this, previous approaches to predict enhancers have used P300 bound regions as the
gold standard to assess the methods prediction accuracy.14,15

Here we report an SVM trained specifically on 83 validated cardiac enhancers using four
epigenomic profiles marks (H3K4me1, H3K27me3, P300 and DNase hypersensitivity) in
human heart tissue. Our model achieves a cross-validation classification accuracy of 84%
and 92% on positive and negative sets respectively. It was encouraging that our model can
distinguish validated enhancers from those that were bound by P300 but failed to exhibit
enhancer activity in transgenic mouse. Next, starting with a comprehensive set of 229 SNPs
associated with cardiac phenotypes in 36 GWAS studies, we identified putative enhancers
harboring SNPs in linkage disequilibrium (LD) with the GWAS SNP. We found that our
predicted enhancers are enriched for binding sites for all known core cardiac transcriptional
regulators GATA, MEF2, STAT, NF-AT, Nkx, and FOX. Using a novel approach we show
that the predicted enhancers are likely to regulate the nearby gene. Our predicted enhancers
uniquely point to a few genes highly relevant to the heart disease. Moreover, these
tendencies of having enriched cardiac transcriptional motifs and likelihood of regulating
nearby genes are more favorable for the predicted enhancers compared with an approach
that uses P300 binding as a marker of enhancer activity. Overall, we show that a SVM
model trained exclusively on validated enhancers performs better than those that use P300
binding as gold standard and that GWAS studies can be better interpreted in light of
predicted polymorphic enhancers.
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2. Results
2.1. SVM model for cardiac enhancers

2.1.1. Data—Heart tissue was chosen for our analysis because of the availability of both
relevant epigenetic data (H3K4me1, H3K27me3, P300 and DNase hypersensitivity) and
validated human enhancers. We collected 83 experimentally heart enhancers validated in
mouse transgenic from VISTA browse and split them into 1kb regions (step size 500 bps) to
be used as positive training set. Negative set was constructed by mixing random samples of
1 Kb long regions from the genome and randomly selected promoters. H3K4me1,
H3K4me3, H3K27me3, P300 and DNase-I epigenetic markers, which have previously been
shown to be associated with tissue-specific enhancers, were collected for the heart tissue
from the GEO database. For each epigenetic mark we calculated its average signal strength
across every 1 Kb genomic region as feature vector of the region. In order to normalize the
feature vectors of the positive and negative set to zero mean and unit variance, we randomly
sampled 40,000 1 Kb regions across the genome to estimate mean and variance of feature
vector.

2.1.2. Training—Epigenetic marks relevant to enhancers are relatively sparse in the
genome. If the negative example in the training set only included random regions then SVM
would choose subset of these inactive regions as its support vectors and would create a
classifier hyperplane separating inactive regions from any epigenetically active region,
resulting in high false positive rate. Therefore, in our negative set, in addition to random
genomic regions, we added gene promoters as examples of epigenetically active non-
enhancer regions. Figure 1 shows the effect of varying the proportion of promoters region in
negative training set. In general, we found that a greater proportion of promoters in negative
set improves positive set accuracy with relatively smaller decline in negative set accuracy, at
least initially. This suggests that including a small fraction of promoters in the negative
training set results in a better classification. Therefore, we constructed the negative training
set by mixing 1000 random genomic regions and 250 randomly selected gene promoters.

2.1.3. Testing—We used 5-fold cross validation for positive set accuracy estimate. For
negative test set we randomly sampled 1000 1kb genomic regions. On performing grid
search (see Methods) to train the SVM model the average testing classification accuracy on
positive set was 84.1% and on negative set was 92%. The roc curve for the model prediction
is shown in Figure 2. The AUC of the model was 0.9231.

Despite some evidence to the contrary, a number of previous works have assumed P300-
bound regions to be active enhancers and used them as gold standards to train and evaluate
enhancer prediction tools. Next, we tested whether our model trained on validated enhancer
and oblivious of P300 binding can nevertheless distinguish active and inactive P300-bound
regions. We tested our model with 12 P300 peaks in human heart which were found not to
have enhancer activity.16 Interestingly, the model classified 10(83%) of these cases as non-
enhancers. Although based on a small set of examples, this suggests that our model can
distinguish inactive P300-bound regions from active enhancers.

Narlikar et al.17 proposed a model based on specific motifs as features for cardiac enhancer
identification. To compare performance of our model with their’s, 83 validated enhancers
were separated into 60 training and 23 testing instances. SVM was trained on the 60
instances. We extracted the 1Mb regions flanking each of the 23 test enhancers and
predicted enhancer in those genomic regions using the trained SVM. We first checked how
well P300 can retrieve the validated enhancers. We found that there are only 69 P300 peaks
in adult human heart in the 23 genomic regions, out of which only one overlapped with a
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validated enhancer. In other words, P300 peaks are poor predictor of enhancer activity in
this context.

Using our trained SVM model we scored each 1 Kb region in the test set. Cardiac enhancer
predicted in Narlikar et al. 17 are typically much shorter. For fair comparison with Narlikar
et al. 17 (1) we extended each of their enhancer to 1 Kb region flanking the reported
location, and (2) used a threshold on the enhancer score such that the predictions made by
our SVM and the Motif based model cover almost the same number of enhancers (same
basepair coverage as well due to extension) in the genomic test set. Among the 8522
enhancer regions predicted by the SVM, 21 of the 23 validated enhancers were included,
while among 8551 enhancer regions predicted by Narlikar et al.17 only 13 were covered. we
repeated the above comparison between our method, P300 peaks and Narlikar et. al. 10
times with different sets of 60 training and 23 testing instances out of total 83 enhancers.
Figure 3 shows the number of enhancer predicted by each method across different iterations.

Taken together, these results suggest that the SVM model trained on epigenomic data is
more suitable for identifying cardiac enhancers than are P300 binding or motif based
models.

2.2. Identification of cardiac enhancers near SNPs associated with cardiac phenotypes
Next, we hypothesized that the causal variants underlying GWAS signals might lie within an
enhancer element and affect gene regulation. We tested this hypothesis on SNPs associated
with a variety of cardiomyopathies. Starting with NHGRI’s GWAS catalog,5 which includes
1332 studies revealing 6852 SNPs, we manually selected studies for cardiovascular disease
traits. This yielded 229 SNPs from 36 studies. We then extended this seed SNPs set to
include all other SNPs in Linkage Disequilibrium (LD) with a seed SNP using Broad
Institutes SNAP server.18 We included all SNPs within 500kb from a seed SNP with r2 ≥
0.3. The extended SNP were merged from the 1000 Genome Project and multiple HapMap
releases (Consortium 2003; Consortium 2010). For each of the resulting 14233 SNPs, we
scored 1kb flanking region using our SVM model to prioritize them as potential cardiac
enhancers. Of all SNPs, the SVM scored 1054 as having enhancer probability ≥ 0.8. We
found that distance of these enhancers from the corresponding GWAS SNP was
significantly shorter than expected (Wilcoxon p-value = 3.9E-05).

2.3. Cardiac enhancers near cardiac GWAS SNPs are enriched for cardiac regulator motifs
Cardiac transcription is primarily regulated by members of GATA, MEF2, STAT, NF-AT,
Nkx, and FOX families of TFs.19–22 Next, we tested whether predicted enhancers near
GWAS SNPs are enriched for known cardiac TF binding motifs. We first constructed three
SNP sets: (1) eSNPs: comprised of the top 500 SNPs in LD with a GWAS SNP ranked by
the SVM score, (2) pSNPs: the top 500 SNPs in the LD with a GWAS SNP ranked by mean
P300 tag density (using bigwig summary tool from UCSC) in human heart, (3) gSNPs: The
GWAS SNPs themselves. For each SNP we extracted the 1kb genomic flanking region
resulting in three sets of sequences. For each sequence we determined the binding sites
corresponding to 981 vertebrate motifs in TRANSFAC23 whose motif match score (using
our own tool24) was in the top 95th percentile of scores achievable by that motif. We then
determined the enriched motifs in one set of sequences relative to the other using Fisher
Exact Test. Because enhancers have distinctive compositions which can bias motif
enrichment, we normalized the two sequence sets for their GC composition via random
sampling prior to motif enrichment analysis. When comparing SVM SNPs to the GWAS
SNPs, 50 motifs were enriched with p-value ≤ 0.05, 11 of which corresponded to multiple
representatives of GATA, STAT, NF-AT, Nkx families. When we compared the P300 SNPs
with GWAS SNPs, among the 34 enriched motifs with GATA, Nkx and STAT families
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were represented by 4 motifs. Importantly, when we compare SVM SNPs directly to the
P300 SNPs, GATA, FOX, MEF2 families of TF motifs were found to be enriched among
the 32 enriched motifs. Figure 4 shows the top 50 motifs significantly enriched in SVM
SNPs compared to GWAS SNPs or P300 SNPs. When we restrict the motif search to 20 bps
flanking the SNP using same parameters, we still observe enrichment of NF-AT and STAT
motifs in SVM SNPs relative to GWAS SNPs. However similar enrichment is also observed
in P300 SNPs. It is possible that the SNP affect the formation of cis regulatory modules
indirectly. Further investigation is required. In summary, all core cardiac TF families are
enriched near eSNP loci, relative either to GWAS SNPs or to P300-bound regions. The
overall conclusion was comparable when we used top 200 SVM scores and top 200 P300
score to be construct eSNP and pSNP sets. We note that because of small numbers, the p-
values were modest and did not qualify a strict FDR threshold.

2.4. Cardiac enhancers near cardiac GWAS SNPs are likely to regulate the nearby genes
Next we tested whether the predicted enhancers are likely to regulate genes. While
enhancers can in principle regulate non-neighboring genes, a majority of them do regulate
nearby genes,25 therefore, we focused only on the gene promoter closest to the SNP. For a
SNP locus and a gene promoter, we estimated the likelihood of SNP locus to regulate the
gene as the correlation between the DNase-I hypersensitivity (DHS) at the locus and the
expression of the genes across 15 cell types in which DHS and RNA-seq was performed in
parallel (see Methods); this approach to link a putative enhancer to a target genes is similar
to Ref. 11. We constructed three comparison SNP sets. gSNP comprised of 229 GWAS
SNPs. To construct eSNP set, we selected the SNP with highest SVM score in LD with each
GWAS SNP as long as the SVM score was ≥ 0.8, resulting in 115 eSNP, all of which were
intronic or intergenic. Similarly, to construct pSNP set, we selected the SNP with highest
P300 mean tag density in LD with each GWAS SNP as long as the P300 tag density was ≥
1, resulting in 58 pSNP. For each SNP we obtained the closest gene promoter. We then
performed three pair-wise comparisons. For instance, when comparing eSNPs with gSNPs,
we focused on genes that were closest to both an eSNP and a gSNP. Then we computed two
DHS-expression correlations - between eSNP locus and the gene and between gSNP and the
same gene. Given all such pairs of correlations we tested whether eSNP-gene correlation
was greater than the gSNP gene correlation using paired one-side Wilcoxon test. We found
that eSNP loci were more likely than gSNP loci to regulate the closest gene (based on 124
genes, p-value = 0.03), eSNP loci were more likely than pSNP loci to regulate the closest
gene (based on 50 genes, p-value = 0.01), and pSNP loci were not more likely than eSNP
loci to regulate the closest gene (based on 23 genes, p-value = 0.87). We also checked
whether the distance of eSNPs from the closest gene promoter was shorter than that for
gSNP or pSNP and we did not observe a statistical difference. The results suggest that SVM
predicted enhancers are more likely to regulate the nearby genes relative to both the original
GWAS SNPs and P300 predicted enhancers.

2.5. Genes near cardiac enhancers are enriched for cardiac function
Next we tested whether the genes uniquely closest to the eSNPs provide greater insight into
the cardiovascular disease phenotype, relative to genes uniquely closest either to gSNPs or
the pSNPs. We used the same criteria as above to obtain the closest gene lists, but unlike the
expression analysis above we retained only the unique genes in each list. Unfortunately, the
uniqueness requirement greatly reduced the number of genes with 94 for gSNP, 17 for
eSNPs and only 2 for pSNPs. We then used ToppGene26 to compare enrichment of disease
categories in the three gene lists. ToppGene uses three sources for disease ontology terms -
GWAS, Comparative Toxicogenomics Database, and OMIM. We excluded GWAS to avoid
circularity. As expected, the pSNP gene list did not show any enrichment. At FDR ≤ 0.05
the genes near gSNP also did not show enrichment for any disease term. The 17 genes in the
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eSNP list include NOS3 and MYH7. NOS3 alone showed enrichment for 2 terms -
“Hypertension, Pregnancy-Induced” and “Coronary Vasospasm”. MYH7 alone was
enriched for 5 distinct terms from OMIM database, all immediately related to myopathy or
cardiomayopathy. The results are based on very limited dataset and one cannot draw general
conclusion but they suggest that SVM can uniquely lead to genes directly relevant to the
phenotype.

3. Conclusion
Here we present a SVM model for human cardiac enhancers based on four epigenomic
marks H3K4me1, H3K27me3, DHS and P300, each of which have previously shown to be
associated with enhancers in various cell types. While P300 is known to bind to tissue
specific enhancers,12 and have been used as the gold standard for estimating accuracy of
previous enhancer prediction approaches,14,15,17 many P300 bound regions fail to exhibit
enhancer activity.12,13 Our SVM trained specifically on experimentally human cardiac
enhancers validated in trangenic mouse, can not only predict other validated enhancers with
high accuracy, it can also distinguish validated enhancers from the regions that were bound
by P300 but failed to exhibit enhancer activity in transgenic mouse.

There are three prior approaches to predict enhancers. Narlikar et al. use clusters of known
cardiac TF motifs as predictor of cardiac enhancers.17 Lee at al. train a SVM model based
on genomic features based on cardiac P300 bound regions.14 Another SVM model for CD4+
T-cell enhancers based on epigenomic features, again, using P300-bound regions as the gold
standard was proposed in.15 We have demonstrated the ability of our SVM model to
distinguish between active and inactive P300 bound sites. Additionally, direct comparison of
prediction accuracy on novel validated cardiac enhancers of our SVM model with that of
P30014 and Narlikar et al.,17 explicitly shows that active enhancers have specific
epigenomic properties not captured just by P300 binding or by clusters of putative binding
sites. Genomic regions bound by P300 may not be active. Therefore, use of additional
features add the tissue specific context to the model. Furthermore, kernel transformation of
feature space used by SVM builds a non-linear classifiers. Thus it captures a greater variety
of enhancers by recognizing a wider combination of epigenetic factors.

It has been previously suggested that a better knowledge of context-specific enhancers can
help interpret GWAS signals.8 However, this reasonable assertion has not been tested
explicitly on a specific disease area. Here we use our enhancer prediction tool to interpret
GWAS studies related to cardiovascular phenotypes. We found an enrichment of high
scoring cardiac enhancers near cardiac GWAS SNPs. Analysis of these putative enhancers
suggest that (1) they are enriched for known core cardiac transcription factor binding sites,
(2) they are likely to regulate nearby genes, and (3) they can uniquely point to certain genes
involved with cardiac function and heart disease.

4. Methods
4.1. Correlating DNase Hypersensitivity and Gene Expression

To assess correlation of chromatin accessibility at a putative enhancer to expression level of
a putative target gene, we extracted genome wide DHS as well as RNA-seq data from 15
cell types from a single study (GSE29692, GSE23316) representing a breadth of cell types
HepG2, GM12878, A549, HeLa-S3, AG04450, BJ, NHLF, NHEK, HUVEC, h1-Hesc,
HMEC, HSMM, K562, MCF-7, SK-N-SH RA. For the enhancer region we extracted the
DHS tag density in each of the 15 cell types using bigWigSummary tool. Correspondingly,
for the putative target genes we obtained the gene expression (RPKM) in the same set of cell
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types. We then estimated the pearson correlation between DHS and gene expression as an
indicator of interaction between the enhancer and the gene.

4.2. More on SVM and grid search criteria
There are several references available for SVM.27–30 Here we give a brief review to
appreciate our criteria for cross validation and grid search on the parameter space. In SVM,
vector in original feature space is projected onto a higher dimensional feature space using
kernel function (usually non-linear). Because of this the data which in original space is not
linearly separable, becomes separable in transformed space, where the SVM tries to find a
maximum margin hyperplane that separates the positive and negative set in the kernel space.
SVM, employs a structural risk minimization (SRM) method31,32 to obtain the hyperplane,
which tries to balance complexity of the model while minimizing the empirical risk.
Therefore, relative to traditional methods based on empirical risk minimization, SVM is
better suited to handle the problem of overfitting. SVM chooses a maximum margin
hyperplane by identifying subset of training data (called support vectors), which would be
closer to the optimal separating plane. Support vectors are cases which are most difficult to
classify as positive or negative. Therefore to ensure good performance of SVM classifier, it
is necessary to have a set of extreme examples (in both positive and negative example in the
training set) that would qualify as support vectors.

Our positive training set included 330 (80% of 415) regions while the negative training set
included 1000 regions. We weighted the positive and negative examples to accommodate for
the difference in sizes. An exhaustive search over the weight space was conducted to obtain
best possible cross-validation result. The weight used for negative and positive set
respectively was 1 and 1.2. Furthermore, we defined our criteria for grid search based on the
observation that randomly sampled negative set may contain enhancer regions and therefore,
it is not desirable to minimize false positive rate to extreme. In addition, we required that
difference between two rates is below a fixed threshold. This is equivalent to maximizing
the F-score, while keeping difference of true positive (TP) and true negative (TN) rate below
a fixed threshold.
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Fig. 1.
Effect of variation of proportion of promoter region on accuracy of model. Two fold cross
validation is used for positive set. Negative set accuracy is calculated by running the trained
model on large number of random 1 kb genomic regions not including those used for
training.
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Fig. 2.
ROC curve of SVM model
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Fig. 3.
Number of enhancers (out of 23) predicted by SVM, P300 peaks and Narlikar et. al.
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Fig. 4.
Significantly enriched motifs in SVM SNPs. The size of each TF label is proportionsal to its
significance. For instance, the p-value for GATA1 in (a) is 0.001 and in (b) is 0.004. The
largest p-value is 0.05.
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