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Lung cancer is one of the most common and deadliest cancers in 
the world. The major socio-environmental risk factor involved in 
the development of lung cancer is cigarette smoking. Additionally, 
there are multiple genetic factors, which may also play a role in 
lung cancer risk. early work focused on the presence of relatively 
prevalent but low-penetrance alterations in candidate genes lead-
ing to increased risk of lung cancer. Development of new tech-
nologies such as genomic profiling and genome-wide association 
studies has been helpful in the detection of new genetic variants 
likely involved in lung cancer risk. in this review, we discuss the 
role of multiple genetic variants and review their putative role in 
the risk of lung cancer. identifying genetic biomarkers and pat-
terns of genetic risk may be useful in the earlier detection and 
treatment of lung cancer patients.

introduction

Lung cancer is one of the most prevalent and deadliest cancers in the 
world. It is the most common cancer in men and the main cause of 
male cancer deaths worldwide, and it is the second leading cause of 
cancer deaths in women worldwide. About 1.6 million cases of lung 
cancer are diagnosed worldwide each year, with a resulting 1.4 mil-
lion deaths yearly (1). In the USA, the lifetime chance of developing 
lung cancer is 1 in 13 (men) and 1 in 16 (women) (2). There are two 
main histological types of lung cancer: non-small cell lung cancer 
(NSCLC), which originates from bronchial epithelial-cell precursors 
and is divided into three types—squamous cell carcinoma, adenocar-
cinoma and large cell carcinoma—and small cell lung cancer, which 
originates from neuroendocrine-cell precursors. Squamous cell carci-
nomas are decreasing in incidence and adenocarcinomas are increas-
ing in incidence (3).

Lung cancer is often diagnosed at a late age (47% of cases diag-
nosed in people aged 70 or older) and at a late stage (about 50% have 
advanced disease at the time of diagnosis) (4,5). Because of these 
and other factors, even with modern therapies survival remains poor. 
The 5 year estimated survival rates are <14% in males and <18% in 
females. The major socio-environmental risk factor involved in the 
development of lung cancer is cigarette smoking. In the USA, smoking 
is related to about 80% of lung cancers, and geographic and temporal 
variations in lung cancer incidence and prevalence reflect differences 
in tobacco consumption. In high-income countries, the incidence and 
mortality of lung cancers are generally declining in males and starting 
to plateau in females as over time male consumption of tobacco has 
declined considerably and female consumption has declined as well 

(albeit later than male consumption), and there is a higher incidence 
of lung cancer in countries where cigarette use is still endemic (6).

Though cigarette smoking is a major risk factor for most lung 
cancers, there are multiple genetic factors that may also play a role 
in lung cancer risk. Initial work in the field of lung cancer genetics 
focused on the use of candidate genes to identify mutations (often 
single nucleotide polymorphisms [SNPs]) that conferred an increased 
risk of lung cancer. The development of new technologies such as 
genomic profiling and genome-wide association studies (GWAS) 
allows the sequencing of up to 1 million (or more) genetic variants 
at a time without requiring prior knowledge of the functional signifi-
cance of these variants. Identifying biomarkers and polymorphisms 
that are genetic risk factors may be useful in the earlier detection and 
treatment of lung cancer patients (7).

In this review, we will provide an overview of studies of those par-
ticular genetic variants, which have shown some role in the genetic 
risk for lung cancer (Table 1). We will first review those studies iden-
tified by the candidate-gene approach and then discuss more recent 
GWAS. We will then discuss the strengths and limitations of the stud-
ies, which have already been performed, and propose further lines 
of investigation (pathway and microarray analyses), which may be 
helpful in the future.

Studies were initially selected on the basis of a PubMed search 
using the terms ‘lung cancer’ and ‘risk’ and were further chosen on the 
basis of English-language studies, which describe the role of genetic 
factors on primary risk of lung cancer development (as opposed to 
risk of progression once a diagnosis has been made, risk of metastasis 
and so on). Over 600 studies meeting these criteria were screened, and 
only those which demonstrated a clear role (either positive or nega-
tive) for a specific genetic variant in the risk of lung cancer (either 
positive association, negative association or no association) were fully 
reviewed. In a second-tier search, meta-analyses were identified in a 
similar PubMed search using a combination of the terms ‘lung can-
cer’, ‘risk’, ‘meta-analysis’ and each gene of interest.

Discoveries based primarily on the candidate-gene approach

Carcinogen metabolism genes

CYP1A1. Various metabolic enzymes are involved in the bioactiva-
tion and detoxification of carcinogens. CYP1A1 activates polycyclic 
aromatic hydrocarbons (PAH) in cigarette smoke into carcinogens. 
CYP1A1 is highly expressed in normal lung tissue from smokers but 
not from non-smokers, and expression decreases over time in former 
smokers. CYP1A1 messenger RNA (mRNA) expression is seen in 
lung cancer tissue but not in normal tissue (8). Several polymorphisms 
may modulate enzymatic activity and influence lung cancer risk. 

The T3801C polymorphism located at an MspI restriction fragment 
length polymorphism site leads to increased enzymatic activity in 
the variant (9). The homozygous variant is more common in cancer 
patients and its presence has been linked with increased risk of 
lung cancer, particularly of squamous cell histology, and especially 
in Asian populations (10–12). Additionally, the presence of the 
variant allele has been associated with increased risk of lung cancer 
specifically in patients of younger age and in never smokers (13,14). 
A  pooled analysis of Caucasian non-smokers by Hung et  al. (15) 
demonstrated no significant association with lung cancer risk, further 
suggesting risk modification based on ethnicity. In a pooled analysis 
of Asian populations by Lee et al., (16) there was no association with 
overall risk, but an increased risk of squamous cell cancer with the 
variant genotype (Ptrend = 0.003 for increasing numbers of C alleles). 
In a global meta-analysis by Chen et al., the variant was associated 
with increased risk (odds ratio [OR] 1.19, confidence interval [CI] 

Abbreviations: CI, confidence interval; EGFR, epidermal growth factor 
receptor; GWAS, genome-wide association studies; IL, interleukin; ILCCO, 
International Lung and Cancer Consortium; MEH, microsomal epoxide hydro-
lase; MMP, matrix metalloproteinase; MPO, myeloperoxidase; mRNA, mes-
senger RNA; NER, nucleotide excision repair; NSCLC, non-small cell lung 
cancer; OR, odds ratio; PAH, polycyclic aromatic hydrocarbons; SNP, single 
nucleotide polymorphism.
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Genetic susceptibility to lung cancer

1.11–1.28 for the C versus T allele); this was modified by ethnicity 
with significantly increased risk in East Asian subgroups and marginal 
significance in Caucasians (17).

The A2455G Ile>Val polymorphism is associated with increased 
enzymatic activity and inducibility of aryl hydrocarbon hydrolase, 
which activates PAHs in smoke. Multiple small studies have demon-
strated a relationship between the variant allele and increased risk in 
individual ethnic populations (Chinese, Brazilian, Spanish and north-
ern Indian) (18–21). Again, these studies demonstrated risk modifi-
cation based not only on polymorphism status but also on smoking 
status and quantity, and histology (increased risk of squamous histol-
ogy). Several meta-analyses have found the variant allele (homozy-
gous or heterozygous) to be associated with increased risk of lung 
cancer. The global meta-analysis by Chen et  al. (17) showed the 
variant to be associated with increased risk (OR 1.20, CI 1.08–1.33), 
but with a significantly increased risk in East Asian subgroups only. 
A Chinese meta-analysis by Shi et al. (22) demonstrated increased 
risk with the combined Ile/Val and Val/Val genotypes (OR 1.61, CI 
1.24–2.08) compared with the Ile/Ile genotype. Hung’s pooled analy-
sis also found increased risk with variant Ile/Val or Val/Val genotypes 
(OR 2.21, CI 1.12–4.37) (15).

Some studies have addressed the combined effect of having both 
the T3801C and the A2455G polymorphisms. Small studies described 
the increased risk for double homozygotes, again largely for squa-
mous cell and modified by smoking status (23,24). However, there 
was no significant effect of either polymorphism on risk in a large 
meta-analysis (25).

CYP2E1. CYP2E1 is involved in the metabolic activation of carci-
nogenic N-nitrosamines, benzene and urethane. The PstI/RsaI poly-
morphism encompasses a 5'-flanking region with putative binding 
motif for hepatic transcription factor HNF-1. The variant c2 allele of 
this polymorphism is associated with enhanced transcription and an 
increased level of CYP2E1 activity (26). The c2 homozygous vari-
ant has been associated with decreased risk of lung cancer in some 
smaller studies, especially in Taiwanese, Mexican American and 
Swedish populations (27–29). A  meta-analysis by Zhan et  al. (30) 
demonstrated decreased risk of lung cancer in homozygous c2/c2 (OR 
0.73, CI 0.63–0.85) when compared with homozygous wild-type c1/
c1 carriers. A meta-analysis by Wang et al. (31) found decreased risk 
for the heterozygote c1/c2 versus the homozygote c1/c1 (OR 0.80, CI 
0.72–0.89), but there was no significant association with risk for the 
homozygote c2/c2 variant.

The DraI polymorphism in CYP2E1 has a statistically different 
distribution of CC (wild-type) and DD (variants) among lung cancer 
cases versus controls. Wang’s meta-analysis described a protective 
effect of the C allele (OR CC versus DD 0.58, CI 0.41–0.81) (31).

Glutathione-S-transferases

GSTM1. Glutathione S-transferases are involved in the detoxifica-
tion of electrophilic metabolites of potential carcinogens in tobacco 
smoke, including benzo[α]pyrene and other PAH (32). The null 
(homozygote deleted) mutation in GSTM1 leads to lack of expres-
sion of GSTM1 protein and has been associated with increased DNA 
adduct levels in lung tissue (33,34). The null mutation has been asso-
ciated with an increased risk of lung cancer in multiple populations, 
with specific histologies and smoking status seen as modifiers of risk.

Extensive smaller studies have demonstrated the increased risk 
conferred by the null mutation largely in Asian populations, includ-
ing studies conducted in Japan, China and Korea (35–37). The null 
mutation has also demonstrated risk in African Americans, Turkish 
and Slovakian populations (38–40). Many of these smaller stud-
ies observed more significant risk with squamous cell histology and 
risk modification by smoking status. Other smaller studies have con-
versely found either decreased lung cancer risk or no significant risk 
modification via the null genotype (41–43). In Lee’s pooled analysis, 
there was no significant overall association with lung cancer risk, but 
the null mutation was associated with an increased risk of squamous 
cell cancer (OR 1.36, CI 1.05–1.77) (16). In Hung’s pooled analysis, 

there was no significantly increased risk with the null genotype alone, 
but risk increased when the GSTM1 ‘null’ genotype was combined 
with CYP1A1 Ile/Val and Val/Val genotypes (15).

Multiple meta-analyses have also demonstrated an association 
between GSTM1 null genotype and lung cancer risk. A 1995 meta-
analysis of 12 case-control studies by McWilliams et  al. (44) con-
cluded that GSTM1 null genotype is a moderate risk factor for lung 
cancer  (OR 1.41, CI 1.23–1.61), with increased risk evident for all 
major histological types of lung cancer. The authors felt that the high 
prevalence of GSTM1 null means that though the increased risk is 
small, deficiency accounts for about 17% of all lung cancer cases. 
A  1999 UK meta-analysis by Houlston et  al. (45) also found an 
increased risk with the null mutation (OR 1.13, CI 1.04–1.25) based 
on genotyping methods; this risk was lower than seen in pooled 
analysis based on phenotyping methods (OR 2.12, CI 1.43–3.13) sug-
gesting early phenotyping studies were overinflated. A French meta-
analysis from 2002 concluded that there was a slight excess risk with 
the null genotype, but a pooled analysis demonstrated no significant 
increased risk of lung cancer in nulls and no significant interaction 
between GSTM1 genotype and smoking status (46). A  2006 meta-
analysis by Ye et al. (47) found a positive association between null 
genotype and risk of lung cancer (OR 1.18, CI 1.14–1.23), which was 
no longer significant when analysis was restricted to larger studies. 
The HuGE meta-analysis in 2008 by Carlsten et al. (48) concluded 
that the GSTM1 null genotype was associated with increased risk 
in lung cancer (OR 1.22, CI 1.14–1.30), seen most significantly in 
East Asians (OR 1.38, CI 1.24–1.55) but not in Caucasians. Finally, 
a meta-analysis in 2010 by Langevin et al. (49) based on the Venice 
interim guidelines found a significant association between GSTM1 
null and lung cancer (OR 1.17, CI 1.10–1.25), also seen in pooled 
analysis (adjusted OR 1.10, CI 1.04–1.16).

GSTP1. The pulmonary content of the GSTP1-1 isozyme has been 
found to be higher in cancer versus non-cancer patients (50). The 
G allele of the Ile105Val (323A>G) polymorphism results in lower 
conjugation activity and has been associated with increased lev-
els of hydrophobic adducts in the lung. Lung cancer patients have 
significantly higher frequency of GG genotype versus AA genotype 
than controls, and in those patients with lung cancer, the GG geno-
type is associated with a significantly higher DNA adduct level than 
the AA genotype (51). Various small population-based studies have 
demonstrated mixed results in terms of lung cancer risk, with almost 
all studies showing interactions between GSTP1 polymorphism status 
and age, smoking status and cancer histology. Significant associations 
have most often been found between the increased risk of lung can-
cer with the GG genotype in younger age (52) and in heavy smokers 
(53), as well as in combination with the GSTM1 null genotype (54–
56). However, three of the largest meta-analyses (by Ye et al. (47), 
Langevin et al. (49)  and a 2009 HuGE review by Cote et al. (57)) 
found no significant overall association with lung cancer risk. The 
HuGE meta-analysis by Cote et al. (57) did find a slight increased risk 
for the combined GG and AG genotypes versus the AA genotype, seen 
only in Asian subjects and strongest in non-smokers and those with 
adenocarcinoma.

GSTT1. The GSTT1 glutathione transferase metabolizes potential car-
cinogens in cigarette smoke (alkyl halides ad halomethanes) and the null 
allele leads to lack of expression of GSTT1 protein (58). Smaller studies 
have in some cases demonstrated increased risk with the null genotype 
(59), but this association has not been consistently seen and in some cases 
has also been associated with decreased risk (60,61). Pooled and meta-
analyses have generally not found significant risk associations. Lee’s 
pooled analysis found no significant association with GSTT1 genotype 
and risk (16). Although one Chinese meta-analysis by Wang et al. (62) 
showed that the null allele conferred increased risk of lung cancer (OR 
1.36, CI 1.09–1.69), the Venice interim-based analysis demonstrated no 
association between the null allele and lung cancer risk (49).

NAT1 and NAT2. NAT enzymes catalyze the biotransformation of 
aromatic amines by solubilizing chemical groups to products of phase 
I  cytochrome P450 metabolism, thus producing readily excretable 
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compounds (63). Variations in NAT lead to both slow and fast acety-
lation capability. NAT slow acetylator genotypes are associated with 
increased lung levels of DNA adducts and have been associated in 
small studies with increased risk of lung cancer (64–66). Multiple 
other studies have demonstrated differential effects of NAT on lung 
cancer risk modified by smoking status, but results have been very 
inconsistent. Some studies show increased risk for slow acetylators 
in never smokers and for fast acetylators in smokers (67,68), and oth-
ers demonstrating increased risk for fast acetylators in never smokers 
(69). Meta-analyses have been inconsistent as well. Most have found 
no overall association between NAT genotype and lung cancer risk 
(70,71), but a meta-analysis by Zienolddiny et al. (72) did find the 
NAT1 fast acetylator genotype to be associated with higher risk (OR 
3.75, CI 2.58–5.51).

MEH (EPHX) exons 3 and 4. Microsomal epoxide hydrolase (MEH, 
EPHX) catalyzes the hydrolysis of arene, alkene and aliphatic epox-
ides from PAH and aromatic amines. This is generally a detoxifica-
tion reaction, but hydrolysis of some hydrocarbons such as benzo(a)
pyrine in cigarette smoke generates more highly reactive and muta-
genic compounds (73). The T113C Tyr>His polymorphism in exon 
3 leads to a decrease in enzyme activity (the ‘slow allele’), whereas 
the A139G His>Arg polymorphism in exon 4 leads to an increase in 
enzyme activity (the ‘fast allele’). The majority of lung cancer tis-
sues contain exon 3 Tyr (wild-type fast) and exon 4 His (wild-type 
slow) (74). The variant slow allele in exon 3 has been associated with 
decreased risk of lung cancer (75,76) and the variant fast allele of 
exon 4 with increased risk of lung cancer in smaller studies (77,78). 
However, these studies are difficult to interpret as MEH/EPHX geno-
type and lung cancer risk are often modified by ethnicity, age, histol-
ogy and smoking status. There are few meta-analyses of MEH/EPHX 
and lung cancer risk; in a HuGE meta-analysis by Kiyohara et al., (79) 
there was no overall association between either variant allele and risk, 
but the exon 3 low-activity variant was associated with significantly 
decreased risk of lung cancer in a white-only population (OR 0.65, 
CI 0.44–0.96).

NQO1 (exon 6, chromosome 16q). NAD(P)H quinine oxidoreduc-
tase catalyses bioreduction and activation of quinone substrates. This 
activates and detoxifies carcinogens in smoke. The variant T allele 
in exon 6 (C>T) leads to decreased activity and may be associated 
with a lower risk of lung cancer (80–82). This has not been consist-
ent across the literature, and the variant has also been associated with 
decreased risk (83,84) or no significant modifying effect on lung can-
cer risk (85–87). Again, these studies have all been in relatively small 
single-ethnicity populations, and additionally, many studies have seen 
significant effect modification based on smoking status, histology, sex 
and age (88–90). The HuGE meta-analysis by Kiyohara et  al. (91) 
found no significant overall association, but did find that showed the 
variant homozygote + heterozygote genotypes to be associated with 
significantly decreased risk of lung cancer in a Japanese-only popula-
tion, where the variant allele is common. A meta-analysis by Chao 
et al., (92) which included multiple ethnicities including Caucasians, 
Asians and blacks found no significant increased risk in any specific 
ethnic population.

MPO. Myeloperoxidase (MPO) transforms pre-carcinogens such 
as benzo(α)pyrene and aromatic amines to highly reactive amines. 
The promoter region G463A polymorphism may reduce MPO mRNA 
expression through removal of a binding region for transcription factor 
Sp1 leading to decreased metabolic activation of carcinogenic com-
pounds in smoke (93). The A allele has been associated with decreased 
lung cancer risk in multiple small studies in Caucasian (94), Japanese 
and Native Hawaiian (95), and Turkish (96) populations. However, 
studies in Finnish (97), French (98) and Korean (99) populations 
showed no significant associations. Again, when effects are seen, they 
are often modified by age, smoking status and histology (100–102). 
Kiyohara’s meta-analysis found the AA and AG genotypes were not 
significantly associated with risk except in Caucasians, where risk was 
decreased (91). A meta-analysis by Taioli et al. (103) using data col-
lected from the Genetic Susceptibility to Environmental Carcinogens 

database found significantly decreased risk associated with the AA 
genotype (OR 0.71, CI 0.57–0.88), particularly in Caucasian popula-
tions and ever smokers, though most studies included in this analysis 
were based on Caucasian populations.

Nucleotide excision repair

ERCC2/XPD. ERCC2/XPD is an adenosine triphosphate-depend-
ent helicase in the TFIIH transcription repair factor complex; it is 
involved in nucleotide excision repair (NER) and basal transcrip-
tion. Several variants may affect its functionality, most notably, 
the Asp312Asn and Lys751Gln variants, which are associated with 
decreased NER/DNA repair capacity (104). The Asn/Asn variant 
genotype of Asp312Asn has been associated with increased risk of 
lung cancer in non-smokers and decreased risk in heavy smokers 
(105), whereas the Asp/Asp wild-type was associated with increased 
risk of NSCLC in light smokers but not in never or heavy smok-
ers (106). The Asn allele is also associated with increased risk of 
squamous cell cancer (107,108). Several large meta-analyses have 
found that the Asn allele may lead to increased risk of lung cancer. 
Zhan et al. (109) found a significant association between the AA ver-
sus GG genotype and risk (OR 1.24, CI 1.09–1.42), significant only 
in Asians and smokers in subgroup analysis. Feng et al. (110) also 
found a significant association between the homozygous genotype 
and risk (OR 1.20, CI 1.05–1.36), significant in both Asians and 
Caucasians but only in never smokers. The effect was also heavily 
modified by smoking status in a Chinese population-based meta-
analysis performed by Qian et al., (111) where no overall association 
was observed but the AA genotype was associated with risk in never 
smokers. A HuGE review by Benhamou et al. (112), an International 
Lung and Cancer Consortium (ILCCO) analysis by Hung et al. (113) 
and a meta-analysis by Kiyohara et al. (114) found no clear associa-
tion with this polymorphism and lung cancer risk.

The variant Gln allele of the exon 23 Lys751Gln is associated with 
reduced DNA repair capacity (115). Smaller studies have described 
differential results regarding the impact of this polymorphism on 
lung cancer risk. Some have suggested that the variant Gln allele is 
associated with increased risk (116–118), whereas others have found 
it to be associated with decreased risk (119,120). These studies were 
for the most part performed in isolated ethnic populations and also 
demonstrated effect modification based on histology, smoking status 
and age. Most meta-analyses have found the Gln allele to have some 
association with increased risk. Zhan’s study had an OR of 1.26 
(CI 1.12–1.42) significant in Caucasians and smokers in subgroup 
analysis (109), and Feng’s study found an OR of 1.31 (CI 1.17–1.46), 
significant in Caucasians, Latinos and never smokers in subgroup 
analysis (110). Hung’s pooled ILCCO analysis found the Gln/Gln 
variant to be associated with increased risk (OR 1.19, CI 1.02–1.39 
(113)), as did Kiyohara’s study (OR 1.09, CI 1.04–1.18), significant in 
Caucasians (114), but there was no clear risk association in the HuGE 
meta-analysis by Benhamou (112).

ERCC1/XPF. ERCC1/XPF is the lead enzyme involved in NER 
and is required for the excision of damaged DNA strands (121). An 
8092C>A polymorphism in the 3'-untranslated region may affect 
mRNA stability (122) and the AA genotype was associated with 
increased lung cancer risk in never smokers (adjusted OR 2.11, CI 
1.03–4.31) and decreased risk in heavy smokers (adjusted OR 0.50, CI 
0.25–1.01) (123). The TT homozygote of the Asn118Asn (T19007C) 
polymorphism may be associated with increased lung cancer risk in 
primarily Caucasian populations but not in Chinese (124). A meta-
analysis by Cao et al. (125) demonstrated no association between the 
C8092A or the T19007C polymorphisms and lung cancer risk, and 
Hungʹs ILCCO analysis did not find a significant association between 
C8092A status and lung cancer risk (113).  There was also no associa-
tion between T19007C status and risk in a meta-analysis by Li et al. 
(126).

XPA. XPA interacts with replication protein A, transcription factor IIH 
and ERCC1/XPF (127). The GG genotype of an A23G polymorphism 
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at position −4 has been associated with reduced risk of lung cancer in 
Koreans (128), Caucasians and African Americans, perhaps related to 
more efficient DNA repair capacity (129). Similarly, the AA genotype 
has been associated with increased risk, but only in heavy smokers 
(130). Kiyohara’s DNA repair pathway meta-analysis demonstrated a 
protective effect based on the GG genotype (OR 0.76, CI 0.61–0.94), 
which was not significant in Caucasians (114), and Qian’s Chinese 
meta-analysis demonstrated that the AA versus GG genotype was 
associated with increased risk (OR 1.28, CI 1.12–1.47) most signifi-
cant in Asians (111). Hung’s ILCCO analysis found no significant 
association with risk (113).

XPC. XPC is a DNA damage sensor and repair recruitment factor; 
a poly-AT insertion in intron 9 has demonstrated decreased DNA 
repair capacity (131). The PAT +/+ genotype has been associated 
with increased risk of lung cancer in some studies, modified again 
by smoking status, age and histology (132,133). The T variant of the 
Ala499Val (C499T) and the C variant of the Lys939Gln (A939C) poly-
morphisms have been associated separately and in combination with 
the increased risk of lung cancer in China (134). A primarily Chinese 
and Caucasian meta-analysis by Qiu et al. (135) found no significant 
risk association for PAT +/− or C499T, but did find the C variant of 
A939C to be associated with increased risk of lung cancer (OR 1.28, 
CI 1.07–1.53 for the CC versus AA genotype).

ERCC5/XPG. ERCC5/XPG is an endonuclease, which functions to 
make a 3' nick prior to excision repair (136). The Asp variant of the 
His1104Asp polymorphism has been associated with decreased risk 
of lung cancer in small populations (137–139), with effect modifi-
cation based on age, sex, smoking status and histology. The ILCCO 
study found no significant association between this polymorphism 
and risk of lung cancer (113).

Base excision repair

XRCC1. This enzyme interacts with nicked DNA and participates 
with poly-adenosine diphosphate-ribose polymerase, DNA ligase III 
and DNA polymerase B to repair single-strand DNA breaks (140). 
Multiple polymorphisms have been identified, which may affect both 
function and lung cancer risk.

The variant Trp allele of the Arg194Trp polymorphism has been 
associated with reduced risk in some small studies, but results are 
often modified by smoking status, and not always in a congruous man-
ner. The presence of the Trp allele may lead to decreased risk in heavy 
smokers (141,142) but increased risk in non-smokers (143). Several 
meta-analyses have been performed demonstrating association with 
the heterozygote genotype only in a study by Wang et al. (144), and 
no association in analyses by Zheng et  al. (145), Kiyohara’s base 
excision repair meta-analysis (146), or the HuGE (147) and ILCCO 
reviews (113). One meta-analysis by Huang et  al. did demonstrate 
to increased risk (OR 1.27, CI 1.07–1.50) (148). Though some risk 
association has been described between the Arg280His polymorphism 
and lung cancer risk in single small studies (149,150), results have 
generally been inconsistent and there was no significant risk associa-
tion found in Zheng’s (145) or Kiyohara’s (146) meta-analyses and 
the HuGE (147) or the ILCCO reviews (113). 

The Arg399Gln polymorphism results in a substitution in the 
poly-adenosine diphosphate-ribose polymerase binding domain and 
has been associated with higher levels of aflatoxin B1-adducts and 
glycophorin A  somatic mutations (151). The Gln/Gln homozygous 
variant genotype has been associated with increased risk of lung 
cancer in mostly studies of small single-ethnicity populations or with 
strong risk modifications based on smoking amount and duration 
(152–154). Conversely, the Gln allele has also been associated with 
decreased risk of lung cancer, again in the same context of single 
ethnic groups and modified by smoking status (155–157). In Zheng’s 
Chinese meta-analysis, the Arg/Gln and Gln/Gln genotypes were 
associated with a trend toward increased risk (OR 1.16, CI 1.00–
1.36) (145), but the meta-analyses by Wang (144), Kiyohara (146) 
and the HuGE (147) and ILCCO analyses (113) by Hung showed no 

significant association with risk. In the HuGE meta-analysis, the Gln/
Gln genotype was associated with increased risk in light smokers (OR 
1.38, CI 0.11–1.94) but decreased risk in heavy smokers (OR 0.71, 
CI 0.51–0.99) (147). Finally, in Kiyohara’s meta-analysis, the Gln/
Gln genotype was associated with significantly increased risk of lung 
cancer in Asians (OR 1.34, CI 1.16–1.54) but not in Caucasians (146).

OGG1. This enzyme functions to repair 8-hydroxyguanine, a muta-
gen that causes oxidative DNA damage induced by reactive oxygen 
species (158). 8-Hydroxyguanine levels have been found to be higher 
in tissue from lung cancer patients compared with controls (in non-
tumor tissue) (159). The Cys allele of the Ser326Cys polymorphism in 
OGG1 has been associated with decreased activity in 8-hydroxygua-
nine repair (160). Case-control and observational studies have demon-
strated some increased risk of lung cancer with the Cys/Cys genotype 
(161–163). This has been borne out to some extent in the HuGE anal-
ysis by Hung et al., (113) with an OR of 1.24 (CI 1.01–1.53) for the 
Cys/Cys versus Ser/Ser genotypes (147) and in the ILCCO analysis 
(OR 1.34, CI 1.01–1.79). Results from the ILCCO analysis were sig-
nificant only in Caucasians but not in Asians. Kiyohara’s analysis did 
not demonstrate any significant association with risk (146).

APE. The apurinic/apyrimidinic endonuclease 1, APE, is a major 
repair enzyme for abasic sites. It incises the DNA phosphodiester 
backbone 5' to a lesion to initiate a cascade of events, which leads 
to the removal of abasic moieties and maintenance of genetic integ-
rity (164). The variant Glu/Glu genotype of the Asp148Glu (T>G) 
polymorphism in exon 5 has a significantly longer cell cycle mitotic 
delay and may contribute to increased sensitivity to ionizing radiation 
(165). The Asp/Glu and Glu/Glu genotypes have been associated with 
both increased risk of lung cancer (166–168) (modified by smoking 
status) and lower risk of lung cancer (169,170). In general, large stud-
ies have not shown a significant impact on risk. There was no asso-
ciation with risk in Hung’s HuGE review (147), the ILCCO analysis 
(113) or Kiyohara’s analysis (146). A meta-analysis by Ji et al. (171) 
demonstrated no association with lung cancer risk in Caucasians or 
Asians in general but that the variant genotype led to an increased risk 
in smokers only.

Double-strand break repair

XRCC3. XRCC3 is involved in homologous recombination repair 
and chromosomal double-strand break repair. Cells defective in 
XRCC3 have a 25-fold decrease in homology-detected repair of DNA 
double-strand breaks (172). The Met variant of a Thr241Met poly-
morphism has been associated with higher DNA adduct levels and 
may affect DNA repair capacity (173). Small studies have been incon-
sistent in reporting associations between polymorphism status and 
lung cancer risk, as have been meta-analyses. In the ILCCO pooled 
analysis, the Met/Met variant was associated with decreased risk (OR 
0.84, CI 0.71–1.00), significant in Caucasians and not in Asians (113). 
Similarly, there was no significant association in a Chinese meta-anal-
ysis by Sun et al. (174).

Cell cycle checkpoint control

p53. p53 is a central tumor suppressor gene. Mutations often lead to 
inactivation of transcriptional activity, and p53 is frequently lost in 
lung cancer (175). The Arg72Pro (G12139C) polymorphism leads to 
a Pro variant, which may be less efficient in suppressing cell trans-
formation and inducing apoptosis (176). Multiple studies have dem-
onstrated that the Pro allele is likely associated with increased risk of 
lung cancer, modified by age, smoking status and histology (177–185). 
A 2003 meta-analysis by Matakidou et al. (186) showed that Pro/Pro 
homozygotes had a borderline increased risk of lung cancer (OR 1.18, 
CI 0.99–1.41), and the ILCCO analysis also demonstrated increased 
risk (OR 1.20, CI 1.02–1.42) for Pro/Pro homozygotes (113). A meta-
analysis by Yan et al. (187) showed that the Pro allele had increased 
risk for the population as a whole compared with the Ser allele (OR 
1.08, CI 1.00–1.17), a finding that was significant only in Asians and 
not in Caucasians. A meta-analysis by Yi et al. (188) similarly found 
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increased risk for carriers of the Pro allele (Pro/Pro and Pro/Arg [OR 
1.15, CI 1.04–1.23]), which was significant in both Caucasians and 
Asians and most significant for adenocarcinoma histology and in 
smokers. Finally, a 2009 pooled analysis by Dai et  al. (189) of 32 
case-control studies also demonstrated increased risk with the Pro/
Pro and Pro/Arg combined genotypes (OR 1.14, CI 1.03–1.25) and 
concluded that the Pro allele is a low-penetrance susceptibility allele 
for lung cancer.

MDM2. This negative regulator of p53 binds to p53 and inhibits 
p53-mediated cell cycle arrest (190). A  T309G polymorphism has 
been associated with increased levels of MDM2 RNA and protein. The 
GG genotype has been associated with increased risk of lung cancer 
in some studies (191), but it has also been associated with decreased 
risk of lung cancer (192,193) or not associated with risk of cancer in 
other studies (194,195). Three meta-analyses have demonstrated an 
increased risk for those with the GG genotype. The meta-analysis by 
Wilkening et al. (196) had an OR of 1.27 (CI 1.12–1.44) and was not 
modified by ethnicity or smoking status. The meta-analysis by Gui 
et al. (197) with an overall OR of 1.17 (CI 1.02–1.34) was significant 
in Asians but not in Caucasians, whereas the meta-analysis by Bai 
et al. (198) found an OR of 1.16 (CI 1.01–1.34) and was most signifi-
cant in never smokers.

p21 is a downstream target of p53, and its expression is stimulated 
by p53 binding. p21 subsequently binds to cyclin complexes and 
inhibits the function of cyclin-dependent kinases in the DNA of dam-
aged cells (199,200). A codon 31 polymorphism (Ser31Arg) has been 
associated with increased variant Arg frequency in lung cancer tissue 
(201), but variable and usually non-significant  results in terms of lung 
cancer risk (202,203). A meta-analysis by Lin et al. (204) did not find 
a significant association between p21 genotype and lung cancer risk 
(OR 1.11, CI 0.85–1.45).

CCND1 (cyclin D1) regulates G1/S phase and is frequently ampli-
fied in lung cancer (205). An A870G variant in exon 4 increases the 
frequency of a C-terminal domain with no splicing (206), allowing 
expression of an alternative D1b transcript that lacks the phosphoryla-
tion site needed for nuclear export (207). The AA homozygous wild-
type genotype has been associated with increased risk of lung cancer 
in small studies of Chinese (208), North Indian (209) and Caucasian 
(210) populations modified by smoking status, age, sex and histol-
ogy. A meta-analysis by Li et al. (211) found increased risk with the 
A versus G allele (OR 1.24, CI 1.08–1.44), which was significant only 
in Asians and not in Caucasians. Similarly, a meta-analysis by Liu 
et al. (212) demonstrated increased risk for A versus G alleles (OR 
1.13, CI 1.03–1.24), which was significant only in Asians and not in 
Caucasians.

TP53BP1. TP53BP1 is involved in DNA damage signaling, check-
point signaling and DNA repair; it interacts with the DNA-binding 
domain of TP53 to enhance TP53-mediated transcriptional activity 
(213). Reduced or absent expression of TP53BP1 in lung cancer tissue 
has been reported (214). Polymorphisms in TP53BP1 have been asso-
ciated with G2/M arrest, less efficient checkpoint control and therefore 
increased risk of lung cancer (215). The rs560191 variant is associ-
ated with decreased lung cancer risk, especially of squamous cell, in 
an ILCCO analysis (OR 0.91, CI 0.86–0.97 for all histologies and OR 
0.86, CI 0.79–0.94 for squamous cell histology) (216). Additionally, 
a GWAS revealed that the T allele of a sequence variant at 15q15.2 
(rs748404), located 140 kb centromeric of TP53BP1, was associated 
with increased risk; in this same study, non-synonymous coding vari-
ants in TP53BP1 (Q1136K, rs2602141 and E35D, rs560191) were 
associated with lung cancer risk but not significant after adjustment 
for rs748404 (217).

Inflammatory genes

Interleukins and related genes. Alveolar macrophages from patients 
with lung cancer secrete significantly more IL-1B than those from 
non-cancer patients (218). Small studies have shown roles for several 
polymorphisms in risk prediction. The variant TT (and heterozygote 

CT) of a +3954C>T polymorphism has been associated with increased 
risk, modified by smoking status, sex and alcohol intake (219,220). 
Two promoter variants (C-511T and T-31C) have been identified; 
the −511C and −31T may both lead to increased risk perhaps due to 
higher promoter expression (221–224), but this has not been consist-
ent across all studies (225,226). A meta-analysis by Peng et al. (227) 
demonstrated no significant risk of lung cancer associated with either 
of these variants. Additionally, small studies of polymorphisms in the 
interleukin (IL)-1 receptor (228), IL-8 (229) and IL-10 (230) have 
been performed, but there was no association with three polymor-
phisms in IL-10 and lung cancer risk in Peng’s meta-analysis as well 
as no association with a polymorphism in IL-6 (227).

Tumor necrosis factor is a pro-inflammatory cytokine, which acts 
as a central mediator of the immune response and modulates airway 
inflammation. Studies of the −308A>G and −238AG promoter poly-
morphisms, which may lead to altered protein levels and transcription 
rates (231), have yielded mixed results (232,233), and there was no 
significant association with lung cancer risk in Peng’s meta-analysis 
(227).

Cyclooxygenase 2 mediates the production of prostaglandins from 
arachidonic acid. Cyclooxygenase 2 is induced by cigarette smoke and 
lung cancer tumor cells, and may function to promote tumor growth, 
angiogenesis and metastasis (234). A promotion in the 3'-untranslated 
region (C8473T) has been described (235), but was not associated 
with risk in Peng’s meta-analysis (227).

Telomere length. The telomerase enzyme adds hexameric TTAGGG 
nucleotide repeats to ends of telomeres to compensate for losses dur-
ing each round of DNA replication. Somatic cells typically lack telom-
erase activity and stop dividing when telomeric ends reach a critical 
length (236). Smoking is associated with increased telomerase activity 
in normal bronchial epithelial cells and may lead to an extended lifes-
pan in cells at risk for malignant transformation (237). Telomerase 
has been detected in a high proportion of lung cancer tissues, poten-
tially leading to cancer cell immortalization (238). Downregulation 
of DNA repair genes (MLH and PARP3) has been detected in tumors 
with reactivated telomerase (239). SNPs in telomere maintenance 
genes POT1, TERT, TERF2 and TNKS1 have been associated with 
lung cancer risk in individual studies (240,241). A meta-analysis by 
Ma et al. (242) found that short telomere length was associated with 
a significantly increased risk of lung cancer (OR 2.39, CI 1.18–4.88), 
but this was not in the context of individual polymorphisms but rather 
a general measure of telomere length.

Cell microenvironment

MMP1. Matrix metalloproteinase 1 (MMP1) is the most highly 
expressed interstitial collagenase and is involved in the degradation 
of fibrillar collagens, which are major components of the extracellu-
lar matrix. Higher expression of MMP1 has been described in tumor 
tissues compared with normal tissues (243). The −1607 1G>2G 
polymorphism may create an ETS-binding site and the 2G has sig-
nificantly higher transcription and binds more nuclear extract and 
recombinant ETS (E-twenty six)-1 compared with the 1G (244). 
The 2G/2G variant genotype has been associated with higher risk of 
lung cancer, modified by smoking status and sex (245,246). A meta-
analysis by Xiao et al. (247) described an increased risk with the 2G 
versus 1G allele (OR 1.21, CI 1.06–1.37), which was significant only 
in Asians and not in Caucasians.

MMP2. MMP2 is a gelatinase, which cleaves type IV collagen, 
a major structural component of the basement membrane (248). 
A  C-1306T polymorphism disrupts the Sp1-type promoter site 
(CCACC box) and loss of Sp1 binding linked with the T allele is cor-
related with lower promoter activity. The TT genotype has been asso-
ciated with decreased risk of lung cancer, modified by smoking status 
(249). The −735C>T polymorphism also destroys an Sp1-binding ele-
ment and the T allele is similarly associated with decreased promoter 
activity; the TT haplotype of these two polymorphisms has even lower 
promoter activity (250). The TT haplotype has been associated with 
much decreased risk, likely synergistic based on magnitude (251). 
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The T alleles of both polymorphisms were associated with decreased 
risk of lung cancer in a single meta-analysis by Peng et al. (252) (OR 
0.55, CI 0.48–0.63 for the −1306C>T and OR 0.72, CI 0.61–0.85 for 
the −735C>T, respectively, though the synergistic interaction was not 
highlighted in this study.

MMP9. MMP9 functions as a gelatinase that digests denatured 
collagens and gelatins; there is a higher expression of MMP9 in 
lung cancer versus normal tissue (253). Several polymorphisms in 
MMP9 have been associated with lung cancer risk. The −1562CT 
polymorphism leads to increased promoter activity via a putative 
transcription repressor, which binds preferentially to the C allelic 
promoter (254), and small studies have shown both increased fre-
quency of the CC genotype in tumor tissue (255) and decreased 
risk of lung cancer with the TT genotype (256). Two other polymor-
phisms—the R279Q, which lies in a gelatinase-specific fibronectin 
type II domain, and the P574R, which is located in a homeopexin 
domain (257)—have been associated with risk in one study (258). 
Significant risk modification was not seen in Peng’s meta-analysis 
(252).

Other notable polymorphisms

EGFR. The epidermal growth factor receptor (EGFR) family plays 
an important role in the regulation of multiple physiologic processes 
mediated by epidermal growth factor, transforming growth factor-α 
and several other ligands. EGFR overexpression is seen in many lung 
cancers, and a population of patients who are predominantly non-
smoking, Asian females have been found to harbor somatic activat-
ing mutations in EGFR that confer response to EGFR tyrosine kinase 
inhibitors (259). Specific mutations have been described, which lead 
tumors in such patients to develop acquired drug resistance. The 
T790M mutation is one such mutation and has been described not 
only in this context but more recently in the context of potential ger-
mline cancer predisposition. A family with multiple cases of NSCLC 
was determined to have germline transmission of the T790M muta-
tion, and four of the six tumors studied were found to have a second-
ary activating EGFR mutation (260). Other mutations in exons 19 and 
21 have also been implicated in adenomatous hyperplasia and other 
types of adenocarcinomas (261), and further work should be done to 
identify EGFR mutations, which are not only predictive in the clini-
cal setting of already diagnosed lung cancer but also prognostic in 
terms of risk development. The germline determinants of the observed 
EGFR somatic mutations remain unknown and should be an area of 
active investigation.

Discoveries based primarily on GwAS

Nicotinic acid/acetylcholine receptor (15q25)
The nicotine-derived carcinogenic nitrosamine 4(methylnitrosamino)-
1-(3-pyridyl)-1-butanone is a high-affinity agonist for the α7 nicotinic 
acetylcholine receptor (nAChR). Initial studies demonstrated that α7 
mRNA levels are higher in small cell lung cancer cells than normal 
cells (262). Tobacco-specific 4(methylnitrosamino)-1-(3-pyridyl)-1-
butanone and N-nitrosonornicotine bind to some nAChRs with affini-
ties higher than nicotine itself; it is thought that nAChRs may enhance 
the targeting of bronchial cells by tobacco carcinogens and that smok-
ing may increase the function of specific nAChRs, which stimulate 
cancer cells and reduce the function of receptors that inhibit cancer 
cells (263).

The genes for nAChR subunits CHRNA5/A3/B4 are located on the 
15q25 chromosomal region; they are expressed in alveolar epithelial 
cells and bind to N-nitrosonornicotines and potential other lung car-
cinogens. CHRNA3 is a target of DNA hypermethylation and silenc-
ing in lung cancer; CHRNB4 is also moderately methylated, whereas 
CHRNA5 is not methylated (264). A 30-fold upregulation of CHRNA5 
and a 2-fold downregulation of CHRNA1 have been demonstrated in 
tissue from lung adenocarcinoma versus normal lung. Carriers of 
the N allele of the D398N polymorphism of CHRNA5 may be at an 
increased risk of adenocarcinoma (265), which may be secondary to 

altered receptor function and variability in CHRNA5 mRNA expres-
sion (266).

In small single-ethnicity studies, individual SNPs and SNP hap-
lotypes in the 15q25 region (primarily in CHRNA3 and CHRNA5) 
have been associated with lung cancer risk (267–270). Several large 
studies have also demonstrated risk associations. A 2008 GWAS per-
formed by Hung et al. (271) analyzing over 300 000 SNPs in lung 
cancer cases and controls from central European countries identified 
the 15q25 locus as strongly associated with lung cancer (P = 5 × 10−20 
overall) and reported to account for 14% of the attributable risk of lung 
cancer cases regardless of smoking status. A 2009 GWAS performed 
by Amos et al. (272) analyzing lung cancer cases and controls in the 
USA and UK described two SNPs (rs1051730 and rs8034191) in the 
15q25.1 region containing the genes for CHRNA3 and CHRNA5, to 
be significantly associated with risk (combined P < 1 × 10−17). Finally, 
an ILCCO pooled analysis demonstrated that both rs8034191 and 
another SNP in CHRNA5, rs16969968, were associated with risk of 
lung cancer, though modified by age, ethnicity and smoking status 
(273). A recent mediation analysis by Van de Weele et al. (274) and 
ILCCO GWAS consortium found that there was an association of the 
CHRNA5 variant and lung cancer risk independent of smoking status.

TERT-CLPTM1L (5p15.33)
TERT is a reverse transcriptase component of telomerase and is 
essential for enzymatic activity and maintenance of telomeres (275). 
CLPTM1L is thought to potentially induce apoptosis of lung cells 
under genotoxic exposures such as tobacco carcinogen-related stress. 
The TERT and CLPTM1L genes are closely located on chromo-
some 5 at 5p15.33 and several GWAS have demonstrated associa-
tions with lung cancer risk. Wang’s GWAS found that rs401681 in 
CLPTM1L was highly correlated with risk (P = 7.9 × 10–9). rs401861 
was again associated with risk (P = 7.2 × 10–8) in a European-based 
GWAS by Rafnar et  al. (276). rs402701 (in TERT) and rs2736100 
(in CLPTM1L) were associated with lung cancer risk, at P = 2 × 10–7 
and P = 4 × 10–6, respectively, in a European-based GWAS by McKay 
et al. (277). Several other studies have shown multiple separate TERT 
and CLPTM1L polymorphisms, which may modify risk based on his-
tology, ethnicity and smoking status (278–280).

BAT3 (6p21.33) modulates p53 in response to genotoxic stress by 
affecting gene stability; it also interacts with Heat-shock protein 70  
and apoptosis-inducing factor. SNPs in BAT3 may be involved with 
lung cancer risk, such as rs1052486 (P = 0.006 in a Caucasian-based 
UK GWAS performed by Rudd et al. (281)). However, the ILCCO 
pooled analysis and several smaller analyses have not confirmed the 
role of BAT3 polymorphisms in lung cancer risk (282).

Discussion

The study of genetic risk factors predisposing to lung cancer has 
evolved from a candidate-gene approach toward a larger scale GWAS 
approach, and we believe there are other approaches that could be 
taken in the future to further elucidate the genetic basis of lung cancer. 
The candidate-gene approach has identified multiple genes, primarily 
in carcinogen metabolism, nucleotide and base excision repair, and 
cell cycle control, which appear to have a role in lung cancer risk. 
However, the candidate-gene approach is limited by prior knowl-
edge (or at least putative knowledge) of the presence and functional 
significance of genes involved in carcinogenesis. Most of the initial 
candidate-gene studies have been performed in small, single ethnic 
populations and the meta-analyses that we have reviewed reflect their 
component studies placing limits on the generalizability of these 
results. The great majority of the meta-analyses we reviewed have 
been either in Caucasian or in Asian populations and often show dif-
ferential results based on ethnicity, gender, smoking status and tumor 
histology. Although this is informative in the sense of risk factors for 
certain populations, knowledge gained from candidate-gene studies 
and even meta-analyses limits our understanding of ‘risk’ and leads 
to other questions such as whether there are interactions between 
genes underlying the biology of ethnicity, gender, predilection to a 
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particular tumor histology and even behavioral components of nico-
tine dependence and addiction. 

For instance, estrogen has been associated with benzo[α]pyrene-
induced lung carcinogenesis through oxidative stress damage (283), 
and polymorphisms in the estrogen receptor have been demonstrated 
to have some impact on the risk of lung cancer (284,285). It is possible 
that polymorphisms in the glutathione-S-transferase genes impact risk 
of lung cancer in part based on exposure to estrogens or androgens. 
Telomeres and cell division are central to the aging process and it is 
plausible that polymorphisms in telomere-associated genes modify 
lung cancer risk in an age-dependent manner, and through interactions 
with other genes involved in the aging process. Some of the identified 
polymorphisms in CHRNA5 lie in a locus also thought to be responsible 
for smoking behavior. These are just examples of questions that could 
be asked about the multiple interactions seen between genes, which 
putatively impact the risk of lung cancer, and the epidemiologic 
factors, which appear to modify the degree of risk conferred.

Although GWAS allows for examination of a much wider variety 
of genetic alterations than do candidate-gene studies, they also have 
limitations. Many GWAS have been performed in the context of sin-
gle-ethnicity populations or populations of a single smoking status, 
which are not necessarily generalizable to the majority of the popula-
tion at risk for lung cancer worldwide. For instance, novel lung can-
cer susceptibility loci have been described in the Chinese population 
(286), in non-smokers only (287), and even specifically in a popula-
tion of never-smoking Asian women (288). Although very valuable in 
further understanding the role of specific genetic alterations involved 
in lung cancer risk in these individual populations, we believe that 
further efforts should be made based on multiethnic populations with 
the variety of smoking statuses and histologic types, which reflect the 
worldwide population.

Furthermore, GWAS is not based on a functional hypothesis, and 
SNPs identified by this method may not be driver mutations but instead 
represent common low-penetrance variants (some not even in identified 
genes) without clearly defined functional significance. These altera-
tions may not reflect the highly mutated environment of lung tumors 
and thus may not reflect biologic alterations with significant impact 
on lung cancer development. In fact, there has been little concordance 
between these SNPs and the SNPs studied using the candidate-gene 
method. Although the possibility of false-positive findings based on the 
candidate-gene approach must be considered, there is often a clearly 
defined functional significance of SNPs identified with this approach, 
which cannot be ignored. It is possible that these results have not been 
replicated in GWAS due to loss through multiple comparison test-
ing, but given the biologic plausibility of many of the candidate-gene 
findings, we do not believe they should be discarded in favor of the 
findings of GWAS. Instead, ways must be found to couple the toxico-
logical- and pathophysiological-based methods of the candidate-gene 
approach with the expanded field of large sequence and whole-genome 
analysis and to search for interactions between many potential genes 
involved in risk simultaneously. Interactions between multiple genes 
may be investigated through pathway analysis using either genotyping 
data (SNP) or expression data (RNA/transcriptome). Using microar-
ray data, multiple genes in a pathway or area of interest can be studied 
simultaneously. This way, variations in single genes are examined not 
in an isolated manner, but in the larger context of a network of genes 
involved in a specific biologic context (transcription, cell cycle regula-
tion and so on), which could interact to modify risk. This could lead to a 
higher level understanding of the ways multiple genes interact with one 
another to modify cancer risk. For instance, multiple genes (PPARG, 
CEBPB, ETV4, FLI1, TAL1 and NFKB1) involved in the regulation of 
transcription were demonstrated in a single study as ‘hub nodes’ and the 
authors not only described the impact of each gene individually but also 
described in the context of a ‘transcriptome network’ (289). We hope 
that further studies of pathways (for instance, cell cycle control, base 
excision repair, NER and so on) will be performed and that authors will 
address the role of multiple genes, which interact with one another in 
the context of a particular biological pathway to modify the risk of lung 
cancer. For instance, the technique of kernel machine SNP-set analysis 

has been used to group SNPs into sets based on genomic features and 
assess the impact of each SNP-set on survival outcomes. This technique 
has proven very useful in using genetic information from multiple SNPs 
in combination, and in accounting for linkage disequilibrium, SNP–
SNP interactions and joint effects of multiple causal variants (290). 
This may not only provide further knowledge as to the role of multiple 
genes already implicated in cancer risk but also provide information 
regarding genes that have not thus far been evaluated in the context of 
predisposition to lung cancer.

A further complication in understanding the genetics of lung cancer 
is missing heritability; the possible contribution of variants of low 
minor allele frequency, defined as roughly 0.5  < minor allele fre-
quency <5%, or of rare variants (minor allele frequency < 0.5) (291). 
Such variants are not sufficiently frequent to be captured by current 
GWA genotyping arrays, nor do they carry sufficiently large effect 
sizes to be detected by classical linkage analysis in family studies. For 
modest effect sizes, association testing may require composite tests 
of overall ‘mutational load’, comparing frequencies of mutations of 
potentially similar functional effect in cases and controls. Such low-
frequency variants could have substantial effect sizes without demon-
strating clear Mendelian patterns of inheritance.

Individual genes and pathways provide some insight into mechanisms 
of risk, but more comprehensive analyses such as microarrays should 
be developed to stratify risk based on overall genetic makeup. Spitz’s 
expanded lung cancer prediction model, which uses two DNA repair 
markers, provides increased sensitivity above a model using clinical fac-
tors alone (292). A comprehensive risk prediction model that incorpo-
rates genetic variation may provide improved information about risk, 
especially in the setting of patients with already demonstrated high risk 
due to other sociological factors, predominantly smoking. Multiple gene 
signature profiles have been developed, which predict clinical outcome 
and response to treatment in largely early-stage lung cancers (293–297), 
but such models have not yet been developed in the pre-diagnosis, risk-
assessment setting. It has been demonstrated that low-dose chest com-
puted tomography performed in patients at high risk for lung cancer led 
to decreased mortality rates (298), but of course, the cost of screening all 
high-risk patients may be prohibitive. Genetic risk-assessment models 
could be helpful in the identification of those ‘high-risk’ patients who 
are at the highest risk for cancer and could potentially be used to guide 
further screening in the future. Isolating the genetic component of lung 
cancer might provide limited predictive value given the strong environ-
mental component in the majority of lung cancers. However, the real 
translational value of genetic association studies lies not so much in the 
development of diagnostic tests, but with the identification of relevant 
genes and pathways implicated in disease. Effective chemoprevention 
and improved therapies may well be directed against gene products that 
exhibit no naturally occurring variation (299).

Conclusion

The association between smoking, other inhaled carcinogens and the 
development of lung cancer is well established, but the role of genetic 
variation as a risk factor for lung cancer has been more difficult to 
define, underscoring the complexity and heterogeneity of the disease 
complex that we call NSCLC. We have summarized primarily based on 
the results of meta-analyses the role of multiple alterations in a variety 
of genes that may play a part in the genetic predisposition to lung 
cancer. Many of these variations have been described in the context 
of a candidate-gene approach, often limited by small study size and 
individual ethnicity populations, even in meta-analyses of multiple 
studies. Other genes have more recently been identified by large-scale 
GWAS, but even these genes that appear to be highly associated with 
risk were often studied in single- or limited-ethnicity populations 
and do not all have a biologically defined role or a pathophysiologic 
basis for involvement in lung cancer risk. The use of pathway and 
kernel-based analysis, gene-based analysis and multiplatform (gene 
expression, epigenomic and proteomic) analyses could potentially 
be used as tools for early risk assessment. We advocate for further 
work to be performed using international collaborative databases, 
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which include patients from multiple geographic regions, multiple 
ethnicities, with a variety of lung cancer histologies and reflecting the 
current patterns of cigarette smoking worldwide. There is a significant 
amount of work that remains in identifying heritable risk factors for 
lung cancer, and identification of pathways and signatures involved 
in lung cancer risk may be of assistance in better understanding the 
pathophysiologic basis of cancer development, the early identification 
of individuals at high risk for lung cancer and ultimately in the 
development of more effective preventive interventions for this 
prevalent and deadly disease.
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